• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Allocator.cpp - Simple memory allocation abstraction -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BumpPtrAllocator interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/Allocator.h"
15 #include "llvm/Support/Compiler.h"
16 #include "llvm/Support/DataTypes.h"
17 #include "llvm/Support/Memory.h"
18 #include "llvm/Support/Recycler.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include <cstring>
21 
22 namespace llvm {
23 
BumpPtrAllocator(size_t size,size_t threshold,SlabAllocator & allocator)24 BumpPtrAllocator::BumpPtrAllocator(size_t size, size_t threshold,
25                                    SlabAllocator &allocator)
26     : SlabSize(size), SizeThreshold(std::min(size, threshold)),
27       Allocator(allocator), CurSlab(0), BytesAllocated(0) { }
28 
~BumpPtrAllocator()29 BumpPtrAllocator::~BumpPtrAllocator() {
30   DeallocateSlabs(CurSlab);
31 }
32 
33 /// AlignPtr - Align Ptr to Alignment bytes, rounding up.  Alignment should
34 /// be a power of two.  This method rounds up, so AlignPtr(7, 4) == 8 and
35 /// AlignPtr(8, 4) == 8.
AlignPtr(char * Ptr,size_t Alignment)36 char *BumpPtrAllocator::AlignPtr(char *Ptr, size_t Alignment) {
37   assert(Alignment && (Alignment & (Alignment - 1)) == 0 &&
38          "Alignment is not a power of two!");
39 
40   // Do the alignment.
41   return (char*)(((uintptr_t)Ptr + Alignment - 1) &
42                  ~(uintptr_t)(Alignment - 1));
43 }
44 
45 /// StartNewSlab - Allocate a new slab and move the bump pointers over into
46 /// the new slab.  Modifies CurPtr and End.
StartNewSlab()47 void BumpPtrAllocator::StartNewSlab() {
48   // If we allocated a big number of slabs already it's likely that we're going
49   // to allocate more. Increase slab size to reduce mallocs and possibly memory
50   // overhead. The factors are chosen conservatively to avoid overallocation.
51   if (BytesAllocated >= SlabSize * 128)
52     SlabSize *= 2;
53 
54   MemSlab *NewSlab = Allocator.Allocate(SlabSize);
55   NewSlab->NextPtr = CurSlab;
56   CurSlab = NewSlab;
57   CurPtr = (char*)(CurSlab + 1);
58   End = ((char*)CurSlab) + CurSlab->Size;
59 }
60 
61 /// DeallocateSlabs - Deallocate all memory slabs after and including this
62 /// one.
DeallocateSlabs(MemSlab * Slab)63 void BumpPtrAllocator::DeallocateSlabs(MemSlab *Slab) {
64   while (Slab) {
65     MemSlab *NextSlab = Slab->NextPtr;
66 #ifndef NDEBUG
67     // Poison the memory so stale pointers crash sooner.  Note we must
68     // preserve the Size and NextPtr fields at the beginning.
69     sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
70     memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
71 #endif
72     Allocator.Deallocate(Slab);
73     Slab = NextSlab;
74   }
75 }
76 
77 /// Reset - Deallocate all but the current slab and reset the current pointer
78 /// to the beginning of it, freeing all memory allocated so far.
Reset()79 void BumpPtrAllocator::Reset() {
80   if (!CurSlab)
81     return;
82   DeallocateSlabs(CurSlab->NextPtr);
83   CurSlab->NextPtr = 0;
84   CurPtr = (char*)(CurSlab + 1);
85   End = ((char*)CurSlab) + CurSlab->Size;
86   BytesAllocated = 0;
87 }
88 
89 /// Allocate - Allocate space at the specified alignment.
90 ///
Allocate(size_t Size,size_t Alignment)91 void *BumpPtrAllocator::Allocate(size_t Size, size_t Alignment) {
92   if (!CurSlab) // Start a new slab if we haven't allocated one already.
93     StartNewSlab();
94 
95   // Keep track of how many bytes we've allocated.
96   BytesAllocated += Size;
97 
98   // 0-byte alignment means 1-byte alignment.
99   if (Alignment == 0) Alignment = 1;
100 
101   // Allocate the aligned space, going forwards from CurPtr.
102   char *Ptr = AlignPtr(CurPtr, Alignment);
103 
104   // Check if we can hold it.
105   if (Ptr + Size <= End) {
106     CurPtr = Ptr + Size;
107     // Update the allocation point of this memory block in MemorySanitizer.
108     // Without this, MemorySanitizer messages for values originated from here
109     // will point to the allocation of the entire slab.
110     __msan_allocated_memory(Ptr, Size);
111     return Ptr;
112   }
113 
114   // If Size is really big, allocate a separate slab for it.
115   size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
116   if (PaddedSize > SizeThreshold) {
117     MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
118 
119     // Put the new slab after the current slab, since we are not allocating
120     // into it.
121     NewSlab->NextPtr = CurSlab->NextPtr;
122     CurSlab->NextPtr = NewSlab;
123 
124     Ptr = AlignPtr((char*)(NewSlab + 1), Alignment);
125     assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
126     __msan_allocated_memory(Ptr, Size);
127     return Ptr;
128   }
129 
130   // Otherwise, start a new slab and try again.
131   StartNewSlab();
132   Ptr = AlignPtr(CurPtr, Alignment);
133   CurPtr = Ptr + Size;
134   assert(CurPtr <= End && "Unable to allocate memory!");
135   __msan_allocated_memory(Ptr, Size);
136   return Ptr;
137 }
138 
GetNumSlabs() const139 unsigned BumpPtrAllocator::GetNumSlabs() const {
140   unsigned NumSlabs = 0;
141   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
142     ++NumSlabs;
143   }
144   return NumSlabs;
145 }
146 
getTotalMemory() const147 size_t BumpPtrAllocator::getTotalMemory() const {
148   size_t TotalMemory = 0;
149   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
150     TotalMemory += Slab->Size;
151   }
152   return TotalMemory;
153 }
154 
PrintStats() const155 void BumpPtrAllocator::PrintStats() const {
156   unsigned NumSlabs = 0;
157   size_t TotalMemory = 0;
158   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
159     TotalMemory += Slab->Size;
160     ++NumSlabs;
161   }
162 
163   errs() << "\nNumber of memory regions: " << NumSlabs << '\n'
164          << "Bytes used: " << BytesAllocated << '\n'
165          << "Bytes allocated: " << TotalMemory << '\n'
166          << "Bytes wasted: " << (TotalMemory - BytesAllocated)
167          << " (includes alignment, etc)\n";
168 }
169 
170 MallocSlabAllocator BumpPtrAllocator::DefaultSlabAllocator =
171   MallocSlabAllocator();
172 
~SlabAllocator()173 SlabAllocator::~SlabAllocator() { }
174 
~MallocSlabAllocator()175 MallocSlabAllocator::~MallocSlabAllocator() { }
176 
Allocate(size_t Size)177 MemSlab *MallocSlabAllocator::Allocate(size_t Size) {
178   MemSlab *Slab = (MemSlab*)Allocator.Allocate(Size, 0);
179   Slab->Size = Size;
180   Slab->NextPtr = 0;
181   return Slab;
182 }
183 
Deallocate(MemSlab * Slab)184 void MallocSlabAllocator::Deallocate(MemSlab *Slab) {
185   Allocator.Deallocate(Slab);
186 }
187 
PrintRecyclerStats(size_t Size,size_t Align,size_t FreeListSize)188 void PrintRecyclerStats(size_t Size,
189                         size_t Align,
190                         size_t FreeListSize) {
191   errs() << "Recycler element size: " << Size << '\n'
192          << "Recycler element alignment: " << Align << '\n'
193          << "Number of elements free for recycling: " << FreeListSize << '\n';
194 }
195 
196 }
197