1//===- AArch64RegisterInfo.td - ARM Register defs ----------*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains declarations that describe the AArch64 register file 11// 12//===----------------------------------------------------------------------===// 13 14let Namespace = "AArch64" in { 15def sub_128 : SubRegIndex; 16def sub_64 : SubRegIndex; 17def sub_32 : SubRegIndex; 18def sub_16 : SubRegIndex; 19def sub_8 : SubRegIndex; 20 21// The VPR registers are handled as sub-registers of FPR equivalents, but 22// they're really the same thing. We give this concept a special index. 23def sub_alias : SubRegIndex; 24} 25 26// Registers are identified with 5-bit ID numbers. 27class AArch64Reg<bits<16> enc, string n> : Register<n> { 28 let HWEncoding = enc; 29 let Namespace = "AArch64"; 30} 31 32class AArch64RegWithSubs<bits<16> enc, string n, list<Register> subregs = [], 33 list<SubRegIndex> inds = []> 34 : AArch64Reg<enc, n> { 35 let SubRegs = subregs; 36 let SubRegIndices = inds; 37} 38 39//===----------------------------------------------------------------------===// 40// Integer registers: w0-w30, wzr, wsp, x0-x30, xzr, sp 41//===----------------------------------------------------------------------===// 42 43foreach Index = 0-30 in { 44 def W#Index : AArch64Reg< Index, "w"#Index>, DwarfRegNum<[Index]>; 45} 46 47def WSP : AArch64Reg<31, "wsp">, DwarfRegNum<[31]>; 48def WZR : AArch64Reg<31, "wzr">; 49 50// Could be combined with previous loop, but this way leaves w and x registers 51// consecutive as LLVM register numbers, which makes for easier debugging. 52foreach Index = 0-30 in { 53 def X#Index : AArch64RegWithSubs<Index, "x"#Index, 54 [!cast<Register>("W"#Index)], [sub_32]>, 55 DwarfRegNum<[Index]>; 56} 57 58def XSP : AArch64RegWithSubs<31, "sp", [WSP], [sub_32]>, DwarfRegNum<[31]>; 59def XZR : AArch64RegWithSubs<31, "xzr", [WZR], [sub_32]>; 60 61// Most instructions treat register 31 as zero for reads and a black-hole for 62// writes. 63 64// Note that the order of registers is important for the Disassembler here: 65// tablegen uses it to form MCRegisterClass::getRegister, which we assume can 66// take an encoding value. 67def GPR32 : RegisterClass<"AArch64", [i32], 32, 68 (add (sequence "W%u", 0, 30), WZR)> { 69} 70 71def GPR64 : RegisterClass<"AArch64", [i64], 64, 72 (add (sequence "X%u", 0, 30), XZR)> { 73} 74 75def GPR32nowzr : RegisterClass<"AArch64", [i32], 32, 76 (sequence "W%u", 0, 30)> { 77} 78 79def GPR64noxzr : RegisterClass<"AArch64", [i64], 64, 80 (sequence "X%u", 0, 30)> { 81} 82 83// For tail calls, we can't use callee-saved registers or the structure-return 84// register, as they are supposed to be live across function calls and may be 85// clobbered by the epilogue. 86def tcGPR64 : RegisterClass<"AArch64", [i64], 64, 87 (add (sequence "X%u", 0, 7), 88 (sequence "X%u", 9, 18))> { 89} 90 91 92// Certain addressing-useful instructions accept sp directly. Again the order of 93// registers is important to the Disassembler. 94def GPR32wsp : RegisterClass<"AArch64", [i32], 32, 95 (add (sequence "W%u", 0, 30), WSP)> { 96} 97 98def GPR64xsp : RegisterClass<"AArch64", [i64], 64, 99 (add (sequence "X%u", 0, 30), XSP)> { 100} 101 102// Some aliases *only* apply to SP (e.g. MOV uses different encoding for SP and 103// non-SP variants). We can't use a bare register in those patterns because 104// TableGen doesn't like it, so we need a class containing just stack registers 105def Rxsp : RegisterClass<"AArch64", [i64], 64, 106 (add XSP)> { 107} 108 109def Rwsp : RegisterClass<"AArch64", [i32], 32, 110 (add WSP)> { 111} 112 113//===----------------------------------------------------------------------===// 114// Scalar registers in the vector unit: 115// b0-b31, h0-h31, s0-s31, d0-d31, q0-q31 116//===----------------------------------------------------------------------===// 117 118foreach Index = 0-31 in { 119 def B # Index : AArch64Reg< Index, "b" # Index>, 120 DwarfRegNum<[!add(Index, 64)]>; 121 122 def H # Index : AArch64RegWithSubs<Index, "h" # Index, 123 [!cast<Register>("B" # Index)], [sub_8]>, 124 DwarfRegNum<[!add(Index, 64)]>; 125 126 def S # Index : AArch64RegWithSubs<Index, "s" # Index, 127 [!cast<Register>("H" # Index)], [sub_16]>, 128 DwarfRegNum<[!add(Index, 64)]>; 129 130 def D # Index : AArch64RegWithSubs<Index, "d" # Index, 131 [!cast<Register>("S" # Index)], [sub_32]>, 132 DwarfRegNum<[!add(Index, 64)]>; 133 134 def Q # Index : AArch64RegWithSubs<Index, "q" # Index, 135 [!cast<Register>("D" # Index)], [sub_64]>, 136 DwarfRegNum<[!add(Index, 64)]>; 137} 138 139 140def FPR8 : RegisterClass<"AArch64", [i8], 8, 141 (sequence "B%u", 0, 31)> { 142} 143 144def FPR16 : RegisterClass<"AArch64", [f16], 16, 145 (sequence "H%u", 0, 31)> { 146} 147 148def FPR32 : RegisterClass<"AArch64", [f32], 32, 149 (sequence "S%u", 0, 31)> { 150} 151 152def FPR64 : RegisterClass<"AArch64", [f64], 64, 153 (sequence "D%u", 0, 31)> { 154} 155 156def FPR128 : RegisterClass<"AArch64", [f128], 128, 157 (sequence "Q%u", 0, 31)> { 158} 159 160 161//===----------------------------------------------------------------------===// 162// Vector registers: 163//===----------------------------------------------------------------------===// 164 165// NEON registers simply specify the overall vector, and it's expected that 166// Instructions will individually specify the acceptable data layout. In 167// principle this leaves two approaches open: 168// + An operand, giving a single ADDvvv instruction (for example). This turns 169// out to be unworkable in the assembly parser (without every Instruction 170// having a "cvt" function, at least) because the constraints can't be 171// properly enforced. It also complicates specifying patterns since each 172// instruction will accept many types. 173// + A bare token (e.g. ".2d"). This means the AsmParser has to know specific 174// details about NEON registers, but simplifies most other details. 175// 176// The second approach was taken. 177 178foreach Index = 0-31 in { 179 def V # Index : AArch64RegWithSubs<Index, "v" # Index, 180 [!cast<Register>("Q" # Index)], 181 [sub_alias]>, 182 DwarfRegNum<[!add(Index, 64)]>; 183} 184 185// These two classes contain the same registers, which should be reasonably 186// sensible for MC and allocation purposes, but allows them to be treated 187// separately for things like stack spilling. 188def VPR64 : RegisterClass<"AArch64", [v2f32, v2i32, v4i16, v8i8], 64, 189 (sequence "V%u", 0, 31)>; 190 191def VPR128 : RegisterClass<"AArch64", 192 [v2f64, v2i64, v4f32, v4i32, v8i16, v16i8], 128, 193 (sequence "V%u", 0, 31)>; 194 195// Flags register 196def NZCV : Register<"nzcv"> { 197 let Namespace = "AArch64"; 198} 199 200def FlagClass : RegisterClass<"AArch64", [i32], 32, (add NZCV)> { 201 let CopyCost = -1; 202 let isAllocatable = 0; 203} 204