• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMRelocations.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/PassManager.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
42 
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
44 
45 namespace {
46 
47   class ARMCodeEmitter : public MachineFunctionPass {
48     ARMJITInfo                *JTI;
49     const ARMBaseInstrInfo    *II;
50     const DataLayout          *TD;
51     const ARMSubtarget        *Subtarget;
52     TargetMachine             &TM;
53     JITCodeEmitter            &MCE;
54     MachineModuleInfo *MMI;
55     const std::vector<MachineConstantPoolEntry> *MCPEs;
56     const std::vector<MachineJumpTableEntry> *MJTEs;
57     bool IsPIC;
58     bool IsThumb;
59 
getAnalysisUsage(AnalysisUsage & AU) const60     void getAnalysisUsage(AnalysisUsage &AU) const {
61       AU.addRequired<MachineModuleInfo>();
62       MachineFunctionPass::getAnalysisUsage(AU);
63     }
64 
65     static char ID;
66   public:
ARMCodeEmitter(TargetMachine & tm,JITCodeEmitter & mce)67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68       : MachineFunctionPass(ID), JTI(0),
69         II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
70         TD(tm.getDataLayout()), TM(tm),
71         MCE(mce), MCPEs(0), MJTEs(0),
72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73 
74     /// getBinaryCodeForInstr - This function, generated by the
75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76     /// machine instructions.
77     uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
78 
79     bool runOnMachineFunction(MachineFunction &MF);
80 
getPassName() const81     virtual const char *getPassName() const {
82       return "ARM Machine Code Emitter";
83     }
84 
85     void emitInstruction(const MachineInstr &MI);
86 
87   private:
88 
89     void emitWordLE(unsigned Binary);
90     void emitDWordLE(uint64_t Binary);
91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
92     void emitConstPoolInstruction(const MachineInstr &MI);
93     void emitMOVi32immInstruction(const MachineInstr &MI);
94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
95     void emitLEApcrelInstruction(const MachineInstr &MI);
96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
97     void emitPseudoMoveInstruction(const MachineInstr &MI);
98     void addPCLabel(unsigned LabelID);
99     void emitPseudoInstruction(const MachineInstr &MI);
100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101                                     const MCInstrDesc &MCID,
102                                     const MachineOperand &MO,
103                                     unsigned OpIdx);
104 
105     unsigned getMachineSoImmOpValue(unsigned SoImm);
106     unsigned getAddrModeSBit(const MachineInstr &MI,
107                              const MCInstrDesc &MCID) const;
108 
109     void emitDataProcessingInstruction(const MachineInstr &MI,
110                                        unsigned ImplicitRd = 0,
111                                        unsigned ImplicitRn = 0);
112 
113     void emitLoadStoreInstruction(const MachineInstr &MI,
114                                   unsigned ImplicitRd = 0,
115                                   unsigned ImplicitRn = 0);
116 
117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118                                       unsigned ImplicitRn = 0);
119 
120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121 
122     void emitMulFrmInstruction(const MachineInstr &MI);
123 
124     void emitExtendInstruction(const MachineInstr &MI);
125 
126     void emitMiscArithInstruction(const MachineInstr &MI);
127 
128     void emitSaturateInstruction(const MachineInstr &MI);
129 
130     void emitBranchInstruction(const MachineInstr &MI);
131 
132     void emitInlineJumpTable(unsigned JTIndex);
133 
134     void emitMiscBranchInstruction(const MachineInstr &MI);
135 
136     void emitVFPArithInstruction(const MachineInstr &MI);
137 
138     void emitVFPConversionInstruction(const MachineInstr &MI);
139 
140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141 
142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143 
144     void emitMiscInstruction(const MachineInstr &MI);
145 
146     void emitNEONLaneInstruction(const MachineInstr &MI);
147     void emitNEONDupInstruction(const MachineInstr &MI);
148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
149     void emitNEON2RegInstruction(const MachineInstr &MI);
150     void emitNEON3RegInstruction(const MachineInstr &MI);
151 
152     /// getMachineOpValue - Return binary encoding of operand. If the machine
153     /// operand requires relocation, record the relocation and return zero.
154     unsigned getMachineOpValue(const MachineInstr &MI,
155                                const MachineOperand &MO) const;
getMachineOpValue(const MachineInstr & MI,unsigned OpIdx) const156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
158     }
159 
160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
162     //  operand values, instead querying getMachineOpValue() directly for
163     //  each operand it needs to encode. Thus, any of the new encoder
164     //  helper functions can simply return 0 as the values the return
165     //  are already handled elsewhere. They are placeholders to allow this
166     //  encoder to continue to function until the MC encoder is sufficiently
167     //  far along that this one can be eliminated entirely.
NEONThumb2DataIPostEncoder(const MachineInstr & MI,unsigned Val) const168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
169       const { return 0; }
NEONThumb2LoadStorePostEncoder(const MachineInstr & MI,unsigned Val) const170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
171       const { return 0; }
NEONThumb2DupPostEncoder(const MachineInstr & MI,unsigned Val) const172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
173       const { return 0; }
VFPThumb2PostEncoder(const MachineInstr & MI,unsigned Val) const174     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
175       const {
176       if (IsThumb) {
177         Val &= 0x0FFFFFFF;
178         Val |= 0xE0000000;
179       }
180       return Val;
181     }
getAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const182     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
183       const { return 0; }
getThumbAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const184     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
185       const { return 0; }
getThumbBLTargetOpValue(const MachineInstr & MI,unsigned Op) const186     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
187       const { return 0; }
getThumbBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const188     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
189       const { return 0; }
getThumbBRTargetOpValue(const MachineInstr & MI,unsigned Op) const190     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
191       const { return 0; }
getThumbBCCTargetOpValue(const MachineInstr & MI,unsigned Op) const192     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
193       const { return 0; }
getThumbCBTargetOpValue(const MachineInstr & MI,unsigned Op) const194     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
195       const { return 0; }
getBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const196     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
197       const { return 0; }
getUnconditionalBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const198     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
199       unsigned Op) const { return 0; }
getARMBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const200     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
201       const { return 0; }
getARMBLTargetOpValue(const MachineInstr & MI,unsigned Op) const202     unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
203       const { return 0; }
getARMBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const204     unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
205       const { return 0; }
getCCOutOpValue(const MachineInstr & MI,unsigned Op) const206     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
207       const { return 0; }
getSOImmOpValue(const MachineInstr & MI,unsigned Op) const208     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
209       const { return 0; }
getT2SOImmOpValue(const MachineInstr & MI,unsigned Op) const210     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
211       const { return 0; }
getSORegRegOpValue(const MachineInstr & MI,unsigned Op) const212     unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
213       const { return 0; }
getSORegImmOpValue(const MachineInstr & MI,unsigned Op) const214     unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
215       const { return 0; }
getThumbAddrModeRegRegOpValue(const MachineInstr & MI,unsigned Op) const216     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
217       const { return 0; }
getT2AddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const218     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
219       const { return 0; }
getT2AddrModeImm8OpValue(const MachineInstr & MI,unsigned Op) const220     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
221       const { return 0; }
getT2Imm8s4OpValue(const MachineInstr & MI,unsigned Op) const222     unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
223       const { return 0; }
getT2AddrModeImm8s4OpValue(const MachineInstr & MI,unsigned Op) const224     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
225       const { return 0; }
getT2AddrModeImm0_1020s4OpValue(const MachineInstr & MI,unsigned Op) const226     unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
227       const { return 0; }
getT2AddrModeImm8OffsetOpValue(const MachineInstr & MI,unsigned Op) const228     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
229       const { return 0; }
getT2AddrModeImm12OffsetOpValue(const MachineInstr & MI,unsigned Op) const230     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
231       const { return 0; }
getT2AddrModeSORegOpValue(const MachineInstr & MI,unsigned Op) const232     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
233       const { return 0; }
getT2SORegOpValue(const MachineInstr & MI,unsigned Op) const234     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
235       const { return 0; }
getT2AdrLabelOpValue(const MachineInstr & MI,unsigned Op) const236     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
237       const { return 0; }
getAddrMode6AddressOpValue(const MachineInstr & MI,unsigned Op) const238     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
239       const { return 0; }
getAddrMode6OneLane32AddressOpValue(const MachineInstr & MI,unsigned Op) const240     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
241                                                  unsigned Op)
242       const { return 0; }
getAddrMode6DupAddressOpValue(const MachineInstr & MI,unsigned Op) const243     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
244       const { return 0; }
getAddrMode6OffsetOpValue(const MachineInstr & MI,unsigned Op) const245     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
246       const { return 0; }
getBitfieldInvertedMaskOpValue(const MachineInstr & MI,unsigned Op) const247     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
248                                             unsigned Op) const { return 0; }
getSsatBitPosValue(const MachineInstr & MI,unsigned Op) const249     unsigned getSsatBitPosValue(const MachineInstr &MI,
250                                 unsigned Op) const { return 0; }
getLdStmModeOpValue(const MachineInstr & MI,unsigned OpIdx) const251     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
252       const {return 0; }
getLdStSORegOpValue(const MachineInstr & MI,unsigned OpIdx) const253     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
254       const { return 0; }
255 
getAddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const256     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
257       const {
258       // {17-13} = reg
259       // {12}    = (U)nsigned (add == '1', sub == '0')
260       // {11-0}  = imm12
261       const MachineOperand &MO  = MI.getOperand(Op);
262       const MachineOperand &MO1 = MI.getOperand(Op + 1);
263       if (!MO.isReg()) {
264         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
265         return 0;
266       }
267       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
268       int32_t Imm12 = MO1.getImm();
269       uint32_t Binary;
270       Binary = Imm12 & 0xfff;
271       if (Imm12 >= 0)
272         Binary |= (1 << 12);
273       Binary |= (Reg << 13);
274       return Binary;
275     }
276 
getHiLo16ImmOpValue(const MachineInstr & MI,unsigned Op) const277     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
278       const {
279       const MCInstrDesc &MCID = MI.getDesc();
280       const MachineOperand &MO = MI.getOperand(Op);
281 
282       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
283                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
284 
285       if (!MO.isImm()) {
286         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
287         return 0;
288       }
289       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
290       return Imm16;
291     }
292 
getAddrMode2OpValue(const MachineInstr & MI,unsigned OpIdx) const293     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
294       const { return 0;}
getAddrMode2OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const295     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
296       const { return 0;}
getPostIdxRegOpValue(const MachineInstr & MI,unsigned OpIdx) const297     uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
298       const { return 0;}
getAddrMode3OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const299     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
300       const { return 0;}
getAddrMode3OpValue(const MachineInstr & MI,unsigned Op) const301     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
302       const { return 0; }
getAddrModeThumbSPOpValue(const MachineInstr & MI,unsigned Op) const303     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
304       const { return 0; }
getAddrModeSOpValue(const MachineInstr & MI,unsigned Op) const305     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
306       const { return 0; }
getAddrModeISOpValue(const MachineInstr & MI,unsigned Op) const307     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
308       const { return 0; }
getAddrModePCOpValue(const MachineInstr & MI,unsigned Op) const309     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
310       const { return 0; }
getAddrMode5OpValue(const MachineInstr & MI,unsigned Op) const311     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
312       // {12-9}  = reg
313       // {8}     = (U)nsigned (add == '1', sub == '0')
314       // {7-0}   = imm8
315       uint32_t Binary = 0;
316       const MachineOperand &MO  = MI.getOperand(Op);
317       const MachineOperand &MO1 = MI.getOperand(Op + 1);
318       if (!MO.isReg()) {
319         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
320         return 0;
321       }
322       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
323       int32_t Imm12 = MO1.getImm();
324 
325       // Special value for #-0
326       if (Imm12 == INT32_MIN)
327         Imm12 = 0;
328 
329       // Immediate is always encoded as positive. The 'U' bit controls add vs
330       // sub.
331       bool isAdd = true;
332       if (Imm12 < 0) {
333         Imm12 = -Imm12;
334         isAdd = false;
335       }
336 
337       // If immediate offset is omitted, default to +0.
338       Binary |= 1 << 8;
339       return Binary;
340     }
getNEONVcvtImm32OpValue(const MachineInstr & MI,unsigned Op) const341     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
342       const { return 0; }
343 
getRegisterListOpValue(const MachineInstr & MI,unsigned Op) const344     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
345       const { return 0; }
346 
getShiftRight8Imm(const MachineInstr & MI,unsigned Op) const347     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
348       const { return 0; }
getShiftRight16Imm(const MachineInstr & MI,unsigned Op) const349     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
350       const { return 0; }
getShiftRight32Imm(const MachineInstr & MI,unsigned Op) const351     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
352       const { return 0; }
getShiftRight64Imm(const MachineInstr & MI,unsigned Op) const353     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
354       const { return 0; }
355 
356     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
357     /// machine operand requires relocation, record the relocation and return
358     /// zero.
359     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
360                             unsigned Reloc);
361 
362     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
363     ///
364     unsigned getShiftOp(unsigned Imm) const ;
365 
366     /// Routines that handle operands which add machine relocations which are
367     /// fixed up by the relocation stage.
368     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
369                            bool MayNeedFarStub,  bool Indirect,
370                            intptr_t ACPV = 0) const;
371     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
372     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
373     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
374     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
375                                intptr_t JTBase = 0) const;
376     unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
377     unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
378     unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
379     unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
380     unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
381     unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
382   };
383 }
384 
385 char ARMCodeEmitter::ID = 0;
386 
387 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
388 /// code to the specified MCE object.
createARMJITCodeEmitterPass(ARMBaseTargetMachine & TM,JITCodeEmitter & JCE)389 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
390                                                 JITCodeEmitter &JCE) {
391   return new ARMCodeEmitter(TM, JCE);
392 }
393 
runOnMachineFunction(MachineFunction & MF)394 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
395   TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
396 
397   assert((Target.getRelocationModel() != Reloc::Default ||
398           Target.getRelocationModel() != Reloc::Static) &&
399          "JIT relocation model must be set to static or default!");
400 
401   JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
402   II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
403   TD = Target.getDataLayout();
404 
405   Subtarget = &TM.getSubtarget<ARMSubtarget>();
406   MCPEs = &MF.getConstantPool()->getConstants();
407   MJTEs = 0;
408   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
409   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
410   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
411   JTI->Initialize(MF, IsPIC);
412   MMI = &getAnalysis<MachineModuleInfo>();
413   MCE.setModuleInfo(MMI);
414 
415   do {
416     DEBUG(errs() << "JITTing function '"
417           << MF.getName() << "'\n");
418     MCE.startFunction(MF);
419     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
420          MBB != E; ++MBB) {
421       MCE.StartMachineBasicBlock(MBB);
422       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
423            I != E; ++I)
424         emitInstruction(*I);
425     }
426   } while (MCE.finishFunction(MF));
427 
428   return false;
429 }
430 
431 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
432 ///
getShiftOp(unsigned Imm) const433 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
434   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
435   default: llvm_unreachable("Unknown shift opc!");
436   case ARM_AM::asr: return 2;
437   case ARM_AM::lsl: return 0;
438   case ARM_AM::lsr: return 1;
439   case ARM_AM::ror:
440   case ARM_AM::rrx: return 3;
441   }
442 }
443 
444 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
445 /// machine operand requires relocation, record the relocation and return zero.
getMovi32Value(const MachineInstr & MI,const MachineOperand & MO,unsigned Reloc)446 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
447                                         const MachineOperand &MO,
448                                         unsigned Reloc) {
449   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
450       && "Relocation to this function should be for movt or movw");
451 
452   if (MO.isImm())
453     return static_cast<unsigned>(MO.getImm());
454   else if (MO.isGlobal())
455     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
456   else if (MO.isSymbol())
457     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
458   else if (MO.isMBB())
459     emitMachineBasicBlock(MO.getMBB(), Reloc);
460   else {
461 #ifndef NDEBUG
462     errs() << MO;
463 #endif
464     llvm_unreachable("Unsupported operand type for movw/movt");
465   }
466   return 0;
467 }
468 
469 /// getMachineOpValue - Return binary encoding of operand. If the machine
470 /// operand requires relocation, record the relocation and return zero.
getMachineOpValue(const MachineInstr & MI,const MachineOperand & MO) const471 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
472                                            const MachineOperand &MO) const {
473   if (MO.isReg())
474     return II->getRegisterInfo().getEncodingValue(MO.getReg());
475   else if (MO.isImm())
476     return static_cast<unsigned>(MO.getImm());
477   else if (MO.isFPImm())
478     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
479                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
480   else if (MO.isGlobal())
481     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
482   else if (MO.isSymbol())
483     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
484   else if (MO.isCPI()) {
485     const MCInstrDesc &MCID = MI.getDesc();
486     // For VFP load, the immediate offset is multiplied by 4.
487     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
488       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
489     emitConstPoolAddress(MO.getIndex(), Reloc);
490   } else if (MO.isJTI())
491     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
492   else if (MO.isMBB())
493     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
494   else
495     llvm_unreachable("Unable to encode MachineOperand!");
496   return 0;
497 }
498 
499 /// emitGlobalAddress - Emit the specified address to the code stream.
500 ///
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,bool MayNeedFarStub,bool Indirect,intptr_t ACPV) const501 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
502                                        bool MayNeedFarStub, bool Indirect,
503                                        intptr_t ACPV) const {
504   MachineRelocation MR = Indirect
505     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
506                                            const_cast<GlobalValue *>(GV),
507                                            ACPV, MayNeedFarStub)
508     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
509                                const_cast<GlobalValue *>(GV), ACPV,
510                                MayNeedFarStub);
511   MCE.addRelocation(MR);
512 }
513 
514 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
515 /// be emitted to the current location in the function, and allow it to be PC
516 /// relative.
517 void ARMCodeEmitter::
emitExternalSymbolAddress(const char * ES,unsigned Reloc) const518 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
519   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
520                                                  Reloc, ES));
521 }
522 
523 /// emitConstPoolAddress - Arrange for the address of an constant pool
524 /// to be emitted to the current location in the function, and allow it to be PC
525 /// relative.
emitConstPoolAddress(unsigned CPI,unsigned Reloc) const526 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
527   // Tell JIT emitter we'll resolve the address.
528   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
529                                                     Reloc, CPI, 0, true));
530 }
531 
532 /// emitJumpTableAddress - Arrange for the address of a jump table to
533 /// be emitted to the current location in the function, and allow it to be PC
534 /// relative.
535 void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex,unsigned Reloc) const536 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
537   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
538                                                     Reloc, JTIndex, 0, true));
539 }
540 
541 /// emitMachineBasicBlock - Emit the specified address basic block.
emitMachineBasicBlock(MachineBasicBlock * BB,unsigned Reloc,intptr_t JTBase) const542 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
543                                            unsigned Reloc,
544                                            intptr_t JTBase) const {
545   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
546                                              Reloc, BB, JTBase));
547 }
548 
emitWordLE(unsigned Binary)549 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
550   DEBUG(errs() << "  0x";
551         errs().write_hex(Binary) << "\n");
552   MCE.emitWordLE(Binary);
553 }
554 
emitDWordLE(uint64_t Binary)555 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
556   DEBUG(errs() << "  0x";
557         errs().write_hex(Binary) << "\n");
558   MCE.emitDWordLE(Binary);
559 }
560 
emitInstruction(const MachineInstr & MI)561 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
562   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
563 
564   MCE.processDebugLoc(MI.getDebugLoc(), true);
565 
566   ++NumEmitted;  // Keep track of the # of mi's emitted
567   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
568   default: {
569     llvm_unreachable("Unhandled instruction encoding format!");
570   }
571   case ARMII::MiscFrm:
572     if (MI.getOpcode() == ARM::LEApcrelJT) {
573       // Materialize jumptable address.
574       emitLEApcrelJTInstruction(MI);
575       break;
576     }
577     llvm_unreachable("Unhandled instruction encoding!");
578   case ARMII::Pseudo:
579     emitPseudoInstruction(MI);
580     break;
581   case ARMII::DPFrm:
582   case ARMII::DPSoRegFrm:
583     emitDataProcessingInstruction(MI);
584     break;
585   case ARMII::LdFrm:
586   case ARMII::StFrm:
587     emitLoadStoreInstruction(MI);
588     break;
589   case ARMII::LdMiscFrm:
590   case ARMII::StMiscFrm:
591     emitMiscLoadStoreInstruction(MI);
592     break;
593   case ARMII::LdStMulFrm:
594     emitLoadStoreMultipleInstruction(MI);
595     break;
596   case ARMII::MulFrm:
597     emitMulFrmInstruction(MI);
598     break;
599   case ARMII::ExtFrm:
600     emitExtendInstruction(MI);
601     break;
602   case ARMII::ArithMiscFrm:
603     emitMiscArithInstruction(MI);
604     break;
605   case ARMII::SatFrm:
606     emitSaturateInstruction(MI);
607     break;
608   case ARMII::BrFrm:
609     emitBranchInstruction(MI);
610     break;
611   case ARMII::BrMiscFrm:
612     emitMiscBranchInstruction(MI);
613     break;
614   // VFP instructions.
615   case ARMII::VFPUnaryFrm:
616   case ARMII::VFPBinaryFrm:
617     emitVFPArithInstruction(MI);
618     break;
619   case ARMII::VFPConv1Frm:
620   case ARMII::VFPConv2Frm:
621   case ARMII::VFPConv3Frm:
622   case ARMII::VFPConv4Frm:
623   case ARMII::VFPConv5Frm:
624     emitVFPConversionInstruction(MI);
625     break;
626   case ARMII::VFPLdStFrm:
627     emitVFPLoadStoreInstruction(MI);
628     break;
629   case ARMII::VFPLdStMulFrm:
630     emitVFPLoadStoreMultipleInstruction(MI);
631     break;
632   case ARMII::VFPMiscFrm:
633     emitMiscInstruction(MI);
634     break;
635   // NEON instructions.
636   case ARMII::NGetLnFrm:
637   case ARMII::NSetLnFrm:
638     emitNEONLaneInstruction(MI);
639     break;
640   case ARMII::NDupFrm:
641     emitNEONDupInstruction(MI);
642     break;
643   case ARMII::N1RegModImmFrm:
644     emitNEON1RegModImmInstruction(MI);
645     break;
646   case ARMII::N2RegFrm:
647     emitNEON2RegInstruction(MI);
648     break;
649   case ARMII::N3RegFrm:
650     emitNEON3RegInstruction(MI);
651     break;
652   }
653   MCE.processDebugLoc(MI.getDebugLoc(), false);
654 }
655 
emitConstantToMemory(unsigned CPI,const Constant * C)656 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
657   DEBUG({
658       errs() << "  ** Constant pool #" << CPI << " @ "
659              << (void*)MCE.getCurrentPCValue() << " ";
660       if (const Function *F = dyn_cast<Function>(C))
661         errs() << F->getName();
662       else
663         errs() << *C;
664       errs() << '\n';
665     });
666 
667   switch (C->getValueID()) {
668   default: {
669     llvm_unreachable("Unable to handle this constantpool entry!");
670     break;
671   }
672   case Value::GlobalVariableVal: {
673     emitGlobalAddress(static_cast<const GlobalValue*>(C),
674                       ARM::reloc_arm_absolute, isa<Function>(C), false);
675     emitWordLE(0);
676     break;
677   }
678   case Value::ConstantIntVal: {
679     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
680     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
681     emitWordLE(Val);
682     break;
683   }
684   case Value::ConstantFPVal: {
685     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
686     if (CFP->getType()->isFloatTy())
687       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
688     else if (CFP->getType()->isDoubleTy())
689       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
690     else {
691       llvm_unreachable("Unable to handle this constantpool entry!");
692     }
693     break;
694   }
695   case Value::ConstantArrayVal: {
696     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
697     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
698       emitConstantToMemory(CPI, CA->getOperand(i));
699     break;
700   }
701   }
702 
703   return;
704 }
705 
emitConstPoolInstruction(const MachineInstr & MI)706 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
707   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
708   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
709   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
710 
711   // Remember the CONSTPOOL_ENTRY address for later relocation.
712   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
713 
714   // Emit constpool island entry. In most cases, the actual values will be
715   // resolved and relocated after code emission.
716   if (MCPE.isMachineConstantPoolEntry()) {
717     ARMConstantPoolValue *ACPV =
718       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
719 
720     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
721           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
722 
723     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
724     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
725     if (GV) {
726       Reloc::Model RelocM = TM.getRelocationModel();
727       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
728                         isa<Function>(GV),
729                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
730                         (intptr_t)ACPV);
731     } else  {
732       const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
733       emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
734     }
735     emitWordLE(0);
736   } else {
737     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
738   }
739 }
740 
emitMOVi32immInstruction(const MachineInstr & MI)741 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
742   const MachineOperand &MO0 = MI.getOperand(0);
743   const MachineOperand &MO1 = MI.getOperand(1);
744 
745   // Emit the 'movw' instruction.
746   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
747 
748   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
749 
750   // Set the conditional execution predicate.
751   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
752 
753   // Encode Rd.
754   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
755 
756   // Encode imm16 as imm4:imm12
757   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
758   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
759   emitWordLE(Binary);
760 
761   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
762   // Emit the 'movt' instruction.
763   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
764 
765   // Set the conditional execution predicate.
766   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
767 
768   // Encode Rd.
769   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
770 
771   // Encode imm16 as imm4:imm1, same as movw above.
772   Binary |= Hi16 & 0xFFF;
773   Binary |= ((Hi16 >> 12) & 0xF) << 16;
774   emitWordLE(Binary);
775 }
776 
emitMOVi2piecesInstruction(const MachineInstr & MI)777 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
778   const MachineOperand &MO0 = MI.getOperand(0);
779   const MachineOperand &MO1 = MI.getOperand(1);
780   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
781                                                   "Not a valid so_imm value!");
782   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
783   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
784 
785   // Emit the 'mov' instruction.
786   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
787 
788   // Set the conditional execution predicate.
789   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
790 
791   // Encode Rd.
792   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
793 
794   // Encode so_imm.
795   // Set bit I(25) to identify this is the immediate form of <shifter_op>
796   Binary |= 1 << ARMII::I_BitShift;
797   Binary |= getMachineSoImmOpValue(V1);
798   emitWordLE(Binary);
799 
800   // Now the 'orr' instruction.
801   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
802 
803   // Set the conditional execution predicate.
804   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
805 
806   // Encode Rd.
807   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
808 
809   // Encode Rn.
810   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
811 
812   // Encode so_imm.
813   // Set bit I(25) to identify this is the immediate form of <shifter_op>
814   Binary |= 1 << ARMII::I_BitShift;
815   Binary |= getMachineSoImmOpValue(V2);
816   emitWordLE(Binary);
817 }
818 
emitLEApcrelInstruction(const MachineInstr & MI)819 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
820   // It's basically add r, pc, (LCPI - $+8)
821   const MCInstrDesc &MCID = MI.getDesc();
822 
823   unsigned Binary = 0;
824 
825   // Set the conditional execution predicate
826   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
827 
828   // Encode S bit if MI modifies CPSR.
829   Binary |= getAddrModeSBit(MI, MCID);
830 
831   // Encode Rd.
832   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
833 
834   // Encode Rn which is PC.
835   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
836 
837   // Encode the displacement which is a so_imm.
838   // Set bit I(25) to identify this is the immediate form of <shifter_op>
839   Binary |= 1 << ARMII::I_BitShift;
840   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
841 
842   emitWordLE(Binary);
843 }
844 
emitLEApcrelJTInstruction(const MachineInstr & MI)845 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
846   // It's basically add r, pc, (LJTI - $+8)
847 
848   const MCInstrDesc &MCID = MI.getDesc();
849 
850   // Emit the 'add' instruction.
851   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
852 
853   // Set the conditional execution predicate
854   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
855 
856   // Encode S bit if MI modifies CPSR.
857   Binary |= getAddrModeSBit(MI, MCID);
858 
859   // Encode Rd.
860   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
861 
862   // Encode Rn which is PC.
863   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
864 
865   // Encode the displacement.
866   Binary |= 1 << ARMII::I_BitShift;
867   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
868 
869   emitWordLE(Binary);
870 }
871 
emitPseudoMoveInstruction(const MachineInstr & MI)872 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
873   unsigned Opcode = MI.getDesc().Opcode;
874 
875   // Part of binary is determined by TableGn.
876   unsigned Binary = getBinaryCodeForInstr(MI);
877 
878   // Set the conditional execution predicate
879   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
880 
881   // Encode S bit if MI modifies CPSR.
882   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
883     Binary |= 1 << ARMII::S_BitShift;
884 
885   // Encode register def if there is one.
886   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
887 
888   // Encode the shift operation.
889   switch (Opcode) {
890   default: break;
891   case ARM::RRX:
892     // rrx
893     Binary |= 0x6 << 4;
894     break;
895   case ARM::MOVsrl_flag:
896     // lsr #1
897     Binary |= (0x2 << 4) | (1 << 7);
898     break;
899   case ARM::MOVsra_flag:
900     // asr #1
901     Binary |= (0x4 << 4) | (1 << 7);
902     break;
903   }
904 
905   // Encode register Rm.
906   Binary |= getMachineOpValue(MI, 1);
907 
908   emitWordLE(Binary);
909 }
910 
addPCLabel(unsigned LabelID)911 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
912   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
913         << (void*)MCE.getCurrentPCValue() << '\n');
914   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
915 }
916 
emitPseudoInstruction(const MachineInstr & MI)917 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
918   unsigned Opcode = MI.getDesc().Opcode;
919   switch (Opcode) {
920   default:
921     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
922   case ARM::B:
923     emitBranchInstruction(MI);
924     break;
925   case ARM::BR_JTr:
926   case ARM::BR_JTm:
927   case ARM::BR_JTadd:
928     emitMiscBranchInstruction(MI);
929     break;
930   case ARM::BX_CALL:
931   case ARM::BMOVPCRX_CALL: {
932     // First emit mov lr, pc
933     unsigned Binary = 0x01a0e00f;
934     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
935     emitWordLE(Binary);
936 
937     // and then emit the branch.
938     emitMiscBranchInstruction(MI);
939     break;
940   }
941   case TargetOpcode::INLINEASM: {
942     // We allow inline assembler nodes with empty bodies - they can
943     // implicitly define registers, which is ok for JIT.
944     if (MI.getOperand(0).getSymbolName()[0]) {
945       report_fatal_error("JIT does not support inline asm!");
946     }
947     break;
948   }
949   case TargetOpcode::PROLOG_LABEL:
950   case TargetOpcode::EH_LABEL:
951     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
952     break;
953   case TargetOpcode::IMPLICIT_DEF:
954   case TargetOpcode::KILL:
955     // Do nothing.
956     break;
957   case ARM::CONSTPOOL_ENTRY:
958     emitConstPoolInstruction(MI);
959     break;
960   case ARM::LDMIA_RET:
961     emitLoadStoreMultipleInstruction(MI);
962     break;
963   case ARM::PICADD: {
964     // Remember of the address of the PC label for relocation later.
965     addPCLabel(MI.getOperand(2).getImm());
966     // PICADD is just an add instruction that implicitly read pc.
967     emitDataProcessingInstruction(MI, 0, ARM::PC);
968     break;
969   }
970   case ARM::PICLDR:
971   case ARM::PICLDRB:
972   case ARM::PICSTR:
973   case ARM::PICSTRB: {
974     // Remember of the address of the PC label for relocation later.
975     addPCLabel(MI.getOperand(2).getImm());
976     // These are just load / store instructions that implicitly read pc.
977     emitLoadStoreInstruction(MI, 0, ARM::PC);
978     break;
979   }
980   case ARM::PICLDRH:
981   case ARM::PICLDRSH:
982   case ARM::PICLDRSB:
983   case ARM::PICSTRH: {
984     // Remember of the address of the PC label for relocation later.
985     addPCLabel(MI.getOperand(2).getImm());
986     // These are just load / store instructions that implicitly read pc.
987     emitMiscLoadStoreInstruction(MI, ARM::PC);
988     break;
989   }
990 
991   case ARM::MOVi32imm:
992     // Two instructions to materialize a constant.
993     if (Subtarget->hasV6T2Ops())
994       emitMOVi32immInstruction(MI);
995     else
996       emitMOVi2piecesInstruction(MI);
997     break;
998   case ARM::LEApcrel:
999     // Materialize constantpool index address.
1000     emitLEApcrelInstruction(MI);
1001     break;
1002   case ARM::LEApcrelJT:
1003     // Materialize jumptable address.
1004     emitLEApcrelJTInstruction(MI);
1005     break;
1006   case ARM::RRX:
1007   case ARM::MOVsrl_flag:
1008   case ARM::MOVsra_flag:
1009     emitPseudoMoveInstruction(MI);
1010     break;
1011   }
1012 }
1013 
getMachineSoRegOpValue(const MachineInstr & MI,const MCInstrDesc & MCID,const MachineOperand & MO,unsigned OpIdx)1014 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
1015                                                 const MCInstrDesc &MCID,
1016                                                 const MachineOperand &MO,
1017                                                 unsigned OpIdx) {
1018   unsigned Binary = getMachineOpValue(MI, MO);
1019 
1020   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
1021   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
1022   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
1023 
1024   // Encode the shift opcode.
1025   unsigned SBits = 0;
1026   unsigned Rs = MO1.getReg();
1027   if (Rs) {
1028     // Set shift operand (bit[7:4]).
1029     // LSL - 0001
1030     // LSR - 0011
1031     // ASR - 0101
1032     // ROR - 0111
1033     // RRX - 0110 and bit[11:8] clear.
1034     switch (SOpc) {
1035     default: llvm_unreachable("Unknown shift opc!");
1036     case ARM_AM::lsl: SBits = 0x1; break;
1037     case ARM_AM::lsr: SBits = 0x3; break;
1038     case ARM_AM::asr: SBits = 0x5; break;
1039     case ARM_AM::ror: SBits = 0x7; break;
1040     case ARM_AM::rrx: SBits = 0x6; break;
1041     }
1042   } else {
1043     // Set shift operand (bit[6:4]).
1044     // LSL - 000
1045     // LSR - 010
1046     // ASR - 100
1047     // ROR - 110
1048     switch (SOpc) {
1049     default: llvm_unreachable("Unknown shift opc!");
1050     case ARM_AM::lsl: SBits = 0x0; break;
1051     case ARM_AM::lsr: SBits = 0x2; break;
1052     case ARM_AM::asr: SBits = 0x4; break;
1053     case ARM_AM::ror: SBits = 0x6; break;
1054     }
1055   }
1056   Binary |= SBits << 4;
1057   if (SOpc == ARM_AM::rrx)
1058     return Binary;
1059 
1060   // Encode the shift operation Rs or shift_imm (except rrx).
1061   if (Rs) {
1062     // Encode Rs bit[11:8].
1063     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
1064     return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
1065   }
1066 
1067   // Encode shift_imm bit[11:7].
1068   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
1069 }
1070 
getMachineSoImmOpValue(unsigned SoImm)1071 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
1072   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
1073   assert(SoImmVal != -1 && "Not a valid so_imm value!");
1074 
1075   // Encode rotate_imm.
1076   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
1077     << ARMII::SoRotImmShift;
1078 
1079   // Encode immed_8.
1080   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
1081   return Binary;
1082 }
1083 
getAddrModeSBit(const MachineInstr & MI,const MCInstrDesc & MCID) const1084 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
1085                                          const MCInstrDesc &MCID) const {
1086   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
1087     const MachineOperand &MO = MI.getOperand(i-1);
1088     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1089       return 1 << ARMII::S_BitShift;
1090   }
1091   return 0;
1092 }
1093 
emitDataProcessingInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1094 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1095                                                    unsigned ImplicitRd,
1096                                                    unsigned ImplicitRn) {
1097   const MCInstrDesc &MCID = MI.getDesc();
1098 
1099   // Part of binary is determined by TableGn.
1100   unsigned Binary = getBinaryCodeForInstr(MI);
1101 
1102   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
1103       emitWordLE(Binary);
1104       return;
1105   }
1106 
1107   // Set the conditional execution predicate
1108   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1109 
1110   // Encode S bit if MI modifies CPSR.
1111   Binary |= getAddrModeSBit(MI, MCID);
1112 
1113   // Encode register def if there is one.
1114   unsigned NumDefs = MCID.getNumDefs();
1115   unsigned OpIdx = 0;
1116   if (NumDefs)
1117     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1118   else if (ImplicitRd)
1119     // Special handling for implicit use (e.g. PC).
1120     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1121 
1122   if (MCID.Opcode == ARM::MOVi16) {
1123       // Get immediate from MI.
1124       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1125                       ARM::reloc_arm_movw);
1126       // Encode imm which is the same as in emitMOVi32immInstruction().
1127       Binary |= Lo16 & 0xFFF;
1128       Binary |= ((Lo16 >> 12) & 0xF) << 16;
1129       emitWordLE(Binary);
1130       return;
1131   } else if(MCID.Opcode == ARM::MOVTi16) {
1132       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1133                        ARM::reloc_arm_movt) >> 16);
1134       Binary |= Hi16 & 0xFFF;
1135       Binary |= ((Hi16 >> 12) & 0xF) << 16;
1136       emitWordLE(Binary);
1137       return;
1138   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1139       uint32_t v = ~MI.getOperand(2).getImm();
1140       int32_t lsb = CountTrailingZeros_32(v);
1141       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1142       // Instr{20-16} = msb, Instr{11-7} = lsb
1143       Binary |= (msb & 0x1F) << 16;
1144       Binary |= (lsb & 0x1F) << 7;
1145       emitWordLE(Binary);
1146       return;
1147   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1148       // Encode Rn in Instr{0-3}
1149       Binary |= getMachineOpValue(MI, OpIdx++);
1150 
1151       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1152       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1153 
1154       // Instr{20-16} = widthm1, Instr{11-7} = lsb
1155       Binary |= (widthm1 & 0x1F) << 16;
1156       Binary |= (lsb & 0x1F) << 7;
1157       emitWordLE(Binary);
1158       return;
1159   }
1160 
1161   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1162   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1163     ++OpIdx;
1164 
1165   // Encode first non-shifter register operand if there is one.
1166   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1167   if (!isUnary) {
1168     if (ImplicitRn)
1169       // Special handling for implicit use (e.g. PC).
1170       Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1171     else {
1172       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1173       ++OpIdx;
1174     }
1175   }
1176 
1177   // Encode shifter operand.
1178   const MachineOperand &MO = MI.getOperand(OpIdx);
1179   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1180     // Encode SoReg.
1181     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1182     return;
1183   }
1184 
1185   if (MO.isReg()) {
1186     // Encode register Rm.
1187     emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
1188     return;
1189   }
1190 
1191   // Encode so_imm.
1192   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1193 
1194   emitWordLE(Binary);
1195 }
1196 
emitLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1197 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1198                                               unsigned ImplicitRd,
1199                                               unsigned ImplicitRn) {
1200   const MCInstrDesc &MCID = MI.getDesc();
1201   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1202   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1203 
1204   // Part of binary is determined by TableGn.
1205   unsigned Binary = getBinaryCodeForInstr(MI);
1206 
1207   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1208   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1209       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
1210       MI.getOpcode() == ARM::STRBi12) {
1211     emitWordLE(Binary);
1212     return;
1213   }
1214 
1215   if (MI.getOpcode() == ARM::BR_JTm)
1216     Binary = 0x710F000;
1217   else if (MI.getOpcode() == ARM::BR_JTr)
1218     Binary = 0x1A0F000;
1219 
1220   // Set the conditional execution predicate
1221   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1222 
1223   unsigned OpIdx = 0;
1224 
1225   // Operand 0 of a pre- and post-indexed store is the address base
1226   // writeback. Skip it.
1227   bool Skipped = false;
1228   if (IsPrePost && Form == ARMII::StFrm) {
1229     ++OpIdx;
1230     Skipped = true;
1231   }
1232 
1233   // Set first operand
1234   if (ImplicitRd)
1235     // Special handling for implicit use (e.g. PC).
1236     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1237   else
1238     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1239 
1240   // Set second operand
1241   if (ImplicitRn)
1242     // Special handling for implicit use (e.g. PC).
1243     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1244   else
1245     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1246 
1247   // If this is a two-address operand, skip it. e.g. LDR_PRE.
1248   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1249     ++OpIdx;
1250 
1251   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1252   unsigned AM2Opc = (ImplicitRn == ARM::PC)
1253     ? 0 : MI.getOperand(OpIdx+1).getImm();
1254 
1255   // Set bit U(23) according to sign of immed value (positive or negative).
1256   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1257              ARMII::U_BitShift);
1258   if (!MO2.getReg()) { // is immediate
1259     if (ARM_AM::getAM2Offset(AM2Opc))
1260       // Set the value of offset_12 field
1261       Binary |= ARM_AM::getAM2Offset(AM2Opc);
1262     emitWordLE(Binary);
1263     return;
1264   }
1265 
1266   // Set bit I(25), because this is not in immediate encoding.
1267   Binary |= 1 << ARMII::I_BitShift;
1268   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1269   // Set bit[3:0] to the corresponding Rm register
1270   Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1271 
1272   // If this instr is in scaled register offset/index instruction, set
1273   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1274   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1275     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1276     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1277   }
1278 
1279   emitWordLE(Binary);
1280 }
1281 
emitMiscLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRn)1282 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1283                                                   unsigned ImplicitRn) {
1284   const MCInstrDesc &MCID = MI.getDesc();
1285   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1286   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1287 
1288   // Part of binary is determined by TableGn.
1289   unsigned Binary = getBinaryCodeForInstr(MI);
1290 
1291   // Set the conditional execution predicate
1292   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1293 
1294   unsigned OpIdx = 0;
1295 
1296   // Operand 0 of a pre- and post-indexed store is the address base
1297   // writeback. Skip it.
1298   bool Skipped = false;
1299   if (IsPrePost && Form == ARMII::StMiscFrm) {
1300     ++OpIdx;
1301     Skipped = true;
1302   }
1303 
1304   // Set first operand
1305   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1306 
1307   // Skip LDRD and STRD's second operand.
1308   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1309     ++OpIdx;
1310 
1311   // Set second operand
1312   if (ImplicitRn)
1313     // Special handling for implicit use (e.g. PC).
1314     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1315   else
1316     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1317 
1318   // If this is a two-address operand, skip it. e.g. LDRH_POST.
1319   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1320     ++OpIdx;
1321 
1322   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1323   unsigned AM3Opc = (ImplicitRn == ARM::PC)
1324     ? 0 : MI.getOperand(OpIdx+1).getImm();
1325 
1326   // Set bit U(23) according to sign of immed value (positive or negative)
1327   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1328              ARMII::U_BitShift);
1329 
1330   // If this instr is in register offset/index encoding, set bit[3:0]
1331   // to the corresponding Rm register.
1332   if (MO2.getReg()) {
1333     Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1334     emitWordLE(Binary);
1335     return;
1336   }
1337 
1338   // This instr is in immediate offset/index encoding, set bit 22 to 1.
1339   Binary |= 1 << ARMII::AM3_I_BitShift;
1340   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1341     // Set operands
1342     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1343     Binary |= (ImmOffs & 0xF);                      // immedL
1344   }
1345 
1346   emitWordLE(Binary);
1347 }
1348 
getAddrModeUPBits(unsigned Mode)1349 static unsigned getAddrModeUPBits(unsigned Mode) {
1350   unsigned Binary = 0;
1351 
1352   // Set addressing mode by modifying bits U(23) and P(24)
1353   // IA - Increment after  - bit U = 1 and bit P = 0
1354   // IB - Increment before - bit U = 1 and bit P = 1
1355   // DA - Decrement after  - bit U = 0 and bit P = 0
1356   // DB - Decrement before - bit U = 0 and bit P = 1
1357   switch (Mode) {
1358   default: llvm_unreachable("Unknown addressing sub-mode!");
1359   case ARM_AM::da:                                     break;
1360   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1361   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1362   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1363   }
1364 
1365   return Binary;
1366 }
1367 
emitLoadStoreMultipleInstruction(const MachineInstr & MI)1368 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1369   const MCInstrDesc &MCID = MI.getDesc();
1370   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1371 
1372   // Part of binary is determined by TableGn.
1373   unsigned Binary = getBinaryCodeForInstr(MI);
1374 
1375   if (MCID.getOpcode() == ARM::LDMIA_RET) {
1376     IsUpdating = true;
1377     Binary |= 0x8B00000;
1378   }
1379 
1380   // Set the conditional execution predicate
1381   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1382 
1383   // Skip operand 0 of an instruction with base register update.
1384   unsigned OpIdx = 0;
1385   if (IsUpdating)
1386     ++OpIdx;
1387 
1388   // Set base address operand
1389   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1390 
1391   // Set addressing mode by modifying bits U(23) and P(24)
1392   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1393   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1394 
1395   // Set bit W(21)
1396   if (IsUpdating)
1397     Binary |= 0x1 << ARMII::W_BitShift;
1398 
1399   // Set registers
1400   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1401     const MachineOperand &MO = MI.getOperand(i);
1402     if (!MO.isReg() || MO.isImplicit())
1403       break;
1404     unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
1405     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1406            RegNum < 16);
1407     Binary |= 0x1 << RegNum;
1408   }
1409 
1410   emitWordLE(Binary);
1411 }
1412 
emitMulFrmInstruction(const MachineInstr & MI)1413 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1414   const MCInstrDesc &MCID = MI.getDesc();
1415 
1416   // Part of binary is determined by TableGn.
1417   unsigned Binary = getBinaryCodeForInstr(MI);
1418 
1419   // Set the conditional execution predicate
1420   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1421 
1422   // Encode S bit if MI modifies CPSR.
1423   Binary |= getAddrModeSBit(MI, MCID);
1424 
1425   // 32x32->64bit operations have two destination registers. The number
1426   // of register definitions will tell us if that's what we're dealing with.
1427   unsigned OpIdx = 0;
1428   if (MCID.getNumDefs() == 2)
1429     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1430 
1431   // Encode Rd
1432   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1433 
1434   // Encode Rm
1435   Binary |= getMachineOpValue(MI, OpIdx++);
1436 
1437   // Encode Rs
1438   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1439 
1440   // Many multiple instructions (e.g. MLA) have three src operands. Encode
1441   // it as Rn (for multiply, that's in the same offset as RdLo.
1442   if (MCID.getNumOperands() > OpIdx &&
1443       !MCID.OpInfo[OpIdx].isPredicate() &&
1444       !MCID.OpInfo[OpIdx].isOptionalDef())
1445     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1446 
1447   emitWordLE(Binary);
1448 }
1449 
emitExtendInstruction(const MachineInstr & MI)1450 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1451   const MCInstrDesc &MCID = MI.getDesc();
1452 
1453   // Part of binary is determined by TableGn.
1454   unsigned Binary = getBinaryCodeForInstr(MI);
1455 
1456   // Set the conditional execution predicate
1457   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1458 
1459   unsigned OpIdx = 0;
1460 
1461   // Encode Rd
1462   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1463 
1464   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1465   const MachineOperand &MO2 = MI.getOperand(OpIdx);
1466   if (MO2.isReg()) {
1467     // Two register operand form.
1468     // Encode Rn.
1469     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1470 
1471     // Encode Rm.
1472     Binary |= getMachineOpValue(MI, MO2);
1473     ++OpIdx;
1474   } else {
1475     Binary |= getMachineOpValue(MI, MO1);
1476   }
1477 
1478   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1479   if (MI.getOperand(OpIdx).isImm() &&
1480       !MCID.OpInfo[OpIdx].isPredicate() &&
1481       !MCID.OpInfo[OpIdx].isOptionalDef())
1482     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1483 
1484   emitWordLE(Binary);
1485 }
1486 
emitMiscArithInstruction(const MachineInstr & MI)1487 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1488   const MCInstrDesc &MCID = MI.getDesc();
1489 
1490   // Part of binary is determined by TableGn.
1491   unsigned Binary = getBinaryCodeForInstr(MI);
1492 
1493   // Set the conditional execution predicate
1494   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1495 
1496   // PKH instructions are finished at this point
1497   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1498     emitWordLE(Binary);
1499     return;
1500   }
1501 
1502   unsigned OpIdx = 0;
1503 
1504   // Encode Rd
1505   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1506 
1507   const MachineOperand &MO = MI.getOperand(OpIdx++);
1508   if (OpIdx == MCID.getNumOperands() ||
1509       MCID.OpInfo[OpIdx].isPredicate() ||
1510       MCID.OpInfo[OpIdx].isOptionalDef()) {
1511     // Encode Rm and it's done.
1512     Binary |= getMachineOpValue(MI, MO);
1513     emitWordLE(Binary);
1514     return;
1515   }
1516 
1517   // Encode Rn.
1518   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1519 
1520   // Encode Rm.
1521   Binary |= getMachineOpValue(MI, OpIdx++);
1522 
1523   // Encode shift_imm.
1524   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1525   if (MCID.Opcode == ARM::PKHTB) {
1526     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1527     if (ShiftAmt == 32)
1528       ShiftAmt = 0;
1529   }
1530   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1531   Binary |= ShiftAmt << ARMII::ShiftShift;
1532 
1533   emitWordLE(Binary);
1534 }
1535 
emitSaturateInstruction(const MachineInstr & MI)1536 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1537   const MCInstrDesc &MCID = MI.getDesc();
1538 
1539   // Part of binary is determined by TableGen.
1540   unsigned Binary = getBinaryCodeForInstr(MI);
1541 
1542   // Set the conditional execution predicate
1543   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1544 
1545   // Encode Rd
1546   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1547 
1548   // Encode saturate bit position.
1549   unsigned Pos = MI.getOperand(1).getImm();
1550   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1551     Pos -= 1;
1552   assert((Pos < 16 || (Pos < 32 &&
1553                        MCID.Opcode != ARM::SSAT16 &&
1554                        MCID.Opcode != ARM::USAT16)) &&
1555          "saturate bit position out of range");
1556   Binary |= Pos << 16;
1557 
1558   // Encode Rm
1559   Binary |= getMachineOpValue(MI, 2);
1560 
1561   // Encode shift_imm.
1562   if (MCID.getNumOperands() == 4) {
1563     unsigned ShiftOp = MI.getOperand(3).getImm();
1564     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1565     if (Opc == ARM_AM::asr)
1566       Binary |= (1 << 6);
1567     unsigned ShiftAmt = MI.getOperand(3).getImm();
1568     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1569       ShiftAmt = 0;
1570     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1571     Binary |= ShiftAmt << ARMII::ShiftShift;
1572   }
1573 
1574   emitWordLE(Binary);
1575 }
1576 
emitBranchInstruction(const MachineInstr & MI)1577 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1578   const MCInstrDesc &MCID = MI.getDesc();
1579 
1580   if (MCID.Opcode == ARM::TPsoft) {
1581     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1582   }
1583 
1584   // Part of binary is determined by TableGn.
1585   unsigned Binary = getBinaryCodeForInstr(MI);
1586 
1587   if (MCID.Opcode == ARM::B) {
1588     Binary = 0xEA000000;
1589   }
1590 
1591   // Set the conditional execution predicate
1592   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1593 
1594   // Set signed_immed_24 field
1595   Binary |= getMachineOpValue(MI, 0);
1596 
1597   emitWordLE(Binary);
1598 }
1599 
emitInlineJumpTable(unsigned JTIndex)1600 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1601   // Remember the base address of the inline jump table.
1602   uintptr_t JTBase = MCE.getCurrentPCValue();
1603   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1604   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1605                << '\n');
1606 
1607   // Now emit the jump table entries.
1608   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1609   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1610     if (IsPIC)
1611       // DestBB address - JT base.
1612       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1613     else
1614       // Absolute DestBB address.
1615       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1616     emitWordLE(0);
1617   }
1618 }
1619 
emitMiscBranchInstruction(const MachineInstr & MI)1620 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1621   const MCInstrDesc &MCID = MI.getDesc();
1622 
1623   // Handle jump tables.
1624   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1625     // First emit a ldr pc, [] instruction.
1626     emitDataProcessingInstruction(MI, ARM::PC);
1627 
1628     // Then emit the inline jump table.
1629     unsigned JTIndex =
1630       (MCID.Opcode == ARM::BR_JTr)
1631       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1632     emitInlineJumpTable(JTIndex);
1633     return;
1634   } else if (MCID.Opcode == ARM::BR_JTm) {
1635     // First emit a ldr pc, [] instruction.
1636     emitLoadStoreInstruction(MI, ARM::PC);
1637 
1638     // Then emit the inline jump table.
1639     emitInlineJumpTable(MI.getOperand(3).getIndex());
1640     return;
1641   }
1642 
1643   // Part of binary is determined by TableGn.
1644   unsigned Binary = getBinaryCodeForInstr(MI);
1645 
1646   // Set the conditional execution predicate
1647   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1648 
1649   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1650     // The return register is LR.
1651     Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
1652   else
1653     // otherwise, set the return register
1654     Binary |= getMachineOpValue(MI, 0);
1655 
1656   emitWordLE(Binary);
1657 }
1658 
encodeVFPRd(const MachineInstr & MI,unsigned OpIdx) const1659 unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
1660                                      unsigned OpIdx) const {
1661   unsigned RegD = MI.getOperand(OpIdx).getReg();
1662   unsigned Binary = 0;
1663   bool isSPVFP = ARM::SPRRegClass.contains(RegD);
1664   RegD = II->getRegisterInfo().getEncodingValue(RegD);
1665   if (!isSPVFP) {
1666     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
1667     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
1668   } else {
1669     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1670     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1671   }
1672   return Binary;
1673 }
1674 
encodeVFPRn(const MachineInstr & MI,unsigned OpIdx) const1675 unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
1676                                      unsigned OpIdx) const {
1677   unsigned RegN = MI.getOperand(OpIdx).getReg();
1678   unsigned Binary = 0;
1679   bool isSPVFP = ARM::SPRRegClass.contains(RegN);
1680   RegN = II->getRegisterInfo().getEncodingValue(RegN);
1681   if (!isSPVFP) {
1682     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
1683     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
1684   } else {
1685     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1686     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1687   }
1688   return Binary;
1689 }
1690 
encodeVFPRm(const MachineInstr & MI,unsigned OpIdx) const1691 unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
1692                                      unsigned OpIdx) const {
1693   unsigned RegM = MI.getOperand(OpIdx).getReg();
1694   unsigned Binary = 0;
1695   bool isSPVFP = ARM::SPRRegClass.contains(RegM);
1696   RegM = II->getRegisterInfo().getEncodingValue(RegM);
1697   if (!isSPVFP) {
1698     Binary |=  (RegM & 0x0F);
1699     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
1700   } else {
1701     Binary |= ((RegM & 0x1E) >> 1);
1702     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1703   }
1704   return Binary;
1705 }
1706 
emitVFPArithInstruction(const MachineInstr & MI)1707 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1708   const MCInstrDesc &MCID = MI.getDesc();
1709 
1710   // Part of binary is determined by TableGn.
1711   unsigned Binary = getBinaryCodeForInstr(MI);
1712 
1713   // Set the conditional execution predicate
1714   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1715 
1716   unsigned OpIdx = 0;
1717 
1718   // Encode Dd / Sd.
1719   Binary |= encodeVFPRd(MI, OpIdx++);
1720 
1721   // If this is a two-address operand, skip it, e.g. FMACD.
1722   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1723     ++OpIdx;
1724 
1725   // Encode Dn / Sn.
1726   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1727     Binary |= encodeVFPRn(MI, OpIdx++);
1728 
1729   if (OpIdx == MCID.getNumOperands() ||
1730       MCID.OpInfo[OpIdx].isPredicate() ||
1731       MCID.OpInfo[OpIdx].isOptionalDef()) {
1732     // FCMPEZD etc. has only one operand.
1733     emitWordLE(Binary);
1734     return;
1735   }
1736 
1737   // Encode Dm / Sm.
1738   Binary |= encodeVFPRm(MI, OpIdx);
1739 
1740   emitWordLE(Binary);
1741 }
1742 
emitVFPConversionInstruction(const MachineInstr & MI)1743 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1744   const MCInstrDesc &MCID = MI.getDesc();
1745   unsigned Form = MCID.TSFlags & ARMII::FormMask;
1746 
1747   // Part of binary is determined by TableGn.
1748   unsigned Binary = getBinaryCodeForInstr(MI);
1749 
1750   // Set the conditional execution predicate
1751   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1752 
1753   switch (Form) {
1754   default: break;
1755   case ARMII::VFPConv1Frm:
1756   case ARMII::VFPConv2Frm:
1757   case ARMII::VFPConv3Frm:
1758     // Encode Dd / Sd.
1759     Binary |= encodeVFPRd(MI, 0);
1760     break;
1761   case ARMII::VFPConv4Frm:
1762     // Encode Dn / Sn.
1763     Binary |= encodeVFPRn(MI, 0);
1764     break;
1765   case ARMII::VFPConv5Frm:
1766     // Encode Dm / Sm.
1767     Binary |= encodeVFPRm(MI, 0);
1768     break;
1769   }
1770 
1771   switch (Form) {
1772   default: break;
1773   case ARMII::VFPConv1Frm:
1774     // Encode Dm / Sm.
1775     Binary |= encodeVFPRm(MI, 1);
1776     break;
1777   case ARMII::VFPConv2Frm:
1778   case ARMII::VFPConv3Frm:
1779     // Encode Dn / Sn.
1780     Binary |= encodeVFPRn(MI, 1);
1781     break;
1782   case ARMII::VFPConv4Frm:
1783   case ARMII::VFPConv5Frm:
1784     // Encode Dd / Sd.
1785     Binary |= encodeVFPRd(MI, 1);
1786     break;
1787   }
1788 
1789   if (Form == ARMII::VFPConv5Frm)
1790     // Encode Dn / Sn.
1791     Binary |= encodeVFPRn(MI, 2);
1792   else if (Form == ARMII::VFPConv3Frm)
1793     // Encode Dm / Sm.
1794     Binary |= encodeVFPRm(MI, 2);
1795 
1796   emitWordLE(Binary);
1797 }
1798 
emitVFPLoadStoreInstruction(const MachineInstr & MI)1799 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1800   // Part of binary is determined by TableGn.
1801   unsigned Binary = getBinaryCodeForInstr(MI);
1802 
1803   // Set the conditional execution predicate
1804   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1805 
1806   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
1807       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
1808     emitWordLE(Binary);
1809     return;
1810   }
1811 
1812   unsigned OpIdx = 0;
1813 
1814   // Encode Dd / Sd.
1815   Binary |= encodeVFPRd(MI, OpIdx++);
1816 
1817   // Encode address base.
1818   const MachineOperand &Base = MI.getOperand(OpIdx++);
1819   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1820 
1821   // If there is a non-zero immediate offset, encode it.
1822   if (Base.isReg()) {
1823     const MachineOperand &Offset = MI.getOperand(OpIdx);
1824     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1825       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1826         Binary |= 1 << ARMII::U_BitShift;
1827       Binary |= ImmOffs;
1828       emitWordLE(Binary);
1829       return;
1830     }
1831   }
1832 
1833   // If immediate offset is omitted, default to +0.
1834   Binary |= 1 << ARMII::U_BitShift;
1835 
1836   emitWordLE(Binary);
1837 }
1838 
1839 void
emitVFPLoadStoreMultipleInstruction(const MachineInstr & MI)1840 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1841   const MCInstrDesc &MCID = MI.getDesc();
1842   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1843 
1844   // Part of binary is determined by TableGn.
1845   unsigned Binary = getBinaryCodeForInstr(MI);
1846 
1847   // Set the conditional execution predicate
1848   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1849 
1850   // Skip operand 0 of an instruction with base register update.
1851   unsigned OpIdx = 0;
1852   if (IsUpdating)
1853     ++OpIdx;
1854 
1855   // Set base address operand
1856   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1857 
1858   // Set addressing mode by modifying bits U(23) and P(24)
1859   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1860   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1861 
1862   // Set bit W(21)
1863   if (IsUpdating)
1864     Binary |= 0x1 << ARMII::W_BitShift;
1865 
1866   // First register is encoded in Dd.
1867   Binary |= encodeVFPRd(MI, OpIdx+2);
1868 
1869   // Count the number of registers.
1870   unsigned NumRegs = 1;
1871   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1872     const MachineOperand &MO = MI.getOperand(i);
1873     if (!MO.isReg() || MO.isImplicit())
1874       break;
1875     ++NumRegs;
1876   }
1877   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1878   // Otherwise, it will be 0, in the case of 32-bit registers.
1879   if(Binary & 0x100)
1880     Binary |= NumRegs * 2;
1881   else
1882     Binary |= NumRegs;
1883 
1884   emitWordLE(Binary);
1885 }
1886 
emitMiscInstruction(const MachineInstr & MI)1887 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1888   unsigned Opcode = MI.getDesc().Opcode;
1889   // Part of binary is determined by TableGn.
1890   unsigned Binary = getBinaryCodeForInstr(MI);
1891 
1892   if (Opcode == ARM::FCONSTS) {
1893     unsigned Imm = getMachineOpValue(MI, 1);
1894     Binary &= ~(0x780000 >> 19);
1895     Binary |= (Imm & 0x780000) >> 19;
1896     Binary &= ~(0x3800000 >> 7);
1897     Binary |= (Imm & 0x3800000) >> 7;
1898     Binary = VFPThumb2PostEncoder(MI, Binary);
1899   }
1900 
1901   // Set the conditional execution predicate
1902   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1903 
1904   emitWordLE(Binary);
1905 }
1906 
encodeNEONRd(const MachineInstr & MI,unsigned OpIdx) const1907 unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
1908                                       unsigned OpIdx) const {
1909   unsigned RegD = MI.getOperand(OpIdx).getReg();
1910   unsigned Binary = 0;
1911   RegD = II->getRegisterInfo().getEncodingValue(RegD);
1912   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1913   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1914   return Binary;
1915 }
1916 
encodeNEONRn(const MachineInstr & MI,unsigned OpIdx) const1917 unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
1918                                       unsigned OpIdx) const {
1919   unsigned RegN = MI.getOperand(OpIdx).getReg();
1920   unsigned Binary = 0;
1921   RegN = II->getRegisterInfo().getEncodingValue(RegN);
1922   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1923   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1924   return Binary;
1925 }
1926 
encodeNEONRm(const MachineInstr & MI,unsigned OpIdx) const1927 unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
1928                                       unsigned OpIdx) const {
1929   unsigned RegM = MI.getOperand(OpIdx).getReg();
1930   unsigned Binary = 0;
1931   RegM = II->getRegisterInfo().getEncodingValue(RegM);
1932   Binary |= (RegM & 0xf);
1933   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1934   return Binary;
1935 }
1936 
1937 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1938 /// data-processing instruction to the corresponding Thumb encoding.
convertNEONDataProcToThumb(unsigned Binary)1939 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1940   assert((Binary & 0xfe000000) == 0xf2000000 &&
1941          "not an ARM NEON data-processing instruction");
1942   unsigned UBit = (Binary >> 24) & 1;
1943   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1944 }
1945 
emitNEONLaneInstruction(const MachineInstr & MI)1946 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1947   unsigned Binary = getBinaryCodeForInstr(MI);
1948 
1949   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1950   const MCInstrDesc &MCID = MI.getDesc();
1951   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1952     RegTOpIdx = 0;
1953     RegNOpIdx = 1;
1954     LnOpIdx = 2;
1955   } else { // ARMII::NSetLnFrm
1956     RegTOpIdx = 2;
1957     RegNOpIdx = 0;
1958     LnOpIdx = 3;
1959   }
1960 
1961   // Set the conditional execution predicate
1962   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1963 
1964   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1965   RegT = II->getRegisterInfo().getEncodingValue(RegT);
1966   Binary |= (RegT << ARMII::RegRdShift);
1967   Binary |= encodeNEONRn(MI, RegNOpIdx);
1968 
1969   unsigned LaneShift;
1970   if ((Binary & (1 << 22)) != 0)
1971     LaneShift = 0; // 8-bit elements
1972   else if ((Binary & (1 << 5)) != 0)
1973     LaneShift = 1; // 16-bit elements
1974   else
1975     LaneShift = 2; // 32-bit elements
1976 
1977   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1978   unsigned Opc1 = Lane >> 2;
1979   unsigned Opc2 = Lane & 3;
1980   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1981   Binary |= (Opc1 << 21);
1982   Binary |= (Opc2 << 5);
1983 
1984   emitWordLE(Binary);
1985 }
1986 
emitNEONDupInstruction(const MachineInstr & MI)1987 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1988   unsigned Binary = getBinaryCodeForInstr(MI);
1989 
1990   // Set the conditional execution predicate
1991   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1992 
1993   unsigned RegT = MI.getOperand(1).getReg();
1994   RegT = II->getRegisterInfo().getEncodingValue(RegT);
1995   Binary |= (RegT << ARMII::RegRdShift);
1996   Binary |= encodeNEONRn(MI, 0);
1997   emitWordLE(Binary);
1998 }
1999 
emitNEON1RegModImmInstruction(const MachineInstr & MI)2000 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
2001   unsigned Binary = getBinaryCodeForInstr(MI);
2002   // Destination register is encoded in Dd.
2003   Binary |= encodeNEONRd(MI, 0);
2004   // Immediate fields: Op, Cmode, I, Imm3, Imm4
2005   unsigned Imm = MI.getOperand(1).getImm();
2006   unsigned Op = (Imm >> 12) & 1;
2007   unsigned Cmode = (Imm >> 8) & 0xf;
2008   unsigned I = (Imm >> 7) & 1;
2009   unsigned Imm3 = (Imm >> 4) & 0x7;
2010   unsigned Imm4 = Imm & 0xf;
2011   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
2012   if (IsThumb)
2013     Binary = convertNEONDataProcToThumb(Binary);
2014   emitWordLE(Binary);
2015 }
2016 
emitNEON2RegInstruction(const MachineInstr & MI)2017 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
2018   const MCInstrDesc &MCID = MI.getDesc();
2019   unsigned Binary = getBinaryCodeForInstr(MI);
2020   // Destination register is encoded in Dd; source register in Dm.
2021   unsigned OpIdx = 0;
2022   Binary |= encodeNEONRd(MI, OpIdx++);
2023   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2024     ++OpIdx;
2025   Binary |= encodeNEONRm(MI, OpIdx);
2026   if (IsThumb)
2027     Binary = convertNEONDataProcToThumb(Binary);
2028   // FIXME: This does not handle VDUPfdf or VDUPfqf.
2029   emitWordLE(Binary);
2030 }
2031 
emitNEON3RegInstruction(const MachineInstr & MI)2032 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
2033   const MCInstrDesc &MCID = MI.getDesc();
2034   unsigned Binary = getBinaryCodeForInstr(MI);
2035   // Destination register is encoded in Dd; source registers in Dn and Dm.
2036   unsigned OpIdx = 0;
2037   Binary |= encodeNEONRd(MI, OpIdx++);
2038   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2039     ++OpIdx;
2040   Binary |= encodeNEONRn(MI, OpIdx++);
2041   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2042     ++OpIdx;
2043   Binary |= encodeNEONRm(MI, OpIdx);
2044   if (IsThumb)
2045     Binary = convertNEONDataProcToThumb(Binary);
2046   // FIXME: This does not handle VMOVDneon or VMOVQ.
2047   emitWordLE(Binary);
2048 }
2049 
2050 #include "ARMGenCodeEmitter.inc"
2051