1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "arm-isel"
16 #include "ARMISelLowering.h"
17 #include "ARM.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMSubtarget.h"
23 #include "ARMTargetMachine.h"
24 #include "ARMTargetObjectFile.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/IntrinsicLowering.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCSectionMachO.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetOptions.h"
51 using namespace llvm;
52
53 STATISTIC(NumTailCalls, "Number of tail calls");
54 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57 // This option should go away when tail calls fully work.
58 static cl::opt<bool>
59 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60 cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61 cl::init(false));
62
63 cl::opt<bool>
64 EnableARMLongCalls("arm-long-calls", cl::Hidden,
65 cl::desc("Generate calls via indirect call instructions"),
66 cl::init(false));
67
68 static cl::opt<bool>
69 ARMInterworking("arm-interworking", cl::Hidden,
70 cl::desc("Enable / disable ARM interworking (for debugging only)"),
71 cl::init(true));
72
73 namespace {
74 class ARMCCState : public CCState {
75 public:
ARMCCState(CallingConv::ID CC,bool isVarArg,MachineFunction & MF,const TargetMachine & TM,SmallVector<CCValAssign,16> & locs,LLVMContext & C,ParmContext PC)76 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77 const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78 LLVMContext &C, ParmContext PC)
79 : CCState(CC, isVarArg, MF, TM, locs, C) {
80 assert(((PC == Call) || (PC == Prologue)) &&
81 "ARMCCState users must specify whether their context is call"
82 "or prologue generation.");
83 CallOrPrologue = PC;
84 }
85 };
86 }
87
88 // The APCS parameter registers.
89 static const uint16_t GPRArgRegs[] = {
90 ARM::R0, ARM::R1, ARM::R2, ARM::R3
91 };
92
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)93 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94 MVT PromotedBitwiseVT) {
95 if (VT != PromotedLdStVT) {
96 setOperationAction(ISD::LOAD, VT, Promote);
97 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99 setOperationAction(ISD::STORE, VT, Promote);
100 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101 }
102
103 MVT ElemTy = VT.getVectorElementType();
104 if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105 setOperationAction(ISD::SETCC, VT, Custom);
106 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108 if (ElemTy == MVT::i32) {
109 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113 } else {
114 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118 }
119 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
120 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
121 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
122 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123 setOperationAction(ISD::SELECT, VT, Expand);
124 setOperationAction(ISD::SELECT_CC, VT, Expand);
125 setOperationAction(ISD::VSELECT, VT, Expand);
126 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127 if (VT.isInteger()) {
128 setOperationAction(ISD::SHL, VT, Custom);
129 setOperationAction(ISD::SRA, VT, Custom);
130 setOperationAction(ISD::SRL, VT, Custom);
131 }
132
133 // Promote all bit-wise operations.
134 if (VT.isInteger() && VT != PromotedBitwiseVT) {
135 setOperationAction(ISD::AND, VT, Promote);
136 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137 setOperationAction(ISD::OR, VT, Promote);
138 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
139 setOperationAction(ISD::XOR, VT, Promote);
140 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141 }
142
143 // Neon does not support vector divide/remainder operations.
144 setOperationAction(ISD::SDIV, VT, Expand);
145 setOperationAction(ISD::UDIV, VT, Expand);
146 setOperationAction(ISD::FDIV, VT, Expand);
147 setOperationAction(ISD::SREM, VT, Expand);
148 setOperationAction(ISD::UREM, VT, Expand);
149 setOperationAction(ISD::FREM, VT, Expand);
150 }
151
addDRTypeForNEON(MVT VT)152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153 addRegisterClass(VT, &ARM::DPRRegClass);
154 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155 }
156
addQRTypeForNEON(MVT VT)157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158 addRegisterClass(VT, &ARM::QPRRegClass);
159 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160 }
161
createTLOF(TargetMachine & TM)162 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
163 if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
164 return new TargetLoweringObjectFileMachO();
165
166 return new ARMElfTargetObjectFile();
167 }
168
ARMTargetLowering(TargetMachine & TM)169 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
170 : TargetLowering(TM, createTLOF(TM)) {
171 Subtarget = &TM.getSubtarget<ARMSubtarget>();
172 RegInfo = TM.getRegisterInfo();
173 Itins = TM.getInstrItineraryData();
174
175 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
176
177 if (Subtarget->isTargetDarwin()) {
178 // Uses VFP for Thumb libfuncs if available.
179 if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
180 // Single-precision floating-point arithmetic.
181 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
182 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
183 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
184 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
185
186 // Double-precision floating-point arithmetic.
187 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
188 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
189 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
190 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
191
192 // Single-precision comparisons.
193 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
194 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
195 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
196 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
197 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
198 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
199 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
200 setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
201
202 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
203 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
204 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
205 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
206 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
207 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
208 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
209 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
210
211 // Double-precision comparisons.
212 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
213 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
214 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
215 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
216 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
217 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
218 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
219 setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
220
221 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
222 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
223 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
224 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
225 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
226 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
227 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
228 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
229
230 // Floating-point to integer conversions.
231 // i64 conversions are done via library routines even when generating VFP
232 // instructions, so use the same ones.
233 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
234 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
235 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
236 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
237
238 // Conversions between floating types.
239 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
240 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
241
242 // Integer to floating-point conversions.
243 // i64 conversions are done via library routines even when generating VFP
244 // instructions, so use the same ones.
245 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
246 // e.g., __floatunsidf vs. __floatunssidfvfp.
247 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
248 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
249 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
250 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
251 }
252 }
253
254 // These libcalls are not available in 32-bit.
255 setLibcallName(RTLIB::SHL_I128, 0);
256 setLibcallName(RTLIB::SRL_I128, 0);
257 setLibcallName(RTLIB::SRA_I128, 0);
258
259 if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
260 // Double-precision floating-point arithmetic helper functions
261 // RTABI chapter 4.1.2, Table 2
262 setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
263 setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
264 setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
265 setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
266 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
267 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
268 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
269 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
270
271 // Double-precision floating-point comparison helper functions
272 // RTABI chapter 4.1.2, Table 3
273 setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
274 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
275 setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
276 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
277 setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
278 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
279 setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
280 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
281 setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
282 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
283 setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
284 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
285 setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
286 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
287 setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
288 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
289 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
290 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
291 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
292 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
293 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
294 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
295 setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
296 setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
297
298 // Single-precision floating-point arithmetic helper functions
299 // RTABI chapter 4.1.2, Table 4
300 setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
301 setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
302 setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
303 setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
304 setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
305 setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
306 setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
307 setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
308
309 // Single-precision floating-point comparison helper functions
310 // RTABI chapter 4.1.2, Table 5
311 setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
312 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
313 setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
314 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
315 setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
316 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
317 setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
318 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
319 setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
320 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
321 setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
322 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
323 setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
324 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
325 setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
326 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
327 setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
328 setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
329 setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
330 setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
331 setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
332 setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
333 setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
334 setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
335
336 // Floating-point to integer conversions.
337 // RTABI chapter 4.1.2, Table 6
338 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
339 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
340 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
341 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
342 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
343 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
344 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
345 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
346 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
347 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
348 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
349 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
350 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
351 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
352 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
353 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
354
355 // Conversions between floating types.
356 // RTABI chapter 4.1.2, Table 7
357 setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
358 setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
359 setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
360 setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
361
362 // Integer to floating-point conversions.
363 // RTABI chapter 4.1.2, Table 8
364 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
365 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
366 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
367 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
368 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
369 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
370 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
371 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
372 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
374 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
376 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
378 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
380
381 // Long long helper functions
382 // RTABI chapter 4.2, Table 9
383 setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
384 setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
385 setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
386 setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
387 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
388 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
389 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
390 setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
391 setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
392 setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
393
394 // Integer division functions
395 // RTABI chapter 4.3.1
396 setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
397 setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
398 setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
399 setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
400 setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
401 setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
402 setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
403 setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
404 setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
405 setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
406 setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
407 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
408 setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
409 setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
410 setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
411 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
412
413 // Memory operations
414 // RTABI chapter 4.3.4
415 setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy");
416 setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
417 setLibcallName(RTLIB::MEMSET, "__aeabi_memset");
418 setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
419 setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
420 setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
421 }
422
423 // Use divmod compiler-rt calls for iOS 5.0 and later.
424 if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425 !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428 }
429
430 if (Subtarget->isThumb1Only())
431 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432 else
433 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435 !Subtarget->isThumb1Only()) {
436 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437 if (!Subtarget->isFPOnlySP())
438 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
439
440 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441 }
442
443 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447 setTruncStoreAction((MVT::SimpleValueType)VT,
448 (MVT::SimpleValueType)InnerVT, Expand);
449 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452 }
453
454 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
455
456 if (Subtarget->hasNEON()) {
457 addDRTypeForNEON(MVT::v2f32);
458 addDRTypeForNEON(MVT::v8i8);
459 addDRTypeForNEON(MVT::v4i16);
460 addDRTypeForNEON(MVT::v2i32);
461 addDRTypeForNEON(MVT::v1i64);
462
463 addQRTypeForNEON(MVT::v4f32);
464 addQRTypeForNEON(MVT::v2f64);
465 addQRTypeForNEON(MVT::v16i8);
466 addQRTypeForNEON(MVT::v8i16);
467 addQRTypeForNEON(MVT::v4i32);
468 addQRTypeForNEON(MVT::v2i64);
469
470 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
471 // neither Neon nor VFP support any arithmetic operations on it.
472 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
473 // supported for v4f32.
474 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
475 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
476 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
477 // FIXME: Code duplication: FDIV and FREM are expanded always, see
478 // ARMTargetLowering::addTypeForNEON method for details.
479 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
480 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
481 // FIXME: Create unittest.
482 // In another words, find a way when "copysign" appears in DAG with vector
483 // operands.
484 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
485 // FIXME: Code duplication: SETCC has custom operation action, see
486 // ARMTargetLowering::addTypeForNEON method for details.
487 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
488 // FIXME: Create unittest for FNEG and for FABS.
489 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
490 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
491 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
492 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
493 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
494 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
495 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
496 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
497 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
498 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
499 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
500 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
501 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
502 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
503 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
504 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
505 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
506 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
507 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
508
509 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
510 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
511 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
512 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
513 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
514 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
515 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
516 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
517 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
518 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
519 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
520 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
521 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
523 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
524
525 // Mark v2f32 intrinsics.
526 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
527 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
528 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
529 setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
530 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
531 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
532 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
533 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
534 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
535 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
536 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
537 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
538 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
539 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
540 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
541
542 // Neon does not support some operations on v1i64 and v2i64 types.
543 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
544 // Custom handling for some quad-vector types to detect VMULL.
545 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
546 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
547 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
548 // Custom handling for some vector types to avoid expensive expansions
549 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
550 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
551 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
552 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
553 setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
554 setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
555 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
556 // a destination type that is wider than the source, and nor does
557 // it have a FP_TO_[SU]INT instruction with a narrower destination than
558 // source.
559 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
560 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
561 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
562 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
563
564 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
565 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
566
567 // NEON does not have single instruction CTPOP for vectors with element
568 // types wider than 8-bits. However, custom lowering can leverage the
569 // v8i8/v16i8 vcnt instruction.
570 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
571 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
572 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
573 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
574
575 // NEON only has FMA instructions as of VFP4.
576 if (!Subtarget->hasVFP4()) {
577 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
578 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
579 }
580
581 setTargetDAGCombine(ISD::INTRINSIC_VOID);
582 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
583 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
584 setTargetDAGCombine(ISD::SHL);
585 setTargetDAGCombine(ISD::SRL);
586 setTargetDAGCombine(ISD::SRA);
587 setTargetDAGCombine(ISD::SIGN_EXTEND);
588 setTargetDAGCombine(ISD::ZERO_EXTEND);
589 setTargetDAGCombine(ISD::ANY_EXTEND);
590 setTargetDAGCombine(ISD::SELECT_CC);
591 setTargetDAGCombine(ISD::BUILD_VECTOR);
592 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
593 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
594 setTargetDAGCombine(ISD::STORE);
595 setTargetDAGCombine(ISD::FP_TO_SINT);
596 setTargetDAGCombine(ISD::FP_TO_UINT);
597 setTargetDAGCombine(ISD::FDIV);
598
599 // It is legal to extload from v4i8 to v4i16 or v4i32.
600 MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
601 MVT::v4i16, MVT::v2i16,
602 MVT::v2i32};
603 for (unsigned i = 0; i < 6; ++i) {
604 setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
605 setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
606 setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
607 }
608 }
609
610 // ARM and Thumb2 support UMLAL/SMLAL.
611 if (!Subtarget->isThumb1Only())
612 setTargetDAGCombine(ISD::ADDC);
613
614
615 computeRegisterProperties();
616
617 // ARM does not have f32 extending load.
618 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
619
620 // ARM does not have i1 sign extending load.
621 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
622
623 // ARM supports all 4 flavors of integer indexed load / store.
624 if (!Subtarget->isThumb1Only()) {
625 for (unsigned im = (unsigned)ISD::PRE_INC;
626 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
627 setIndexedLoadAction(im, MVT::i1, Legal);
628 setIndexedLoadAction(im, MVT::i8, Legal);
629 setIndexedLoadAction(im, MVT::i16, Legal);
630 setIndexedLoadAction(im, MVT::i32, Legal);
631 setIndexedStoreAction(im, MVT::i1, Legal);
632 setIndexedStoreAction(im, MVT::i8, Legal);
633 setIndexedStoreAction(im, MVT::i16, Legal);
634 setIndexedStoreAction(im, MVT::i32, Legal);
635 }
636 }
637
638 // i64 operation support.
639 setOperationAction(ISD::MUL, MVT::i64, Expand);
640 setOperationAction(ISD::MULHU, MVT::i32, Expand);
641 if (Subtarget->isThumb1Only()) {
642 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
643 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
644 }
645 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
646 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
647 setOperationAction(ISD::MULHS, MVT::i32, Expand);
648
649 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
650 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
651 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
652 setOperationAction(ISD::SRL, MVT::i64, Custom);
653 setOperationAction(ISD::SRA, MVT::i64, Custom);
654
655 if (!Subtarget->isThumb1Only()) {
656 // FIXME: We should do this for Thumb1 as well.
657 setOperationAction(ISD::ADDC, MVT::i32, Custom);
658 setOperationAction(ISD::ADDE, MVT::i32, Custom);
659 setOperationAction(ISD::SUBC, MVT::i32, Custom);
660 setOperationAction(ISD::SUBE, MVT::i32, Custom);
661 }
662
663 // ARM does not have ROTL.
664 setOperationAction(ISD::ROTL, MVT::i32, Expand);
665 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
666 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
667 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
668 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
669
670 // These just redirect to CTTZ and CTLZ on ARM.
671 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
672 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
673
674 // Only ARMv6 has BSWAP.
675 if (!Subtarget->hasV6Ops())
676 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
677
678 if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
679 !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
680 // These are expanded into libcalls if the cpu doesn't have HW divider.
681 setOperationAction(ISD::SDIV, MVT::i32, Expand);
682 setOperationAction(ISD::UDIV, MVT::i32, Expand);
683 }
684 setOperationAction(ISD::SREM, MVT::i32, Expand);
685 setOperationAction(ISD::UREM, MVT::i32, Expand);
686 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
687 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
688
689 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
690 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
691 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
692 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
693 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
694
695 setOperationAction(ISD::TRAP, MVT::Other, Legal);
696
697 // Use the default implementation.
698 setOperationAction(ISD::VASTART, MVT::Other, Custom);
699 setOperationAction(ISD::VAARG, MVT::Other, Expand);
700 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
701 setOperationAction(ISD::VAEND, MVT::Other, Expand);
702 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
703 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
704
705 if (!Subtarget->isTargetDarwin()) {
706 // Non-Darwin platforms may return values in these registers via the
707 // personality function.
708 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
709 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
710 setExceptionPointerRegister(ARM::R0);
711 setExceptionSelectorRegister(ARM::R1);
712 }
713
714 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
715 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
716 // the default expansion.
717 // FIXME: This should be checking for v6k, not just v6.
718 if (Subtarget->hasDataBarrier() ||
719 (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
720 // membarrier needs custom lowering; the rest are legal and handled
721 // normally.
722 setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
723 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
724 // Custom lowering for 64-bit ops
725 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
726 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
727 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
728 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
729 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
730 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
731 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
732 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
733 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
734 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
735 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
736 // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
737 setInsertFencesForAtomic(true);
738 } else {
739 // Set them all for expansion, which will force libcalls.
740 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
741 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
742 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
743 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
744 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
745 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
746 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
747 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
748 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
749 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
750 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
751 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
752 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
753 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
754 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
755 // Unordered/Monotonic case.
756 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
757 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
758 // Since the libcalls include locking, fold in the fences
759 setShouldFoldAtomicFences(true);
760 }
761
762 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
763
764 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
765 if (!Subtarget->hasV6Ops()) {
766 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
767 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
768 }
769 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
770
771 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
772 !Subtarget->isThumb1Only()) {
773 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
774 // iff target supports vfp2.
775 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
776 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
777 }
778
779 // We want to custom lower some of our intrinsics.
780 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
781 if (Subtarget->isTargetDarwin()) {
782 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
783 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
784 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
785 }
786
787 setOperationAction(ISD::SETCC, MVT::i32, Expand);
788 setOperationAction(ISD::SETCC, MVT::f32, Expand);
789 setOperationAction(ISD::SETCC, MVT::f64, Expand);
790 setOperationAction(ISD::SELECT, MVT::i32, Custom);
791 setOperationAction(ISD::SELECT, MVT::f32, Custom);
792 setOperationAction(ISD::SELECT, MVT::f64, Custom);
793 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
794 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
795 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
796
797 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
798 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
799 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
800 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
801 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
802
803 // We don't support sin/cos/fmod/copysign/pow
804 setOperationAction(ISD::FSIN, MVT::f64, Expand);
805 setOperationAction(ISD::FSIN, MVT::f32, Expand);
806 setOperationAction(ISD::FCOS, MVT::f32, Expand);
807 setOperationAction(ISD::FCOS, MVT::f64, Expand);
808 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
809 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
810 setOperationAction(ISD::FREM, MVT::f64, Expand);
811 setOperationAction(ISD::FREM, MVT::f32, Expand);
812 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
813 !Subtarget->isThumb1Only()) {
814 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
815 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
816 }
817 setOperationAction(ISD::FPOW, MVT::f64, Expand);
818 setOperationAction(ISD::FPOW, MVT::f32, Expand);
819
820 if (!Subtarget->hasVFP4()) {
821 setOperationAction(ISD::FMA, MVT::f64, Expand);
822 setOperationAction(ISD::FMA, MVT::f32, Expand);
823 }
824
825 // Various VFP goodness
826 if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
827 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
828 if (Subtarget->hasVFP2()) {
829 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
830 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
831 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
832 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
833 }
834 // Special handling for half-precision FP.
835 if (!Subtarget->hasFP16()) {
836 setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
837 setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
838 }
839 }
840
841 // We have target-specific dag combine patterns for the following nodes:
842 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
843 setTargetDAGCombine(ISD::ADD);
844 setTargetDAGCombine(ISD::SUB);
845 setTargetDAGCombine(ISD::MUL);
846 setTargetDAGCombine(ISD::AND);
847 setTargetDAGCombine(ISD::OR);
848 setTargetDAGCombine(ISD::XOR);
849
850 if (Subtarget->hasV6Ops())
851 setTargetDAGCombine(ISD::SRL);
852
853 setStackPointerRegisterToSaveRestore(ARM::SP);
854
855 if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
856 !Subtarget->hasVFP2())
857 setSchedulingPreference(Sched::RegPressure);
858 else
859 setSchedulingPreference(Sched::Hybrid);
860
861 //// temporary - rewrite interface to use type
862 MaxStoresPerMemset = 8;
863 MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
864 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
865 MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
866 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
867 MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
868
869 // On ARM arguments smaller than 4 bytes are extended, so all arguments
870 // are at least 4 bytes aligned.
871 setMinStackArgumentAlignment(4);
872
873 BenefitFromCodePlacementOpt = true;
874
875 // Prefer likely predicted branches to selects on out-of-order cores.
876 PredictableSelectIsExpensive = Subtarget->isLikeA9();
877
878 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
879 }
880
881 // FIXME: It might make sense to define the representative register class as the
882 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
883 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
884 // SPR's representative would be DPR_VFP2. This should work well if register
885 // pressure tracking were modified such that a register use would increment the
886 // pressure of the register class's representative and all of it's super
887 // classes' representatives transitively. We have not implemented this because
888 // of the difficulty prior to coalescing of modeling operand register classes
889 // due to the common occurrence of cross class copies and subregister insertions
890 // and extractions.
891 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(MVT VT) const892 ARMTargetLowering::findRepresentativeClass(MVT VT) const{
893 const TargetRegisterClass *RRC = 0;
894 uint8_t Cost = 1;
895 switch (VT.SimpleTy) {
896 default:
897 return TargetLowering::findRepresentativeClass(VT);
898 // Use DPR as representative register class for all floating point
899 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
900 // the cost is 1 for both f32 and f64.
901 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
902 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
903 RRC = &ARM::DPRRegClass;
904 // When NEON is used for SP, only half of the register file is available
905 // because operations that define both SP and DP results will be constrained
906 // to the VFP2 class (D0-D15). We currently model this constraint prior to
907 // coalescing by double-counting the SP regs. See the FIXME above.
908 if (Subtarget->useNEONForSinglePrecisionFP())
909 Cost = 2;
910 break;
911 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
912 case MVT::v4f32: case MVT::v2f64:
913 RRC = &ARM::DPRRegClass;
914 Cost = 2;
915 break;
916 case MVT::v4i64:
917 RRC = &ARM::DPRRegClass;
918 Cost = 4;
919 break;
920 case MVT::v8i64:
921 RRC = &ARM::DPRRegClass;
922 Cost = 8;
923 break;
924 }
925 return std::make_pair(RRC, Cost);
926 }
927
getTargetNodeName(unsigned Opcode) const928 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
929 switch (Opcode) {
930 default: return 0;
931 case ARMISD::Wrapper: return "ARMISD::Wrapper";
932 case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
933 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
934 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
935 case ARMISD::CALL: return "ARMISD::CALL";
936 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
937 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
938 case ARMISD::tCALL: return "ARMISD::tCALL";
939 case ARMISD::BRCOND: return "ARMISD::BRCOND";
940 case ARMISD::BR_JT: return "ARMISD::BR_JT";
941 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
942 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
943 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
944 case ARMISD::CMP: return "ARMISD::CMP";
945 case ARMISD::CMN: return "ARMISD::CMN";
946 case ARMISD::CMPZ: return "ARMISD::CMPZ";
947 case ARMISD::CMPFP: return "ARMISD::CMPFP";
948 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
949 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
950 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
951
952 case ARMISD::CMOV: return "ARMISD::CMOV";
953
954 case ARMISD::RBIT: return "ARMISD::RBIT";
955
956 case ARMISD::FTOSI: return "ARMISD::FTOSI";
957 case ARMISD::FTOUI: return "ARMISD::FTOUI";
958 case ARMISD::SITOF: return "ARMISD::SITOF";
959 case ARMISD::UITOF: return "ARMISD::UITOF";
960
961 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
962 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
963 case ARMISD::RRX: return "ARMISD::RRX";
964
965 case ARMISD::ADDC: return "ARMISD::ADDC";
966 case ARMISD::ADDE: return "ARMISD::ADDE";
967 case ARMISD::SUBC: return "ARMISD::SUBC";
968 case ARMISD::SUBE: return "ARMISD::SUBE";
969
970 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
971 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
972
973 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
974 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
975
976 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
977
978 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
979
980 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
981
982 case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
983 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
984
985 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
986
987 case ARMISD::VCEQ: return "ARMISD::VCEQ";
988 case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
989 case ARMISD::VCGE: return "ARMISD::VCGE";
990 case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
991 case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
992 case ARMISD::VCGEU: return "ARMISD::VCGEU";
993 case ARMISD::VCGT: return "ARMISD::VCGT";
994 case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
995 case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
996 case ARMISD::VCGTU: return "ARMISD::VCGTU";
997 case ARMISD::VTST: return "ARMISD::VTST";
998
999 case ARMISD::VSHL: return "ARMISD::VSHL";
1000 case ARMISD::VSHRs: return "ARMISD::VSHRs";
1001 case ARMISD::VSHRu: return "ARMISD::VSHRu";
1002 case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
1003 case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
1004 case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
1005 case ARMISD::VSHRN: return "ARMISD::VSHRN";
1006 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
1007 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
1008 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
1009 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
1010 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
1011 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
1012 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
1013 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
1014 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
1015 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
1016 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
1017 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
1018 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1019 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1020 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1021 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1022 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1023 case ARMISD::VDUP: return "ARMISD::VDUP";
1024 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1025 case ARMISD::VEXT: return "ARMISD::VEXT";
1026 case ARMISD::VREV64: return "ARMISD::VREV64";
1027 case ARMISD::VREV32: return "ARMISD::VREV32";
1028 case ARMISD::VREV16: return "ARMISD::VREV16";
1029 case ARMISD::VZIP: return "ARMISD::VZIP";
1030 case ARMISD::VUZP: return "ARMISD::VUZP";
1031 case ARMISD::VTRN: return "ARMISD::VTRN";
1032 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1033 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1034 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1035 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1036 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1037 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1038 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1039 case ARMISD::FMAX: return "ARMISD::FMAX";
1040 case ARMISD::FMIN: return "ARMISD::FMIN";
1041 case ARMISD::BFI: return "ARMISD::BFI";
1042 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1043 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1044 case ARMISD::VBSL: return "ARMISD::VBSL";
1045 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1046 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1047 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1048 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1049 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1050 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1051 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1052 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1053 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1054 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1055 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1056 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1057 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1058 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1059 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1060 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1061 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1062 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1063 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1064 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1065 }
1066 }
1067
getSetCCResultType(EVT VT) const1068 EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1069 if (!VT.isVector()) return getPointerTy();
1070 return VT.changeVectorElementTypeToInteger();
1071 }
1072
1073 /// getRegClassFor - Return the register class that should be used for the
1074 /// specified value type.
getRegClassFor(MVT VT) const1075 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1076 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1077 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1078 // load / store 4 to 8 consecutive D registers.
1079 if (Subtarget->hasNEON()) {
1080 if (VT == MVT::v4i64)
1081 return &ARM::QQPRRegClass;
1082 if (VT == MVT::v8i64)
1083 return &ARM::QQQQPRRegClass;
1084 }
1085 return TargetLowering::getRegClassFor(VT);
1086 }
1087
1088 // Create a fast isel object.
1089 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1090 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1091 const TargetLibraryInfo *libInfo) const {
1092 return ARM::createFastISel(funcInfo, libInfo);
1093 }
1094
1095 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
1096 /// be used for loads / stores from the global.
getMaximalGlobalOffset() const1097 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1098 return (Subtarget->isThumb1Only() ? 127 : 4095);
1099 }
1100
getSchedulingPreference(SDNode * N) const1101 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1102 unsigned NumVals = N->getNumValues();
1103 if (!NumVals)
1104 return Sched::RegPressure;
1105
1106 for (unsigned i = 0; i != NumVals; ++i) {
1107 EVT VT = N->getValueType(i);
1108 if (VT == MVT::Glue || VT == MVT::Other)
1109 continue;
1110 if (VT.isFloatingPoint() || VT.isVector())
1111 return Sched::ILP;
1112 }
1113
1114 if (!N->isMachineOpcode())
1115 return Sched::RegPressure;
1116
1117 // Load are scheduled for latency even if there instruction itinerary
1118 // is not available.
1119 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1120 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1121
1122 if (MCID.getNumDefs() == 0)
1123 return Sched::RegPressure;
1124 if (!Itins->isEmpty() &&
1125 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1126 return Sched::ILP;
1127
1128 return Sched::RegPressure;
1129 }
1130
1131 //===----------------------------------------------------------------------===//
1132 // Lowering Code
1133 //===----------------------------------------------------------------------===//
1134
1135 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1136 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1137 switch (CC) {
1138 default: llvm_unreachable("Unknown condition code!");
1139 case ISD::SETNE: return ARMCC::NE;
1140 case ISD::SETEQ: return ARMCC::EQ;
1141 case ISD::SETGT: return ARMCC::GT;
1142 case ISD::SETGE: return ARMCC::GE;
1143 case ISD::SETLT: return ARMCC::LT;
1144 case ISD::SETLE: return ARMCC::LE;
1145 case ISD::SETUGT: return ARMCC::HI;
1146 case ISD::SETUGE: return ARMCC::HS;
1147 case ISD::SETULT: return ARMCC::LO;
1148 case ISD::SETULE: return ARMCC::LS;
1149 }
1150 }
1151
1152 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1153 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1154 ARMCC::CondCodes &CondCode2) {
1155 CondCode2 = ARMCC::AL;
1156 switch (CC) {
1157 default: llvm_unreachable("Unknown FP condition!");
1158 case ISD::SETEQ:
1159 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1160 case ISD::SETGT:
1161 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1162 case ISD::SETGE:
1163 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1164 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1165 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1166 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1167 case ISD::SETO: CondCode = ARMCC::VC; break;
1168 case ISD::SETUO: CondCode = ARMCC::VS; break;
1169 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1170 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1171 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1172 case ISD::SETLT:
1173 case ISD::SETULT: CondCode = ARMCC::LT; break;
1174 case ISD::SETLE:
1175 case ISD::SETULE: CondCode = ARMCC::LE; break;
1176 case ISD::SETNE:
1177 case ISD::SETUNE: CondCode = ARMCC::NE; break;
1178 }
1179 }
1180
1181 //===----------------------------------------------------------------------===//
1182 // Calling Convention Implementation
1183 //===----------------------------------------------------------------------===//
1184
1185 #include "ARMGenCallingConv.inc"
1186
1187 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1188 /// given CallingConvention value.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1189 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1190 bool Return,
1191 bool isVarArg) const {
1192 switch (CC) {
1193 default:
1194 llvm_unreachable("Unsupported calling convention");
1195 case CallingConv::Fast:
1196 if (Subtarget->hasVFP2() && !isVarArg) {
1197 if (!Subtarget->isAAPCS_ABI())
1198 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1199 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1200 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1201 }
1202 // Fallthrough
1203 case CallingConv::C: {
1204 // Use target triple & subtarget features to do actual dispatch.
1205 if (!Subtarget->isAAPCS_ABI())
1206 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1207 else if (Subtarget->hasVFP2() &&
1208 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1209 !isVarArg)
1210 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1211 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1212 }
1213 case CallingConv::ARM_AAPCS_VFP:
1214 if (!isVarArg)
1215 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1216 // Fallthrough
1217 case CallingConv::ARM_AAPCS:
1218 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1219 case CallingConv::ARM_APCS:
1220 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1221 case CallingConv::GHC:
1222 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1223 }
1224 }
1225
1226 /// LowerCallResult - Lower the result values of a call into the
1227 /// appropriate copies out of appropriate physical registers.
1228 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1229 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1230 CallingConv::ID CallConv, bool isVarArg,
1231 const SmallVectorImpl<ISD::InputArg> &Ins,
1232 DebugLoc dl, SelectionDAG &DAG,
1233 SmallVectorImpl<SDValue> &InVals) const {
1234
1235 // Assign locations to each value returned by this call.
1236 SmallVector<CCValAssign, 16> RVLocs;
1237 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1238 getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1239 CCInfo.AnalyzeCallResult(Ins,
1240 CCAssignFnForNode(CallConv, /* Return*/ true,
1241 isVarArg));
1242
1243 // Copy all of the result registers out of their specified physreg.
1244 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1245 CCValAssign VA = RVLocs[i];
1246
1247 SDValue Val;
1248 if (VA.needsCustom()) {
1249 // Handle f64 or half of a v2f64.
1250 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1251 InFlag);
1252 Chain = Lo.getValue(1);
1253 InFlag = Lo.getValue(2);
1254 VA = RVLocs[++i]; // skip ahead to next loc
1255 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1256 InFlag);
1257 Chain = Hi.getValue(1);
1258 InFlag = Hi.getValue(2);
1259 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1260
1261 if (VA.getLocVT() == MVT::v2f64) {
1262 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1263 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1264 DAG.getConstant(0, MVT::i32));
1265
1266 VA = RVLocs[++i]; // skip ahead to next loc
1267 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1268 Chain = Lo.getValue(1);
1269 InFlag = Lo.getValue(2);
1270 VA = RVLocs[++i]; // skip ahead to next loc
1271 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1272 Chain = Hi.getValue(1);
1273 InFlag = Hi.getValue(2);
1274 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1275 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1276 DAG.getConstant(1, MVT::i32));
1277 }
1278 } else {
1279 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1280 InFlag);
1281 Chain = Val.getValue(1);
1282 InFlag = Val.getValue(2);
1283 }
1284
1285 switch (VA.getLocInfo()) {
1286 default: llvm_unreachable("Unknown loc info!");
1287 case CCValAssign::Full: break;
1288 case CCValAssign::BCvt:
1289 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1290 break;
1291 }
1292
1293 InVals.push_back(Val);
1294 }
1295
1296 return Chain;
1297 }
1298
1299 /// LowerMemOpCallTo - Store the argument to the stack.
1300 SDValue
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1301 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1302 SDValue StackPtr, SDValue Arg,
1303 DebugLoc dl, SelectionDAG &DAG,
1304 const CCValAssign &VA,
1305 ISD::ArgFlagsTy Flags) const {
1306 unsigned LocMemOffset = VA.getLocMemOffset();
1307 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1308 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1309 return DAG.getStore(Chain, dl, Arg, PtrOff,
1310 MachinePointerInfo::getStack(LocMemOffset),
1311 false, false, 0);
1312 }
1313
PassF64ArgInRegs(DebugLoc dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVector<SDValue,8> & MemOpChains,ISD::ArgFlagsTy Flags) const1314 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1315 SDValue Chain, SDValue &Arg,
1316 RegsToPassVector &RegsToPass,
1317 CCValAssign &VA, CCValAssign &NextVA,
1318 SDValue &StackPtr,
1319 SmallVector<SDValue, 8> &MemOpChains,
1320 ISD::ArgFlagsTy Flags) const {
1321
1322 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1323 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1324 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1325
1326 if (NextVA.isRegLoc())
1327 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1328 else {
1329 assert(NextVA.isMemLoc());
1330 if (StackPtr.getNode() == 0)
1331 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1332
1333 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1334 dl, DAG, NextVA,
1335 Flags));
1336 }
1337 }
1338
1339 /// LowerCall - Lowering a call into a callseq_start <-
1340 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1341 /// nodes.
1342 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1343 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1344 SmallVectorImpl<SDValue> &InVals) const {
1345 SelectionDAG &DAG = CLI.DAG;
1346 DebugLoc &dl = CLI.DL;
1347 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1348 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
1349 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
1350 SDValue Chain = CLI.Chain;
1351 SDValue Callee = CLI.Callee;
1352 bool &isTailCall = CLI.IsTailCall;
1353 CallingConv::ID CallConv = CLI.CallConv;
1354 bool doesNotRet = CLI.DoesNotReturn;
1355 bool isVarArg = CLI.IsVarArg;
1356
1357 MachineFunction &MF = DAG.getMachineFunction();
1358 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1359 bool IsSibCall = false;
1360 // Disable tail calls if they're not supported.
1361 if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1362 isTailCall = false;
1363 if (isTailCall) {
1364 // Check if it's really possible to do a tail call.
1365 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1366 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1367 Outs, OutVals, Ins, DAG);
1368 // We don't support GuaranteedTailCallOpt for ARM, only automatically
1369 // detected sibcalls.
1370 if (isTailCall) {
1371 ++NumTailCalls;
1372 IsSibCall = true;
1373 }
1374 }
1375
1376 // Analyze operands of the call, assigning locations to each operand.
1377 SmallVector<CCValAssign, 16> ArgLocs;
1378 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1379 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1380 CCInfo.AnalyzeCallOperands(Outs,
1381 CCAssignFnForNode(CallConv, /* Return*/ false,
1382 isVarArg));
1383
1384 // Get a count of how many bytes are to be pushed on the stack.
1385 unsigned NumBytes = CCInfo.getNextStackOffset();
1386
1387 // For tail calls, memory operands are available in our caller's stack.
1388 if (IsSibCall)
1389 NumBytes = 0;
1390
1391 // Adjust the stack pointer for the new arguments...
1392 // These operations are automatically eliminated by the prolog/epilog pass
1393 if (!IsSibCall)
1394 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1395
1396 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1397
1398 RegsToPassVector RegsToPass;
1399 SmallVector<SDValue, 8> MemOpChains;
1400
1401 // Walk the register/memloc assignments, inserting copies/loads. In the case
1402 // of tail call optimization, arguments are handled later.
1403 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1404 i != e;
1405 ++i, ++realArgIdx) {
1406 CCValAssign &VA = ArgLocs[i];
1407 SDValue Arg = OutVals[realArgIdx];
1408 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1409 bool isByVal = Flags.isByVal();
1410
1411 // Promote the value if needed.
1412 switch (VA.getLocInfo()) {
1413 default: llvm_unreachable("Unknown loc info!");
1414 case CCValAssign::Full: break;
1415 case CCValAssign::SExt:
1416 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1417 break;
1418 case CCValAssign::ZExt:
1419 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1420 break;
1421 case CCValAssign::AExt:
1422 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1423 break;
1424 case CCValAssign::BCvt:
1425 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1426 break;
1427 }
1428
1429 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1430 if (VA.needsCustom()) {
1431 if (VA.getLocVT() == MVT::v2f64) {
1432 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1433 DAG.getConstant(0, MVT::i32));
1434 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1435 DAG.getConstant(1, MVT::i32));
1436
1437 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1438 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1439
1440 VA = ArgLocs[++i]; // skip ahead to next loc
1441 if (VA.isRegLoc()) {
1442 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1443 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1444 } else {
1445 assert(VA.isMemLoc());
1446
1447 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1448 dl, DAG, VA, Flags));
1449 }
1450 } else {
1451 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1452 StackPtr, MemOpChains, Flags);
1453 }
1454 } else if (VA.isRegLoc()) {
1455 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1456 } else if (isByVal) {
1457 assert(VA.isMemLoc());
1458 unsigned offset = 0;
1459
1460 // True if this byval aggregate will be split between registers
1461 // and memory.
1462 if (CCInfo.isFirstByValRegValid()) {
1463 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1464 unsigned int i, j;
1465 for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1466 SDValue Const = DAG.getConstant(4*i, MVT::i32);
1467 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1468 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1469 MachinePointerInfo(),
1470 false, false, false, 0);
1471 MemOpChains.push_back(Load.getValue(1));
1472 RegsToPass.push_back(std::make_pair(j, Load));
1473 }
1474 offset = ARM::R4 - CCInfo.getFirstByValReg();
1475 CCInfo.clearFirstByValReg();
1476 }
1477
1478 if (Flags.getByValSize() - 4*offset > 0) {
1479 unsigned LocMemOffset = VA.getLocMemOffset();
1480 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1481 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1482 StkPtrOff);
1483 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1484 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1485 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1486 MVT::i32);
1487 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1488
1489 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1490 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1491 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1492 Ops, array_lengthof(Ops)));
1493 }
1494 } else if (!IsSibCall) {
1495 assert(VA.isMemLoc());
1496
1497 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1498 dl, DAG, VA, Flags));
1499 }
1500 }
1501
1502 if (!MemOpChains.empty())
1503 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1504 &MemOpChains[0], MemOpChains.size());
1505
1506 // Build a sequence of copy-to-reg nodes chained together with token chain
1507 // and flag operands which copy the outgoing args into the appropriate regs.
1508 SDValue InFlag;
1509 // Tail call byval lowering might overwrite argument registers so in case of
1510 // tail call optimization the copies to registers are lowered later.
1511 if (!isTailCall)
1512 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1513 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1514 RegsToPass[i].second, InFlag);
1515 InFlag = Chain.getValue(1);
1516 }
1517
1518 // For tail calls lower the arguments to the 'real' stack slot.
1519 if (isTailCall) {
1520 // Force all the incoming stack arguments to be loaded from the stack
1521 // before any new outgoing arguments are stored to the stack, because the
1522 // outgoing stack slots may alias the incoming argument stack slots, and
1523 // the alias isn't otherwise explicit. This is slightly more conservative
1524 // than necessary, because it means that each store effectively depends
1525 // on every argument instead of just those arguments it would clobber.
1526
1527 // Do not flag preceding copytoreg stuff together with the following stuff.
1528 InFlag = SDValue();
1529 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1530 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1531 RegsToPass[i].second, InFlag);
1532 InFlag = Chain.getValue(1);
1533 }
1534 InFlag =SDValue();
1535 }
1536
1537 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1538 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1539 // node so that legalize doesn't hack it.
1540 bool isDirect = false;
1541 bool isARMFunc = false;
1542 bool isLocalARMFunc = false;
1543 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1544
1545 if (EnableARMLongCalls) {
1546 assert (getTargetMachine().getRelocationModel() == Reloc::Static
1547 && "long-calls with non-static relocation model!");
1548 // Handle a global address or an external symbol. If it's not one of
1549 // those, the target's already in a register, so we don't need to do
1550 // anything extra.
1551 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1552 const GlobalValue *GV = G->getGlobal();
1553 // Create a constant pool entry for the callee address
1554 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1555 ARMConstantPoolValue *CPV =
1556 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1557
1558 // Get the address of the callee into a register
1559 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1560 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1561 Callee = DAG.getLoad(getPointerTy(), dl,
1562 DAG.getEntryNode(), CPAddr,
1563 MachinePointerInfo::getConstantPool(),
1564 false, false, false, 0);
1565 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1566 const char *Sym = S->getSymbol();
1567
1568 // Create a constant pool entry for the callee address
1569 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1570 ARMConstantPoolValue *CPV =
1571 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1572 ARMPCLabelIndex, 0);
1573 // Get the address of the callee into a register
1574 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1575 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1576 Callee = DAG.getLoad(getPointerTy(), dl,
1577 DAG.getEntryNode(), CPAddr,
1578 MachinePointerInfo::getConstantPool(),
1579 false, false, false, 0);
1580 }
1581 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1582 const GlobalValue *GV = G->getGlobal();
1583 isDirect = true;
1584 bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1585 bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1586 getTargetMachine().getRelocationModel() != Reloc::Static;
1587 isARMFunc = !Subtarget->isThumb() || isStub;
1588 // ARM call to a local ARM function is predicable.
1589 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1590 // tBX takes a register source operand.
1591 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1592 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1593 ARMConstantPoolValue *CPV =
1594 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1595 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1596 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1597 Callee = DAG.getLoad(getPointerTy(), dl,
1598 DAG.getEntryNode(), CPAddr,
1599 MachinePointerInfo::getConstantPool(),
1600 false, false, false, 0);
1601 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1602 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1603 getPointerTy(), Callee, PICLabel);
1604 } else {
1605 // On ELF targets for PIC code, direct calls should go through the PLT
1606 unsigned OpFlags = 0;
1607 if (Subtarget->isTargetELF() &&
1608 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1609 OpFlags = ARMII::MO_PLT;
1610 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1611 }
1612 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1613 isDirect = true;
1614 bool isStub = Subtarget->isTargetDarwin() &&
1615 getTargetMachine().getRelocationModel() != Reloc::Static;
1616 isARMFunc = !Subtarget->isThumb() || isStub;
1617 // tBX takes a register source operand.
1618 const char *Sym = S->getSymbol();
1619 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1620 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1621 ARMConstantPoolValue *CPV =
1622 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1623 ARMPCLabelIndex, 4);
1624 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1625 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1626 Callee = DAG.getLoad(getPointerTy(), dl,
1627 DAG.getEntryNode(), CPAddr,
1628 MachinePointerInfo::getConstantPool(),
1629 false, false, false, 0);
1630 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1631 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1632 getPointerTy(), Callee, PICLabel);
1633 } else {
1634 unsigned OpFlags = 0;
1635 // On ELF targets for PIC code, direct calls should go through the PLT
1636 if (Subtarget->isTargetELF() &&
1637 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1638 OpFlags = ARMII::MO_PLT;
1639 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1640 }
1641 }
1642
1643 // FIXME: handle tail calls differently.
1644 unsigned CallOpc;
1645 bool HasMinSizeAttr = MF.getFunction()->getAttributes().
1646 hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
1647 if (Subtarget->isThumb()) {
1648 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1649 CallOpc = ARMISD::CALL_NOLINK;
1650 else
1651 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1652 } else {
1653 if (!isDirect && !Subtarget->hasV5TOps())
1654 CallOpc = ARMISD::CALL_NOLINK;
1655 else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1656 // Emit regular call when code size is the priority
1657 !HasMinSizeAttr)
1658 // "mov lr, pc; b _foo" to avoid confusing the RSP
1659 CallOpc = ARMISD::CALL_NOLINK;
1660 else
1661 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1662 }
1663
1664 std::vector<SDValue> Ops;
1665 Ops.push_back(Chain);
1666 Ops.push_back(Callee);
1667
1668 // Add argument registers to the end of the list so that they are known live
1669 // into the call.
1670 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1671 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1672 RegsToPass[i].second.getValueType()));
1673
1674 // Add a register mask operand representing the call-preserved registers.
1675 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1676 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1677 assert(Mask && "Missing call preserved mask for calling convention");
1678 Ops.push_back(DAG.getRegisterMask(Mask));
1679
1680 if (InFlag.getNode())
1681 Ops.push_back(InFlag);
1682
1683 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1684 if (isTailCall)
1685 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1686
1687 // Returns a chain and a flag for retval copy to use.
1688 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1689 InFlag = Chain.getValue(1);
1690
1691 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1692 DAG.getIntPtrConstant(0, true), InFlag);
1693 if (!Ins.empty())
1694 InFlag = Chain.getValue(1);
1695
1696 // Handle result values, copying them out of physregs into vregs that we
1697 // return.
1698 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1699 dl, DAG, InVals);
1700 }
1701
1702 /// HandleByVal - Every parameter *after* a byval parameter is passed
1703 /// on the stack. Remember the next parameter register to allocate,
1704 /// and then confiscate the rest of the parameter registers to insure
1705 /// this.
1706 void
HandleByVal(CCState * State,unsigned & size,unsigned Align) const1707 ARMTargetLowering::HandleByVal(
1708 CCState *State, unsigned &size, unsigned Align) const {
1709 unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1710 assert((State->getCallOrPrologue() == Prologue ||
1711 State->getCallOrPrologue() == Call) &&
1712 "unhandled ParmContext");
1713 if ((!State->isFirstByValRegValid()) &&
1714 (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1715 if (Subtarget->isAAPCS_ABI() && Align > 4) {
1716 unsigned AlignInRegs = Align / 4;
1717 unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1718 for (unsigned i = 0; i < Waste; ++i)
1719 reg = State->AllocateReg(GPRArgRegs, 4);
1720 }
1721 if (reg != 0) {
1722 State->setFirstByValReg(reg);
1723 // At a call site, a byval parameter that is split between
1724 // registers and memory needs its size truncated here. In a
1725 // function prologue, such byval parameters are reassembled in
1726 // memory, and are not truncated.
1727 if (State->getCallOrPrologue() == Call) {
1728 unsigned excess = 4 * (ARM::R4 - reg);
1729 assert(size >= excess && "expected larger existing stack allocation");
1730 size -= excess;
1731 }
1732 }
1733 }
1734 // Confiscate any remaining parameter registers to preclude their
1735 // assignment to subsequent parameters.
1736 while (State->AllocateReg(GPRArgRegs, 4))
1737 ;
1738 }
1739
1740 /// MatchingStackOffset - Return true if the given stack call argument is
1741 /// already available in the same position (relatively) of the caller's
1742 /// incoming argument stack.
1743 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo * MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)1744 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1745 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1746 const TargetInstrInfo *TII) {
1747 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1748 int FI = INT_MAX;
1749 if (Arg.getOpcode() == ISD::CopyFromReg) {
1750 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1751 if (!TargetRegisterInfo::isVirtualRegister(VR))
1752 return false;
1753 MachineInstr *Def = MRI->getVRegDef(VR);
1754 if (!Def)
1755 return false;
1756 if (!Flags.isByVal()) {
1757 if (!TII->isLoadFromStackSlot(Def, FI))
1758 return false;
1759 } else {
1760 return false;
1761 }
1762 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1763 if (Flags.isByVal())
1764 // ByVal argument is passed in as a pointer but it's now being
1765 // dereferenced. e.g.
1766 // define @foo(%struct.X* %A) {
1767 // tail call @bar(%struct.X* byval %A)
1768 // }
1769 return false;
1770 SDValue Ptr = Ld->getBasePtr();
1771 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1772 if (!FINode)
1773 return false;
1774 FI = FINode->getIndex();
1775 } else
1776 return false;
1777
1778 assert(FI != INT_MAX);
1779 if (!MFI->isFixedObjectIndex(FI))
1780 return false;
1781 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1782 }
1783
1784 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1785 /// for tail call optimization. Targets which want to do tail call
1786 /// optimization should implement this function.
1787 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const1788 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1789 CallingConv::ID CalleeCC,
1790 bool isVarArg,
1791 bool isCalleeStructRet,
1792 bool isCallerStructRet,
1793 const SmallVectorImpl<ISD::OutputArg> &Outs,
1794 const SmallVectorImpl<SDValue> &OutVals,
1795 const SmallVectorImpl<ISD::InputArg> &Ins,
1796 SelectionDAG& DAG) const {
1797 const Function *CallerF = DAG.getMachineFunction().getFunction();
1798 CallingConv::ID CallerCC = CallerF->getCallingConv();
1799 bool CCMatch = CallerCC == CalleeCC;
1800
1801 // Look for obvious safe cases to perform tail call optimization that do not
1802 // require ABI changes. This is what gcc calls sibcall.
1803
1804 // Do not sibcall optimize vararg calls unless the call site is not passing
1805 // any arguments.
1806 if (isVarArg && !Outs.empty())
1807 return false;
1808
1809 // Also avoid sibcall optimization if either caller or callee uses struct
1810 // return semantics.
1811 if (isCalleeStructRet || isCallerStructRet)
1812 return false;
1813
1814 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1815 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1816 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1817 // support in the assembler and linker to be used. This would need to be
1818 // fixed to fully support tail calls in Thumb1.
1819 //
1820 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1821 // LR. This means if we need to reload LR, it takes an extra instructions,
1822 // which outweighs the value of the tail call; but here we don't know yet
1823 // whether LR is going to be used. Probably the right approach is to
1824 // generate the tail call here and turn it back into CALL/RET in
1825 // emitEpilogue if LR is used.
1826
1827 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1828 // but we need to make sure there are enough registers; the only valid
1829 // registers are the 4 used for parameters. We don't currently do this
1830 // case.
1831 if (Subtarget->isThumb1Only())
1832 return false;
1833
1834 // If the calling conventions do not match, then we'd better make sure the
1835 // results are returned in the same way as what the caller expects.
1836 if (!CCMatch) {
1837 SmallVector<CCValAssign, 16> RVLocs1;
1838 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1839 getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1840 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1841
1842 SmallVector<CCValAssign, 16> RVLocs2;
1843 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1844 getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1845 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1846
1847 if (RVLocs1.size() != RVLocs2.size())
1848 return false;
1849 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1850 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1851 return false;
1852 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1853 return false;
1854 if (RVLocs1[i].isRegLoc()) {
1855 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1856 return false;
1857 } else {
1858 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1859 return false;
1860 }
1861 }
1862 }
1863
1864 // If Caller's vararg or byval argument has been split between registers and
1865 // stack, do not perform tail call, since part of the argument is in caller's
1866 // local frame.
1867 const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1868 getInfo<ARMFunctionInfo>();
1869 if (AFI_Caller->getVarArgsRegSaveSize())
1870 return false;
1871
1872 // If the callee takes no arguments then go on to check the results of the
1873 // call.
1874 if (!Outs.empty()) {
1875 // Check if stack adjustment is needed. For now, do not do this if any
1876 // argument is passed on the stack.
1877 SmallVector<CCValAssign, 16> ArgLocs;
1878 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1879 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1880 CCInfo.AnalyzeCallOperands(Outs,
1881 CCAssignFnForNode(CalleeCC, false, isVarArg));
1882 if (CCInfo.getNextStackOffset()) {
1883 MachineFunction &MF = DAG.getMachineFunction();
1884
1885 // Check if the arguments are already laid out in the right way as
1886 // the caller's fixed stack objects.
1887 MachineFrameInfo *MFI = MF.getFrameInfo();
1888 const MachineRegisterInfo *MRI = &MF.getRegInfo();
1889 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1890 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1891 i != e;
1892 ++i, ++realArgIdx) {
1893 CCValAssign &VA = ArgLocs[i];
1894 EVT RegVT = VA.getLocVT();
1895 SDValue Arg = OutVals[realArgIdx];
1896 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1897 if (VA.getLocInfo() == CCValAssign::Indirect)
1898 return false;
1899 if (VA.needsCustom()) {
1900 // f64 and vector types are split into multiple registers or
1901 // register/stack-slot combinations. The types will not match
1902 // the registers; give up on memory f64 refs until we figure
1903 // out what to do about this.
1904 if (!VA.isRegLoc())
1905 return false;
1906 if (!ArgLocs[++i].isRegLoc())
1907 return false;
1908 if (RegVT == MVT::v2f64) {
1909 if (!ArgLocs[++i].isRegLoc())
1910 return false;
1911 if (!ArgLocs[++i].isRegLoc())
1912 return false;
1913 }
1914 } else if (!VA.isRegLoc()) {
1915 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1916 MFI, MRI, TII))
1917 return false;
1918 }
1919 }
1920 }
1921 }
1922
1923 return true;
1924 }
1925
1926 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1927 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1928 MachineFunction &MF, bool isVarArg,
1929 const SmallVectorImpl<ISD::OutputArg> &Outs,
1930 LLVMContext &Context) const {
1931 SmallVector<CCValAssign, 16> RVLocs;
1932 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1933 return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
1934 isVarArg));
1935 }
1936
1937 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1938 ARMTargetLowering::LowerReturn(SDValue Chain,
1939 CallingConv::ID CallConv, bool isVarArg,
1940 const SmallVectorImpl<ISD::OutputArg> &Outs,
1941 const SmallVectorImpl<SDValue> &OutVals,
1942 DebugLoc dl, SelectionDAG &DAG) const {
1943
1944 // CCValAssign - represent the assignment of the return value to a location.
1945 SmallVector<CCValAssign, 16> RVLocs;
1946
1947 // CCState - Info about the registers and stack slots.
1948 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1949 getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1950
1951 // Analyze outgoing return values.
1952 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1953 isVarArg));
1954
1955 SDValue Flag;
1956 SmallVector<SDValue, 4> RetOps;
1957 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1958
1959 // Copy the result values into the output registers.
1960 for (unsigned i = 0, realRVLocIdx = 0;
1961 i != RVLocs.size();
1962 ++i, ++realRVLocIdx) {
1963 CCValAssign &VA = RVLocs[i];
1964 assert(VA.isRegLoc() && "Can only return in registers!");
1965
1966 SDValue Arg = OutVals[realRVLocIdx];
1967
1968 switch (VA.getLocInfo()) {
1969 default: llvm_unreachable("Unknown loc info!");
1970 case CCValAssign::Full: break;
1971 case CCValAssign::BCvt:
1972 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1973 break;
1974 }
1975
1976 if (VA.needsCustom()) {
1977 if (VA.getLocVT() == MVT::v2f64) {
1978 // Extract the first half and return it in two registers.
1979 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1980 DAG.getConstant(0, MVT::i32));
1981 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1982 DAG.getVTList(MVT::i32, MVT::i32), Half);
1983
1984 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1985 Flag = Chain.getValue(1);
1986 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1987 VA = RVLocs[++i]; // skip ahead to next loc
1988 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1989 HalfGPRs.getValue(1), Flag);
1990 Flag = Chain.getValue(1);
1991 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1992 VA = RVLocs[++i]; // skip ahead to next loc
1993
1994 // Extract the 2nd half and fall through to handle it as an f64 value.
1995 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1996 DAG.getConstant(1, MVT::i32));
1997 }
1998 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
1999 // available.
2000 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2001 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
2002 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
2003 Flag = Chain.getValue(1);
2004 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2005 VA = RVLocs[++i]; // skip ahead to next loc
2006 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
2007 Flag);
2008 } else
2009 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2010
2011 // Guarantee that all emitted copies are
2012 // stuck together, avoiding something bad.
2013 Flag = Chain.getValue(1);
2014 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2015 }
2016
2017 // Update chain and glue.
2018 RetOps[0] = Chain;
2019 if (Flag.getNode())
2020 RetOps.push_back(Flag);
2021
2022 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other,
2023 RetOps.data(), RetOps.size());
2024 }
2025
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const2026 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2027 if (N->getNumValues() != 1)
2028 return false;
2029 if (!N->hasNUsesOfValue(1, 0))
2030 return false;
2031
2032 SDValue TCChain = Chain;
2033 SDNode *Copy = *N->use_begin();
2034 if (Copy->getOpcode() == ISD::CopyToReg) {
2035 // If the copy has a glue operand, we conservatively assume it isn't safe to
2036 // perform a tail call.
2037 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2038 return false;
2039 TCChain = Copy->getOperand(0);
2040 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2041 SDNode *VMov = Copy;
2042 // f64 returned in a pair of GPRs.
2043 SmallPtrSet<SDNode*, 2> Copies;
2044 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2045 UI != UE; ++UI) {
2046 if (UI->getOpcode() != ISD::CopyToReg)
2047 return false;
2048 Copies.insert(*UI);
2049 }
2050 if (Copies.size() > 2)
2051 return false;
2052
2053 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2054 UI != UE; ++UI) {
2055 SDValue UseChain = UI->getOperand(0);
2056 if (Copies.count(UseChain.getNode()))
2057 // Second CopyToReg
2058 Copy = *UI;
2059 else
2060 // First CopyToReg
2061 TCChain = UseChain;
2062 }
2063 } else if (Copy->getOpcode() == ISD::BITCAST) {
2064 // f32 returned in a single GPR.
2065 if (!Copy->hasOneUse())
2066 return false;
2067 Copy = *Copy->use_begin();
2068 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2069 return false;
2070 Chain = Copy->getOperand(0);
2071 } else {
2072 return false;
2073 }
2074
2075 bool HasRet = false;
2076 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2077 UI != UE; ++UI) {
2078 if (UI->getOpcode() != ARMISD::RET_FLAG)
2079 return false;
2080 HasRet = true;
2081 }
2082
2083 if (!HasRet)
2084 return false;
2085
2086 Chain = TCChain;
2087 return true;
2088 }
2089
mayBeEmittedAsTailCall(CallInst * CI) const2090 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2091 if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2092 return false;
2093
2094 if (!CI->isTailCall())
2095 return false;
2096
2097 return !Subtarget->isThumb1Only();
2098 }
2099
2100 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2101 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2102 // one of the above mentioned nodes. It has to be wrapped because otherwise
2103 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2104 // be used to form addressing mode. These wrapped nodes will be selected
2105 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG)2106 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2107 EVT PtrVT = Op.getValueType();
2108 // FIXME there is no actual debug info here
2109 DebugLoc dl = Op.getDebugLoc();
2110 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2111 SDValue Res;
2112 if (CP->isMachineConstantPoolEntry())
2113 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2114 CP->getAlignment());
2115 else
2116 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2117 CP->getAlignment());
2118 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2119 }
2120
getJumpTableEncoding() const2121 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2122 return MachineJumpTableInfo::EK_Inline;
2123 }
2124
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2125 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2126 SelectionDAG &DAG) const {
2127 MachineFunction &MF = DAG.getMachineFunction();
2128 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2129 unsigned ARMPCLabelIndex = 0;
2130 DebugLoc DL = Op.getDebugLoc();
2131 EVT PtrVT = getPointerTy();
2132 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2133 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2134 SDValue CPAddr;
2135 if (RelocM == Reloc::Static) {
2136 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2137 } else {
2138 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2139 ARMPCLabelIndex = AFI->createPICLabelUId();
2140 ARMConstantPoolValue *CPV =
2141 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2142 ARMCP::CPBlockAddress, PCAdj);
2143 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2144 }
2145 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2146 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2147 MachinePointerInfo::getConstantPool(),
2148 false, false, false, 0);
2149 if (RelocM == Reloc::Static)
2150 return Result;
2151 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2152 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2153 }
2154
2155 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2156 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2157 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2158 SelectionDAG &DAG) const {
2159 DebugLoc dl = GA->getDebugLoc();
2160 EVT PtrVT = getPointerTy();
2161 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2162 MachineFunction &MF = DAG.getMachineFunction();
2163 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2164 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2165 ARMConstantPoolValue *CPV =
2166 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2167 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2168 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2169 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2170 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2171 MachinePointerInfo::getConstantPool(),
2172 false, false, false, 0);
2173 SDValue Chain = Argument.getValue(1);
2174
2175 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2176 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2177
2178 // call __tls_get_addr.
2179 ArgListTy Args;
2180 ArgListEntry Entry;
2181 Entry.Node = Argument;
2182 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2183 Args.push_back(Entry);
2184 // FIXME: is there useful debug info available here?
2185 TargetLowering::CallLoweringInfo CLI(Chain,
2186 (Type *) Type::getInt32Ty(*DAG.getContext()),
2187 false, false, false, false,
2188 0, CallingConv::C, /*isTailCall=*/false,
2189 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2190 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2191 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2192 return CallResult.first;
2193 }
2194
2195 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2196 // "local exec" model.
2197 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const2198 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2199 SelectionDAG &DAG,
2200 TLSModel::Model model) const {
2201 const GlobalValue *GV = GA->getGlobal();
2202 DebugLoc dl = GA->getDebugLoc();
2203 SDValue Offset;
2204 SDValue Chain = DAG.getEntryNode();
2205 EVT PtrVT = getPointerTy();
2206 // Get the Thread Pointer
2207 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2208
2209 if (model == TLSModel::InitialExec) {
2210 MachineFunction &MF = DAG.getMachineFunction();
2211 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2212 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2213 // Initial exec model.
2214 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2215 ARMConstantPoolValue *CPV =
2216 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2217 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2218 true);
2219 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2220 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2221 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2222 MachinePointerInfo::getConstantPool(),
2223 false, false, false, 0);
2224 Chain = Offset.getValue(1);
2225
2226 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2227 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2228
2229 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2230 MachinePointerInfo::getConstantPool(),
2231 false, false, false, 0);
2232 } else {
2233 // local exec model
2234 assert(model == TLSModel::LocalExec);
2235 ARMConstantPoolValue *CPV =
2236 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2237 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2238 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2239 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2240 MachinePointerInfo::getConstantPool(),
2241 false, false, false, 0);
2242 }
2243
2244 // The address of the thread local variable is the add of the thread
2245 // pointer with the offset of the variable.
2246 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2247 }
2248
2249 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2250 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2251 // TODO: implement the "local dynamic" model
2252 assert(Subtarget->isTargetELF() &&
2253 "TLS not implemented for non-ELF targets");
2254 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2255
2256 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2257
2258 switch (model) {
2259 case TLSModel::GeneralDynamic:
2260 case TLSModel::LocalDynamic:
2261 return LowerToTLSGeneralDynamicModel(GA, DAG);
2262 case TLSModel::InitialExec:
2263 case TLSModel::LocalExec:
2264 return LowerToTLSExecModels(GA, DAG, model);
2265 }
2266 llvm_unreachable("bogus TLS model");
2267 }
2268
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const2269 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2270 SelectionDAG &DAG) const {
2271 EVT PtrVT = getPointerTy();
2272 DebugLoc dl = Op.getDebugLoc();
2273 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2274 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2275 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2276 ARMConstantPoolValue *CPV =
2277 ARMConstantPoolConstant::Create(GV,
2278 UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2279 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2280 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2281 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2282 CPAddr,
2283 MachinePointerInfo::getConstantPool(),
2284 false, false, false, 0);
2285 SDValue Chain = Result.getValue(1);
2286 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2287 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2288 if (!UseGOTOFF)
2289 Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2290 MachinePointerInfo::getGOT(),
2291 false, false, false, 0);
2292 return Result;
2293 }
2294
2295 // If we have T2 ops, we can materialize the address directly via movt/movw
2296 // pair. This is always cheaper.
2297 if (Subtarget->useMovt()) {
2298 ++NumMovwMovt;
2299 // FIXME: Once remat is capable of dealing with instructions with register
2300 // operands, expand this into two nodes.
2301 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2302 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2303 } else {
2304 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2305 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2306 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2307 MachinePointerInfo::getConstantPool(),
2308 false, false, false, 0);
2309 }
2310 }
2311
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const2312 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2313 SelectionDAG &DAG) const {
2314 EVT PtrVT = getPointerTy();
2315 DebugLoc dl = Op.getDebugLoc();
2316 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2317 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2318
2319 // FIXME: Enable this for static codegen when tool issues are fixed. Also
2320 // update ARMFastISel::ARMMaterializeGV.
2321 if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2322 ++NumMovwMovt;
2323 // FIXME: Once remat is capable of dealing with instructions with register
2324 // operands, expand this into two nodes.
2325 if (RelocM == Reloc::Static)
2326 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2327 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2328
2329 unsigned Wrapper = (RelocM == Reloc::PIC_)
2330 ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2331 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2332 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2333 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2334 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2335 MachinePointerInfo::getGOT(),
2336 false, false, false, 0);
2337 return Result;
2338 }
2339
2340 unsigned ARMPCLabelIndex = 0;
2341 SDValue CPAddr;
2342 if (RelocM == Reloc::Static) {
2343 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2344 } else {
2345 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2346 ARMPCLabelIndex = AFI->createPICLabelUId();
2347 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2348 ARMConstantPoolValue *CPV =
2349 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2350 PCAdj);
2351 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2352 }
2353 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2354
2355 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2356 MachinePointerInfo::getConstantPool(),
2357 false, false, false, 0);
2358 SDValue Chain = Result.getValue(1);
2359
2360 if (RelocM == Reloc::PIC_) {
2361 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2362 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2363 }
2364
2365 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2366 Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2367 false, false, false, 0);
2368
2369 return Result;
2370 }
2371
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const2372 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2373 SelectionDAG &DAG) const {
2374 assert(Subtarget->isTargetELF() &&
2375 "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2376 MachineFunction &MF = DAG.getMachineFunction();
2377 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2378 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2379 EVT PtrVT = getPointerTy();
2380 DebugLoc dl = Op.getDebugLoc();
2381 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2382 ARMConstantPoolValue *CPV =
2383 ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2384 ARMPCLabelIndex, PCAdj);
2385 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2386 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2387 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2388 MachinePointerInfo::getConstantPool(),
2389 false, false, false, 0);
2390 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2391 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2392 }
2393
2394 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const2395 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2396 DebugLoc dl = Op.getDebugLoc();
2397 SDValue Val = DAG.getConstant(0, MVT::i32);
2398 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2399 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2400 Op.getOperand(1), Val);
2401 }
2402
2403 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const2404 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2405 DebugLoc dl = Op.getDebugLoc();
2406 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2407 Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2408 }
2409
2410 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const2411 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2412 const ARMSubtarget *Subtarget) const {
2413 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2414 DebugLoc dl = Op.getDebugLoc();
2415 switch (IntNo) {
2416 default: return SDValue(); // Don't custom lower most intrinsics.
2417 case Intrinsic::arm_thread_pointer: {
2418 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2419 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2420 }
2421 case Intrinsic::eh_sjlj_lsda: {
2422 MachineFunction &MF = DAG.getMachineFunction();
2423 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2424 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2425 EVT PtrVT = getPointerTy();
2426 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2427 SDValue CPAddr;
2428 unsigned PCAdj = (RelocM != Reloc::PIC_)
2429 ? 0 : (Subtarget->isThumb() ? 4 : 8);
2430 ARMConstantPoolValue *CPV =
2431 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2432 ARMCP::CPLSDA, PCAdj);
2433 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2434 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2435 SDValue Result =
2436 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2437 MachinePointerInfo::getConstantPool(),
2438 false, false, false, 0);
2439
2440 if (RelocM == Reloc::PIC_) {
2441 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2442 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2443 }
2444 return Result;
2445 }
2446 case Intrinsic::arm_neon_vmulls:
2447 case Intrinsic::arm_neon_vmullu: {
2448 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2449 ? ARMISD::VMULLs : ARMISD::VMULLu;
2450 return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2451 Op.getOperand(1), Op.getOperand(2));
2452 }
2453 }
2454 }
2455
LowerMEMBARRIER(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2456 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2457 const ARMSubtarget *Subtarget) {
2458 DebugLoc dl = Op.getDebugLoc();
2459 if (!Subtarget->hasDataBarrier()) {
2460 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2461 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2462 // here.
2463 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2464 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2465 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2466 DAG.getConstant(0, MVT::i32));
2467 }
2468
2469 SDValue Op5 = Op.getOperand(5);
2470 bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2471 unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2472 unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2473 bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2474
2475 ARM_MB::MemBOpt DMBOpt;
2476 if (isDeviceBarrier)
2477 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2478 else
2479 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2480 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2481 DAG.getConstant(DMBOpt, MVT::i32));
2482 }
2483
2484
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2485 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2486 const ARMSubtarget *Subtarget) {
2487 // FIXME: handle "fence singlethread" more efficiently.
2488 DebugLoc dl = Op.getDebugLoc();
2489 if (!Subtarget->hasDataBarrier()) {
2490 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2491 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2492 // here.
2493 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2494 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2495 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2496 DAG.getConstant(0, MVT::i32));
2497 }
2498
2499 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2500 DAG.getConstant(ARM_MB::ISH, MVT::i32));
2501 }
2502
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2503 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2504 const ARMSubtarget *Subtarget) {
2505 // ARM pre v5TE and Thumb1 does not have preload instructions.
2506 if (!(Subtarget->isThumb2() ||
2507 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2508 // Just preserve the chain.
2509 return Op.getOperand(0);
2510
2511 DebugLoc dl = Op.getDebugLoc();
2512 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2513 if (!isRead &&
2514 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2515 // ARMv7 with MP extension has PLDW.
2516 return Op.getOperand(0);
2517
2518 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2519 if (Subtarget->isThumb()) {
2520 // Invert the bits.
2521 isRead = ~isRead & 1;
2522 isData = ~isData & 1;
2523 }
2524
2525 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2526 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2527 DAG.getConstant(isData, MVT::i32));
2528 }
2529
LowerVASTART(SDValue Op,SelectionDAG & DAG)2530 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2531 MachineFunction &MF = DAG.getMachineFunction();
2532 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2533
2534 // vastart just stores the address of the VarArgsFrameIndex slot into the
2535 // memory location argument.
2536 DebugLoc dl = Op.getDebugLoc();
2537 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2538 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2539 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2540 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2541 MachinePointerInfo(SV), false, false, 0);
2542 }
2543
2544 SDValue
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,DebugLoc dl) const2545 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2546 SDValue &Root, SelectionDAG &DAG,
2547 DebugLoc dl) const {
2548 MachineFunction &MF = DAG.getMachineFunction();
2549 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2550
2551 const TargetRegisterClass *RC;
2552 if (AFI->isThumb1OnlyFunction())
2553 RC = &ARM::tGPRRegClass;
2554 else
2555 RC = &ARM::GPRRegClass;
2556
2557 // Transform the arguments stored in physical registers into virtual ones.
2558 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2559 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2560
2561 SDValue ArgValue2;
2562 if (NextVA.isMemLoc()) {
2563 MachineFrameInfo *MFI = MF.getFrameInfo();
2564 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2565
2566 // Create load node to retrieve arguments from the stack.
2567 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2568 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2569 MachinePointerInfo::getFixedStack(FI),
2570 false, false, false, 0);
2571 } else {
2572 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2573 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2574 }
2575
2576 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2577 }
2578
2579 void
computeRegArea(CCState & CCInfo,MachineFunction & MF,unsigned & VARegSize,unsigned & VARegSaveSize) const2580 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2581 unsigned &VARegSize, unsigned &VARegSaveSize)
2582 const {
2583 unsigned NumGPRs;
2584 if (CCInfo.isFirstByValRegValid())
2585 NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2586 else {
2587 unsigned int firstUnalloced;
2588 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2589 sizeof(GPRArgRegs) /
2590 sizeof(GPRArgRegs[0]));
2591 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2592 }
2593
2594 unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2595 VARegSize = NumGPRs * 4;
2596 VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2597 }
2598
2599 // The remaining GPRs hold either the beginning of variable-argument
2600 // data, or the beginning of an aggregate passed by value (usually
2601 // byval). Either way, we allocate stack slots adjacent to the data
2602 // provided by our caller, and store the unallocated registers there.
2603 // If this is a variadic function, the va_list pointer will begin with
2604 // these values; otherwise, this reassembles a (byval) structure that
2605 // was split between registers and memory.
2606 void
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,const Value * OrigArg,unsigned OffsetFromOrigArg,unsigned ArgOffset,bool ForceMutable) const2607 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2608 DebugLoc dl, SDValue &Chain,
2609 const Value *OrigArg,
2610 unsigned OffsetFromOrigArg,
2611 unsigned ArgOffset,
2612 bool ForceMutable) const {
2613 MachineFunction &MF = DAG.getMachineFunction();
2614 MachineFrameInfo *MFI = MF.getFrameInfo();
2615 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2616 unsigned firstRegToSaveIndex;
2617 if (CCInfo.isFirstByValRegValid())
2618 firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2619 else {
2620 firstRegToSaveIndex = CCInfo.getFirstUnallocated
2621 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2622 }
2623
2624 unsigned VARegSize, VARegSaveSize;
2625 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2626 if (VARegSaveSize) {
2627 // If this function is vararg, store any remaining integer argument regs
2628 // to their spots on the stack so that they may be loaded by deferencing
2629 // the result of va_next.
2630 AFI->setVarArgsRegSaveSize(VARegSaveSize);
2631 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2632 ArgOffset + VARegSaveSize
2633 - VARegSize,
2634 false));
2635 SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2636 getPointerTy());
2637
2638 SmallVector<SDValue, 4> MemOps;
2639 for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
2640 const TargetRegisterClass *RC;
2641 if (AFI->isThumb1OnlyFunction())
2642 RC = &ARM::tGPRRegClass;
2643 else
2644 RC = &ARM::GPRRegClass;
2645
2646 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2647 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2648 SDValue Store =
2649 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2650 MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2651 false, false, 0);
2652 MemOps.push_back(Store);
2653 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2654 DAG.getConstant(4, getPointerTy()));
2655 }
2656 if (!MemOps.empty())
2657 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2658 &MemOps[0], MemOps.size());
2659 } else
2660 // This will point to the next argument passed via stack.
2661 AFI->setVarArgsFrameIndex(
2662 MFI->CreateFixedObject(4, ArgOffset, !ForceMutable));
2663 }
2664
2665 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2666 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2667 CallingConv::ID CallConv, bool isVarArg,
2668 const SmallVectorImpl<ISD::InputArg>
2669 &Ins,
2670 DebugLoc dl, SelectionDAG &DAG,
2671 SmallVectorImpl<SDValue> &InVals)
2672 const {
2673 MachineFunction &MF = DAG.getMachineFunction();
2674 MachineFrameInfo *MFI = MF.getFrameInfo();
2675
2676 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2677
2678 // Assign locations to all of the incoming arguments.
2679 SmallVector<CCValAssign, 16> ArgLocs;
2680 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2681 getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2682 CCInfo.AnalyzeFormalArguments(Ins,
2683 CCAssignFnForNode(CallConv, /* Return*/ false,
2684 isVarArg));
2685
2686 SmallVector<SDValue, 16> ArgValues;
2687 int lastInsIndex = -1;
2688 SDValue ArgValue;
2689 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2690 unsigned CurArgIdx = 0;
2691 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2692 CCValAssign &VA = ArgLocs[i];
2693 std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2694 CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2695 // Arguments stored in registers.
2696 if (VA.isRegLoc()) {
2697 EVT RegVT = VA.getLocVT();
2698
2699 if (VA.needsCustom()) {
2700 // f64 and vector types are split up into multiple registers or
2701 // combinations of registers and stack slots.
2702 if (VA.getLocVT() == MVT::v2f64) {
2703 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2704 Chain, DAG, dl);
2705 VA = ArgLocs[++i]; // skip ahead to next loc
2706 SDValue ArgValue2;
2707 if (VA.isMemLoc()) {
2708 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2709 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2710 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2711 MachinePointerInfo::getFixedStack(FI),
2712 false, false, false, 0);
2713 } else {
2714 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2715 Chain, DAG, dl);
2716 }
2717 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2718 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2719 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2720 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2721 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2722 } else
2723 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2724
2725 } else {
2726 const TargetRegisterClass *RC;
2727
2728 if (RegVT == MVT::f32)
2729 RC = &ARM::SPRRegClass;
2730 else if (RegVT == MVT::f64)
2731 RC = &ARM::DPRRegClass;
2732 else if (RegVT == MVT::v2f64)
2733 RC = &ARM::QPRRegClass;
2734 else if (RegVT == MVT::i32)
2735 RC = AFI->isThumb1OnlyFunction() ?
2736 (const TargetRegisterClass*)&ARM::tGPRRegClass :
2737 (const TargetRegisterClass*)&ARM::GPRRegClass;
2738 else
2739 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2740
2741 // Transform the arguments in physical registers into virtual ones.
2742 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2743 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2744 }
2745
2746 // If this is an 8 or 16-bit value, it is really passed promoted
2747 // to 32 bits. Insert an assert[sz]ext to capture this, then
2748 // truncate to the right size.
2749 switch (VA.getLocInfo()) {
2750 default: llvm_unreachable("Unknown loc info!");
2751 case CCValAssign::Full: break;
2752 case CCValAssign::BCvt:
2753 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2754 break;
2755 case CCValAssign::SExt:
2756 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2757 DAG.getValueType(VA.getValVT()));
2758 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2759 break;
2760 case CCValAssign::ZExt:
2761 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2762 DAG.getValueType(VA.getValVT()));
2763 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2764 break;
2765 }
2766
2767 InVals.push_back(ArgValue);
2768
2769 } else { // VA.isRegLoc()
2770
2771 // sanity check
2772 assert(VA.isMemLoc());
2773 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2774
2775 int index = ArgLocs[i].getValNo();
2776
2777 // Some Ins[] entries become multiple ArgLoc[] entries.
2778 // Process them only once.
2779 if (index != lastInsIndex)
2780 {
2781 ISD::ArgFlagsTy Flags = Ins[index].Flags;
2782 // FIXME: For now, all byval parameter objects are marked mutable.
2783 // This can be changed with more analysis.
2784 // In case of tail call optimization mark all arguments mutable.
2785 // Since they could be overwritten by lowering of arguments in case of
2786 // a tail call.
2787 if (Flags.isByVal()) {
2788 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2789 if (!AFI->getVarArgsFrameIndex()) {
2790 VarArgStyleRegisters(CCInfo, DAG,
2791 dl, Chain, CurOrigArg,
2792 Ins[VA.getValNo()].PartOffset,
2793 VA.getLocMemOffset(),
2794 true /*force mutable frames*/);
2795 int VAFrameIndex = AFI->getVarArgsFrameIndex();
2796 InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy()));
2797 } else {
2798 int FI = MFI->CreateFixedObject(Flags.getByValSize(),
2799 VA.getLocMemOffset(), false);
2800 InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2801 }
2802 } else {
2803 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2804 VA.getLocMemOffset(), true);
2805
2806 // Create load nodes to retrieve arguments from the stack.
2807 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2808 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2809 MachinePointerInfo::getFixedStack(FI),
2810 false, false, false, 0));
2811 }
2812 lastInsIndex = index;
2813 }
2814 }
2815 }
2816
2817 // varargs
2818 if (isVarArg)
2819 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
2820 CCInfo.getNextStackOffset());
2821
2822 return Chain;
2823 }
2824
2825 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)2826 static bool isFloatingPointZero(SDValue Op) {
2827 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2828 return CFP->getValueAPF().isPosZero();
2829 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2830 // Maybe this has already been legalized into the constant pool?
2831 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2832 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2833 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2834 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2835 return CFP->getValueAPF().isPosZero();
2836 }
2837 }
2838 return false;
2839 }
2840
2841 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2842 /// the given operands.
2843 SDValue
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,DebugLoc dl) const2844 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2845 SDValue &ARMcc, SelectionDAG &DAG,
2846 DebugLoc dl) const {
2847 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2848 unsigned C = RHSC->getZExtValue();
2849 if (!isLegalICmpImmediate(C)) {
2850 // Constant does not fit, try adjusting it by one?
2851 switch (CC) {
2852 default: break;
2853 case ISD::SETLT:
2854 case ISD::SETGE:
2855 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2856 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2857 RHS = DAG.getConstant(C-1, MVT::i32);
2858 }
2859 break;
2860 case ISD::SETULT:
2861 case ISD::SETUGE:
2862 if (C != 0 && isLegalICmpImmediate(C-1)) {
2863 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2864 RHS = DAG.getConstant(C-1, MVT::i32);
2865 }
2866 break;
2867 case ISD::SETLE:
2868 case ISD::SETGT:
2869 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2870 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2871 RHS = DAG.getConstant(C+1, MVT::i32);
2872 }
2873 break;
2874 case ISD::SETULE:
2875 case ISD::SETUGT:
2876 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2877 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2878 RHS = DAG.getConstant(C+1, MVT::i32);
2879 }
2880 break;
2881 }
2882 }
2883 }
2884
2885 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2886 ARMISD::NodeType CompareType;
2887 switch (CondCode) {
2888 default:
2889 CompareType = ARMISD::CMP;
2890 break;
2891 case ARMCC::EQ:
2892 case ARMCC::NE:
2893 // Uses only Z Flag
2894 CompareType = ARMISD::CMPZ;
2895 break;
2896 }
2897 ARMcc = DAG.getConstant(CondCode, MVT::i32);
2898 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2899 }
2900
2901 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2902 SDValue
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,DebugLoc dl) const2903 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2904 DebugLoc dl) const {
2905 SDValue Cmp;
2906 if (!isFloatingPointZero(RHS))
2907 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2908 else
2909 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2910 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2911 }
2912
2913 /// duplicateCmp - Glue values can have only one use, so this function
2914 /// duplicates a comparison node.
2915 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const2916 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2917 unsigned Opc = Cmp.getOpcode();
2918 DebugLoc DL = Cmp.getDebugLoc();
2919 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2920 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2921
2922 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2923 Cmp = Cmp.getOperand(0);
2924 Opc = Cmp.getOpcode();
2925 if (Opc == ARMISD::CMPFP)
2926 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2927 else {
2928 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2929 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2930 }
2931 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2932 }
2933
LowerSELECT(SDValue Op,SelectionDAG & DAG) const2934 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2935 SDValue Cond = Op.getOperand(0);
2936 SDValue SelectTrue = Op.getOperand(1);
2937 SDValue SelectFalse = Op.getOperand(2);
2938 DebugLoc dl = Op.getDebugLoc();
2939
2940 // Convert:
2941 //
2942 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2943 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2944 //
2945 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2946 const ConstantSDNode *CMOVTrue =
2947 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2948 const ConstantSDNode *CMOVFalse =
2949 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2950
2951 if (CMOVTrue && CMOVFalse) {
2952 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2953 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2954
2955 SDValue True;
2956 SDValue False;
2957 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2958 True = SelectTrue;
2959 False = SelectFalse;
2960 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2961 True = SelectFalse;
2962 False = SelectTrue;
2963 }
2964
2965 if (True.getNode() && False.getNode()) {
2966 EVT VT = Op.getValueType();
2967 SDValue ARMcc = Cond.getOperand(2);
2968 SDValue CCR = Cond.getOperand(3);
2969 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2970 assert(True.getValueType() == VT);
2971 return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2972 }
2973 }
2974 }
2975
2976 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2977 // undefined bits before doing a full-word comparison with zero.
2978 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2979 DAG.getConstant(1, Cond.getValueType()));
2980
2981 return DAG.getSelectCC(dl, Cond,
2982 DAG.getConstant(0, Cond.getValueType()),
2983 SelectTrue, SelectFalse, ISD::SETNE);
2984 }
2985
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2986 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2987 EVT VT = Op.getValueType();
2988 SDValue LHS = Op.getOperand(0);
2989 SDValue RHS = Op.getOperand(1);
2990 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2991 SDValue TrueVal = Op.getOperand(2);
2992 SDValue FalseVal = Op.getOperand(3);
2993 DebugLoc dl = Op.getDebugLoc();
2994
2995 if (LHS.getValueType() == MVT::i32) {
2996 SDValue ARMcc;
2997 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2998 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2999 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
3000 }
3001
3002 ARMCC::CondCodes CondCode, CondCode2;
3003 FPCCToARMCC(CC, CondCode, CondCode2);
3004
3005 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3006 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3007 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3008 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
3009 ARMcc, CCR, Cmp);
3010 if (CondCode2 != ARMCC::AL) {
3011 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3012 // FIXME: Needs another CMP because flag can have but one use.
3013 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3014 Result = DAG.getNode(ARMISD::CMOV, dl, VT,
3015 Result, TrueVal, ARMcc2, CCR, Cmp2);
3016 }
3017 return Result;
3018 }
3019
3020 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
3021 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)3022 static bool canChangeToInt(SDValue Op, bool &SeenZero,
3023 const ARMSubtarget *Subtarget) {
3024 SDNode *N = Op.getNode();
3025 if (!N->hasOneUse())
3026 // Otherwise it requires moving the value from fp to integer registers.
3027 return false;
3028 if (!N->getNumValues())
3029 return false;
3030 EVT VT = Op.getValueType();
3031 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3032 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3033 // vmrs are very slow, e.g. cortex-a8.
3034 return false;
3035
3036 if (isFloatingPointZero(Op)) {
3037 SeenZero = true;
3038 return true;
3039 }
3040 return ISD::isNormalLoad(N);
3041 }
3042
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)3043 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3044 if (isFloatingPointZero(Op))
3045 return DAG.getConstant(0, MVT::i32);
3046
3047 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3048 return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3049 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3050 Ld->isVolatile(), Ld->isNonTemporal(),
3051 Ld->isInvariant(), Ld->getAlignment());
3052
3053 llvm_unreachable("Unknown VFP cmp argument!");
3054 }
3055
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)3056 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3057 SDValue &RetVal1, SDValue &RetVal2) {
3058 if (isFloatingPointZero(Op)) {
3059 RetVal1 = DAG.getConstant(0, MVT::i32);
3060 RetVal2 = DAG.getConstant(0, MVT::i32);
3061 return;
3062 }
3063
3064 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3065 SDValue Ptr = Ld->getBasePtr();
3066 RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3067 Ld->getChain(), Ptr,
3068 Ld->getPointerInfo(),
3069 Ld->isVolatile(), Ld->isNonTemporal(),
3070 Ld->isInvariant(), Ld->getAlignment());
3071
3072 EVT PtrType = Ptr.getValueType();
3073 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3074 SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
3075 PtrType, Ptr, DAG.getConstant(4, PtrType));
3076 RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3077 Ld->getChain(), NewPtr,
3078 Ld->getPointerInfo().getWithOffset(4),
3079 Ld->isVolatile(), Ld->isNonTemporal(),
3080 Ld->isInvariant(), NewAlign);
3081 return;
3082 }
3083
3084 llvm_unreachable("Unknown VFP cmp argument!");
3085 }
3086
3087 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3088 /// f32 and even f64 comparisons to integer ones.
3089 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const3090 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3091 SDValue Chain = Op.getOperand(0);
3092 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3093 SDValue LHS = Op.getOperand(2);
3094 SDValue RHS = Op.getOperand(3);
3095 SDValue Dest = Op.getOperand(4);
3096 DebugLoc dl = Op.getDebugLoc();
3097
3098 bool LHSSeenZero = false;
3099 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3100 bool RHSSeenZero = false;
3101 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3102 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3103 // If unsafe fp math optimization is enabled and there are no other uses of
3104 // the CMP operands, and the condition code is EQ or NE, we can optimize it
3105 // to an integer comparison.
3106 if (CC == ISD::SETOEQ)
3107 CC = ISD::SETEQ;
3108 else if (CC == ISD::SETUNE)
3109 CC = ISD::SETNE;
3110
3111 SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3112 SDValue ARMcc;
3113 if (LHS.getValueType() == MVT::f32) {
3114 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3115 bitcastf32Toi32(LHS, DAG), Mask);
3116 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3117 bitcastf32Toi32(RHS, DAG), Mask);
3118 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3119 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3120 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3121 Chain, Dest, ARMcc, CCR, Cmp);
3122 }
3123
3124 SDValue LHS1, LHS2;
3125 SDValue RHS1, RHS2;
3126 expandf64Toi32(LHS, DAG, LHS1, LHS2);
3127 expandf64Toi32(RHS, DAG, RHS1, RHS2);
3128 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3129 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3130 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3131 ARMcc = DAG.getConstant(CondCode, MVT::i32);
3132 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3133 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3134 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3135 }
3136
3137 return SDValue();
3138 }
3139
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const3140 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3141 SDValue Chain = Op.getOperand(0);
3142 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3143 SDValue LHS = Op.getOperand(2);
3144 SDValue RHS = Op.getOperand(3);
3145 SDValue Dest = Op.getOperand(4);
3146 DebugLoc dl = Op.getDebugLoc();
3147
3148 if (LHS.getValueType() == MVT::i32) {
3149 SDValue ARMcc;
3150 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3151 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3152 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3153 Chain, Dest, ARMcc, CCR, Cmp);
3154 }
3155
3156 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3157
3158 if (getTargetMachine().Options.UnsafeFPMath &&
3159 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3160 CC == ISD::SETNE || CC == ISD::SETUNE)) {
3161 SDValue Result = OptimizeVFPBrcond(Op, DAG);
3162 if (Result.getNode())
3163 return Result;
3164 }
3165
3166 ARMCC::CondCodes CondCode, CondCode2;
3167 FPCCToARMCC(CC, CondCode, CondCode2);
3168
3169 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3170 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3171 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3172 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3173 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3174 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3175 if (CondCode2 != ARMCC::AL) {
3176 ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3177 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3178 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3179 }
3180 return Res;
3181 }
3182
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const3183 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3184 SDValue Chain = Op.getOperand(0);
3185 SDValue Table = Op.getOperand(1);
3186 SDValue Index = Op.getOperand(2);
3187 DebugLoc dl = Op.getDebugLoc();
3188
3189 EVT PTy = getPointerTy();
3190 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3191 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3192 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3193 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3194 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3195 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3196 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3197 if (Subtarget->isThumb2()) {
3198 // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3199 // which does another jump to the destination. This also makes it easier
3200 // to translate it to TBB / TBH later.
3201 // FIXME: This might not work if the function is extremely large.
3202 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3203 Addr, Op.getOperand(2), JTI, UId);
3204 }
3205 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3206 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3207 MachinePointerInfo::getJumpTable(),
3208 false, false, false, 0);
3209 Chain = Addr.getValue(1);
3210 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3211 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3212 } else {
3213 Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3214 MachinePointerInfo::getJumpTable(),
3215 false, false, false, 0);
3216 Chain = Addr.getValue(1);
3217 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3218 }
3219 }
3220
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)3221 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3222 EVT VT = Op.getValueType();
3223 DebugLoc dl = Op.getDebugLoc();
3224
3225 if (Op.getValueType().getVectorElementType() == MVT::i32) {
3226 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3227 return Op;
3228 return DAG.UnrollVectorOp(Op.getNode());
3229 }
3230
3231 assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3232 "Invalid type for custom lowering!");
3233 if (VT != MVT::v4i16)
3234 return DAG.UnrollVectorOp(Op.getNode());
3235
3236 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3237 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3238 }
3239
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG)3240 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3241 EVT VT = Op.getValueType();
3242 if (VT.isVector())
3243 return LowerVectorFP_TO_INT(Op, DAG);
3244
3245 DebugLoc dl = Op.getDebugLoc();
3246 unsigned Opc;
3247
3248 switch (Op.getOpcode()) {
3249 default: llvm_unreachable("Invalid opcode!");
3250 case ISD::FP_TO_SINT:
3251 Opc = ARMISD::FTOSI;
3252 break;
3253 case ISD::FP_TO_UINT:
3254 Opc = ARMISD::FTOUI;
3255 break;
3256 }
3257 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3258 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3259 }
3260
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)3261 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3262 EVT VT = Op.getValueType();
3263 DebugLoc dl = Op.getDebugLoc();
3264
3265 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3266 if (VT.getVectorElementType() == MVT::f32)
3267 return Op;
3268 return DAG.UnrollVectorOp(Op.getNode());
3269 }
3270
3271 assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3272 "Invalid type for custom lowering!");
3273 if (VT != MVT::v4f32)
3274 return DAG.UnrollVectorOp(Op.getNode());
3275
3276 unsigned CastOpc;
3277 unsigned Opc;
3278 switch (Op.getOpcode()) {
3279 default: llvm_unreachable("Invalid opcode!");
3280 case ISD::SINT_TO_FP:
3281 CastOpc = ISD::SIGN_EXTEND;
3282 Opc = ISD::SINT_TO_FP;
3283 break;
3284 case ISD::UINT_TO_FP:
3285 CastOpc = ISD::ZERO_EXTEND;
3286 Opc = ISD::UINT_TO_FP;
3287 break;
3288 }
3289
3290 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3291 return DAG.getNode(Opc, dl, VT, Op);
3292 }
3293
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG)3294 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3295 EVT VT = Op.getValueType();
3296 if (VT.isVector())
3297 return LowerVectorINT_TO_FP(Op, DAG);
3298
3299 DebugLoc dl = Op.getDebugLoc();
3300 unsigned Opc;
3301
3302 switch (Op.getOpcode()) {
3303 default: llvm_unreachable("Invalid opcode!");
3304 case ISD::SINT_TO_FP:
3305 Opc = ARMISD::SITOF;
3306 break;
3307 case ISD::UINT_TO_FP:
3308 Opc = ARMISD::UITOF;
3309 break;
3310 }
3311
3312 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3313 return DAG.getNode(Opc, dl, VT, Op);
3314 }
3315
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const3316 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3317 // Implement fcopysign with a fabs and a conditional fneg.
3318 SDValue Tmp0 = Op.getOperand(0);
3319 SDValue Tmp1 = Op.getOperand(1);
3320 DebugLoc dl = Op.getDebugLoc();
3321 EVT VT = Op.getValueType();
3322 EVT SrcVT = Tmp1.getValueType();
3323 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3324 Tmp0.getOpcode() == ARMISD::VMOVDRR;
3325 bool UseNEON = !InGPR && Subtarget->hasNEON();
3326
3327 if (UseNEON) {
3328 // Use VBSL to copy the sign bit.
3329 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3330 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3331 DAG.getTargetConstant(EncodedVal, MVT::i32));
3332 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3333 if (VT == MVT::f64)
3334 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3335 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3336 DAG.getConstant(32, MVT::i32));
3337 else /*if (VT == MVT::f32)*/
3338 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3339 if (SrcVT == MVT::f32) {
3340 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3341 if (VT == MVT::f64)
3342 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3343 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3344 DAG.getConstant(32, MVT::i32));
3345 } else if (VT == MVT::f32)
3346 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3347 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3348 DAG.getConstant(32, MVT::i32));
3349 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3350 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3351
3352 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3353 MVT::i32);
3354 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3355 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3356 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3357
3358 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3359 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3360 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3361 if (VT == MVT::f32) {
3362 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3363 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3364 DAG.getConstant(0, MVT::i32));
3365 } else {
3366 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3367 }
3368
3369 return Res;
3370 }
3371
3372 // Bitcast operand 1 to i32.
3373 if (SrcVT == MVT::f64)
3374 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3375 &Tmp1, 1).getValue(1);
3376 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3377
3378 // Or in the signbit with integer operations.
3379 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3380 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3381 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3382 if (VT == MVT::f32) {
3383 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3384 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3385 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3386 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3387 }
3388
3389 // f64: Or the high part with signbit and then combine two parts.
3390 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3391 &Tmp0, 1);
3392 SDValue Lo = Tmp0.getValue(0);
3393 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3394 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3395 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3396 }
3397
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3398 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3399 MachineFunction &MF = DAG.getMachineFunction();
3400 MachineFrameInfo *MFI = MF.getFrameInfo();
3401 MFI->setReturnAddressIsTaken(true);
3402
3403 EVT VT = Op.getValueType();
3404 DebugLoc dl = Op.getDebugLoc();
3405 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3406 if (Depth) {
3407 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3408 SDValue Offset = DAG.getConstant(4, MVT::i32);
3409 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3410 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3411 MachinePointerInfo(), false, false, false, 0);
3412 }
3413
3414 // Return LR, which contains the return address. Mark it an implicit live-in.
3415 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3416 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3417 }
3418
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3419 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3420 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3421 MFI->setFrameAddressIsTaken(true);
3422
3423 EVT VT = Op.getValueType();
3424 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
3425 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3426 unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3427 ? ARM::R7 : ARM::R11;
3428 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3429 while (Depth--)
3430 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3431 MachinePointerInfo(),
3432 false, false, false, 0);
3433 return FrameAddr;
3434 }
3435
3436 /// ExpandBITCAST - If the target supports VFP, this function is called to
3437 /// expand a bit convert where either the source or destination type is i64 to
3438 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
3439 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
3440 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG)3441 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3442 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3443 DebugLoc dl = N->getDebugLoc();
3444 SDValue Op = N->getOperand(0);
3445
3446 // This function is only supposed to be called for i64 types, either as the
3447 // source or destination of the bit convert.
3448 EVT SrcVT = Op.getValueType();
3449 EVT DstVT = N->getValueType(0);
3450 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3451 "ExpandBITCAST called for non-i64 type");
3452
3453 // Turn i64->f64 into VMOVDRR.
3454 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3455 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3456 DAG.getConstant(0, MVT::i32));
3457 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3458 DAG.getConstant(1, MVT::i32));
3459 return DAG.getNode(ISD::BITCAST, dl, DstVT,
3460 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3461 }
3462
3463 // Turn f64->i64 into VMOVRRD.
3464 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3465 SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3466 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3467 // Merge the pieces into a single i64 value.
3468 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3469 }
3470
3471 return SDValue();
3472 }
3473
3474 /// getZeroVector - Returns a vector of specified type with all zero elements.
3475 /// Zero vectors are used to represent vector negation and in those cases
3476 /// will be implemented with the NEON VNEG instruction. However, VNEG does
3477 /// not support i64 elements, so sometimes the zero vectors will need to be
3478 /// explicitly constructed. Regardless, use a canonical VMOV to create the
3479 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,DebugLoc dl)3480 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3481 assert(VT.isVector() && "Expected a vector type");
3482 // The canonical modified immediate encoding of a zero vector is....0!
3483 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3484 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3485 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3486 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3487 }
3488
3489 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3490 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const3491 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3492 SelectionDAG &DAG) const {
3493 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3494 EVT VT = Op.getValueType();
3495 unsigned VTBits = VT.getSizeInBits();
3496 DebugLoc dl = Op.getDebugLoc();
3497 SDValue ShOpLo = Op.getOperand(0);
3498 SDValue ShOpHi = Op.getOperand(1);
3499 SDValue ShAmt = Op.getOperand(2);
3500 SDValue ARMcc;
3501 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3502
3503 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3504
3505 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3506 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3507 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3508 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3509 DAG.getConstant(VTBits, MVT::i32));
3510 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3511 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3512 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3513
3514 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3515 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3516 ARMcc, DAG, dl);
3517 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3518 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3519 CCR, Cmp);
3520
3521 SDValue Ops[2] = { Lo, Hi };
3522 return DAG.getMergeValues(Ops, 2, dl);
3523 }
3524
3525 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3526 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const3527 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3528 SelectionDAG &DAG) const {
3529 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3530 EVT VT = Op.getValueType();
3531 unsigned VTBits = VT.getSizeInBits();
3532 DebugLoc dl = Op.getDebugLoc();
3533 SDValue ShOpLo = Op.getOperand(0);
3534 SDValue ShOpHi = Op.getOperand(1);
3535 SDValue ShAmt = Op.getOperand(2);
3536 SDValue ARMcc;
3537
3538 assert(Op.getOpcode() == ISD::SHL_PARTS);
3539 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3540 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3541 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3542 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3543 DAG.getConstant(VTBits, MVT::i32));
3544 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3545 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3546
3547 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3548 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3549 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3550 ARMcc, DAG, dl);
3551 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3552 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3553 CCR, Cmp);
3554
3555 SDValue Ops[2] = { Lo, Hi };
3556 return DAG.getMergeValues(Ops, 2, dl);
3557 }
3558
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const3559 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3560 SelectionDAG &DAG) const {
3561 // The rounding mode is in bits 23:22 of the FPSCR.
3562 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3563 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3564 // so that the shift + and get folded into a bitfield extract.
3565 DebugLoc dl = Op.getDebugLoc();
3566 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3567 DAG.getConstant(Intrinsic::arm_get_fpscr,
3568 MVT::i32));
3569 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3570 DAG.getConstant(1U << 22, MVT::i32));
3571 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3572 DAG.getConstant(22, MVT::i32));
3573 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3574 DAG.getConstant(3, MVT::i32));
3575 }
3576
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3577 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3578 const ARMSubtarget *ST) {
3579 EVT VT = N->getValueType(0);
3580 DebugLoc dl = N->getDebugLoc();
3581
3582 if (!ST->hasV6T2Ops())
3583 return SDValue();
3584
3585 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3586 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3587 }
3588
3589 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
3590 /// for each 16-bit element from operand, repeated. The basic idea is to
3591 /// leverage vcnt to get the 8-bit counts, gather and add the results.
3592 ///
3593 /// Trace for v4i16:
3594 /// input = [v0 v1 v2 v3 ] (vi 16-bit element)
3595 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
3596 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
3597 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
3598 /// [b0 b1 b2 b3 b4 b5 b6 b7]
3599 /// +[b1 b0 b3 b2 b5 b4 b7 b6]
3600 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
3601 /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
getCTPOP16BitCounts(SDNode * N,SelectionDAG & DAG)3602 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
3603 EVT VT = N->getValueType(0);
3604 DebugLoc DL = N->getDebugLoc();
3605
3606 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
3607 SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
3608 SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
3609 SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
3610 SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
3611 return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
3612 }
3613
3614 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
3615 /// bit-count for each 16-bit element from the operand. We need slightly
3616 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
3617 /// 64/128-bit registers.
3618 ///
3619 /// Trace for v4i16:
3620 /// input = [v0 v1 v2 v3 ] (vi 16-bit element)
3621 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
3622 /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
3623 /// v4i16:Extracted = [k0 k1 k2 k3 ]
lowerCTPOP16BitElements(SDNode * N,SelectionDAG & DAG)3624 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
3625 EVT VT = N->getValueType(0);
3626 DebugLoc DL = N->getDebugLoc();
3627
3628 SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
3629 if (VT.is64BitVector()) {
3630 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
3631 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
3632 DAG.getIntPtrConstant(0));
3633 } else {
3634 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
3635 BitCounts, DAG.getIntPtrConstant(0));
3636 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
3637 }
3638 }
3639
3640 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
3641 /// bit-count for each 32-bit element from the operand. The idea here is
3642 /// to split the vector into 16-bit elements, leverage the 16-bit count
3643 /// routine, and then combine the results.
3644 ///
3645 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
3646 /// input = [v0 v1 ] (vi: 32-bit elements)
3647 /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
3648 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
3649 /// vrev: N0 = [k1 k0 k3 k2 ]
3650 /// [k0 k1 k2 k3 ]
3651 /// N1 =+[k1 k0 k3 k2 ]
3652 /// [k0 k2 k1 k3 ]
3653 /// N2 =+[k1 k3 k0 k2 ]
3654 /// [k0 k2 k1 k3 ]
3655 /// Extended =+[k1 k3 k0 k2 ]
3656 /// [k0 k2 ]
3657 /// Extracted=+[k1 k3 ]
3658 ///
lowerCTPOP32BitElements(SDNode * N,SelectionDAG & DAG)3659 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
3660 EVT VT = N->getValueType(0);
3661 DebugLoc DL = N->getDebugLoc();
3662
3663 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
3664
3665 SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
3666 SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
3667 SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
3668 SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
3669 SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
3670
3671 if (VT.is64BitVector()) {
3672 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
3673 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
3674 DAG.getIntPtrConstant(0));
3675 } else {
3676 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
3677 DAG.getIntPtrConstant(0));
3678 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
3679 }
3680 }
3681
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3682 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
3683 const ARMSubtarget *ST) {
3684 EVT VT = N->getValueType(0);
3685
3686 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
3687 assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
3688 VT == MVT::v4i16 || VT == MVT::v8i16) &&
3689 "Unexpected type for custom ctpop lowering");
3690
3691 if (VT.getVectorElementType() == MVT::i32)
3692 return lowerCTPOP32BitElements(N, DAG);
3693 else
3694 return lowerCTPOP16BitElements(N, DAG);
3695 }
3696
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3697 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3698 const ARMSubtarget *ST) {
3699 EVT VT = N->getValueType(0);
3700 DebugLoc dl = N->getDebugLoc();
3701
3702 if (!VT.isVector())
3703 return SDValue();
3704
3705 // Lower vector shifts on NEON to use VSHL.
3706 assert(ST->hasNEON() && "unexpected vector shift");
3707
3708 // Left shifts translate directly to the vshiftu intrinsic.
3709 if (N->getOpcode() == ISD::SHL)
3710 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3711 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3712 N->getOperand(0), N->getOperand(1));
3713
3714 assert((N->getOpcode() == ISD::SRA ||
3715 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3716
3717 // NEON uses the same intrinsics for both left and right shifts. For
3718 // right shifts, the shift amounts are negative, so negate the vector of
3719 // shift amounts.
3720 EVT ShiftVT = N->getOperand(1).getValueType();
3721 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3722 getZeroVector(ShiftVT, DAG, dl),
3723 N->getOperand(1));
3724 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3725 Intrinsic::arm_neon_vshifts :
3726 Intrinsic::arm_neon_vshiftu);
3727 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3728 DAG.getConstant(vshiftInt, MVT::i32),
3729 N->getOperand(0), NegatedCount);
3730 }
3731
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3732 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3733 const ARMSubtarget *ST) {
3734 EVT VT = N->getValueType(0);
3735 DebugLoc dl = N->getDebugLoc();
3736
3737 // We can get here for a node like i32 = ISD::SHL i32, i64
3738 if (VT != MVT::i64)
3739 return SDValue();
3740
3741 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3742 "Unknown shift to lower!");
3743
3744 // We only lower SRA, SRL of 1 here, all others use generic lowering.
3745 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3746 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3747 return SDValue();
3748
3749 // If we are in thumb mode, we don't have RRX.
3750 if (ST->isThumb1Only()) return SDValue();
3751
3752 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
3753 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3754 DAG.getConstant(0, MVT::i32));
3755 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3756 DAG.getConstant(1, MVT::i32));
3757
3758 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3759 // captures the result into a carry flag.
3760 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3761 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3762
3763 // The low part is an ARMISD::RRX operand, which shifts the carry in.
3764 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3765
3766 // Merge the pieces into a single i64 value.
3767 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3768 }
3769
LowerVSETCC(SDValue Op,SelectionDAG & DAG)3770 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3771 SDValue TmpOp0, TmpOp1;
3772 bool Invert = false;
3773 bool Swap = false;
3774 unsigned Opc = 0;
3775
3776 SDValue Op0 = Op.getOperand(0);
3777 SDValue Op1 = Op.getOperand(1);
3778 SDValue CC = Op.getOperand(2);
3779 EVT VT = Op.getValueType();
3780 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3781 DebugLoc dl = Op.getDebugLoc();
3782
3783 if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3784 switch (SetCCOpcode) {
3785 default: llvm_unreachable("Illegal FP comparison");
3786 case ISD::SETUNE:
3787 case ISD::SETNE: Invert = true; // Fallthrough
3788 case ISD::SETOEQ:
3789 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
3790 case ISD::SETOLT:
3791 case ISD::SETLT: Swap = true; // Fallthrough
3792 case ISD::SETOGT:
3793 case ISD::SETGT: Opc = ARMISD::VCGT; break;
3794 case ISD::SETOLE:
3795 case ISD::SETLE: Swap = true; // Fallthrough
3796 case ISD::SETOGE:
3797 case ISD::SETGE: Opc = ARMISD::VCGE; break;
3798 case ISD::SETUGE: Swap = true; // Fallthrough
3799 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3800 case ISD::SETUGT: Swap = true; // Fallthrough
3801 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3802 case ISD::SETUEQ: Invert = true; // Fallthrough
3803 case ISD::SETONE:
3804 // Expand this to (OLT | OGT).
3805 TmpOp0 = Op0;
3806 TmpOp1 = Op1;
3807 Opc = ISD::OR;
3808 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3809 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3810 break;
3811 case ISD::SETUO: Invert = true; // Fallthrough
3812 case ISD::SETO:
3813 // Expand this to (OLT | OGE).
3814 TmpOp0 = Op0;
3815 TmpOp1 = Op1;
3816 Opc = ISD::OR;
3817 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3818 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3819 break;
3820 }
3821 } else {
3822 // Integer comparisons.
3823 switch (SetCCOpcode) {
3824 default: llvm_unreachable("Illegal integer comparison");
3825 case ISD::SETNE: Invert = true;
3826 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
3827 case ISD::SETLT: Swap = true;
3828 case ISD::SETGT: Opc = ARMISD::VCGT; break;
3829 case ISD::SETLE: Swap = true;
3830 case ISD::SETGE: Opc = ARMISD::VCGE; break;
3831 case ISD::SETULT: Swap = true;
3832 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3833 case ISD::SETULE: Swap = true;
3834 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3835 }
3836
3837 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3838 if (Opc == ARMISD::VCEQ) {
3839
3840 SDValue AndOp;
3841 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3842 AndOp = Op0;
3843 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3844 AndOp = Op1;
3845
3846 // Ignore bitconvert.
3847 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3848 AndOp = AndOp.getOperand(0);
3849
3850 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3851 Opc = ARMISD::VTST;
3852 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3853 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3854 Invert = !Invert;
3855 }
3856 }
3857 }
3858
3859 if (Swap)
3860 std::swap(Op0, Op1);
3861
3862 // If one of the operands is a constant vector zero, attempt to fold the
3863 // comparison to a specialized compare-against-zero form.
3864 SDValue SingleOp;
3865 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3866 SingleOp = Op0;
3867 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3868 if (Opc == ARMISD::VCGE)
3869 Opc = ARMISD::VCLEZ;
3870 else if (Opc == ARMISD::VCGT)
3871 Opc = ARMISD::VCLTZ;
3872 SingleOp = Op1;
3873 }
3874
3875 SDValue Result;
3876 if (SingleOp.getNode()) {
3877 switch (Opc) {
3878 case ARMISD::VCEQ:
3879 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3880 case ARMISD::VCGE:
3881 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3882 case ARMISD::VCLEZ:
3883 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3884 case ARMISD::VCGT:
3885 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3886 case ARMISD::VCLTZ:
3887 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3888 default:
3889 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3890 }
3891 } else {
3892 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3893 }
3894
3895 if (Invert)
3896 Result = DAG.getNOT(dl, Result, VT);
3897
3898 return Result;
3899 }
3900
3901 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
3902 /// valid vector constant for a NEON instruction with a "modified immediate"
3903 /// operand (e.g., VMOV). If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,EVT & VT,bool is128Bits,NEONModImmType type)3904 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3905 unsigned SplatBitSize, SelectionDAG &DAG,
3906 EVT &VT, bool is128Bits, NEONModImmType type) {
3907 unsigned OpCmode, Imm;
3908
3909 // SplatBitSize is set to the smallest size that splats the vector, so a
3910 // zero vector will always have SplatBitSize == 8. However, NEON modified
3911 // immediate instructions others than VMOV do not support the 8-bit encoding
3912 // of a zero vector, and the default encoding of zero is supposed to be the
3913 // 32-bit version.
3914 if (SplatBits == 0)
3915 SplatBitSize = 32;
3916
3917 switch (SplatBitSize) {
3918 case 8:
3919 if (type != VMOVModImm)
3920 return SDValue();
3921 // Any 1-byte value is OK. Op=0, Cmode=1110.
3922 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3923 OpCmode = 0xe;
3924 Imm = SplatBits;
3925 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3926 break;
3927
3928 case 16:
3929 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3930 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3931 if ((SplatBits & ~0xff) == 0) {
3932 // Value = 0x00nn: Op=x, Cmode=100x.
3933 OpCmode = 0x8;
3934 Imm = SplatBits;
3935 break;
3936 }
3937 if ((SplatBits & ~0xff00) == 0) {
3938 // Value = 0xnn00: Op=x, Cmode=101x.
3939 OpCmode = 0xa;
3940 Imm = SplatBits >> 8;
3941 break;
3942 }
3943 return SDValue();
3944
3945 case 32:
3946 // NEON's 32-bit VMOV supports splat values where:
3947 // * only one byte is nonzero, or
3948 // * the least significant byte is 0xff and the second byte is nonzero, or
3949 // * the least significant 2 bytes are 0xff and the third is nonzero.
3950 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3951 if ((SplatBits & ~0xff) == 0) {
3952 // Value = 0x000000nn: Op=x, Cmode=000x.
3953 OpCmode = 0;
3954 Imm = SplatBits;
3955 break;
3956 }
3957 if ((SplatBits & ~0xff00) == 0) {
3958 // Value = 0x0000nn00: Op=x, Cmode=001x.
3959 OpCmode = 0x2;
3960 Imm = SplatBits >> 8;
3961 break;
3962 }
3963 if ((SplatBits & ~0xff0000) == 0) {
3964 // Value = 0x00nn0000: Op=x, Cmode=010x.
3965 OpCmode = 0x4;
3966 Imm = SplatBits >> 16;
3967 break;
3968 }
3969 if ((SplatBits & ~0xff000000) == 0) {
3970 // Value = 0xnn000000: Op=x, Cmode=011x.
3971 OpCmode = 0x6;
3972 Imm = SplatBits >> 24;
3973 break;
3974 }
3975
3976 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3977 if (type == OtherModImm) return SDValue();
3978
3979 if ((SplatBits & ~0xffff) == 0 &&
3980 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3981 // Value = 0x0000nnff: Op=x, Cmode=1100.
3982 OpCmode = 0xc;
3983 Imm = SplatBits >> 8;
3984 SplatBits |= 0xff;
3985 break;
3986 }
3987
3988 if ((SplatBits & ~0xffffff) == 0 &&
3989 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3990 // Value = 0x00nnffff: Op=x, Cmode=1101.
3991 OpCmode = 0xd;
3992 Imm = SplatBits >> 16;
3993 SplatBits |= 0xffff;
3994 break;
3995 }
3996
3997 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3998 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3999 // VMOV.I32. A (very) minor optimization would be to replicate the value
4000 // and fall through here to test for a valid 64-bit splat. But, then the
4001 // caller would also need to check and handle the change in size.
4002 return SDValue();
4003
4004 case 64: {
4005 if (type != VMOVModImm)
4006 return SDValue();
4007 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4008 uint64_t BitMask = 0xff;
4009 uint64_t Val = 0;
4010 unsigned ImmMask = 1;
4011 Imm = 0;
4012 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4013 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4014 Val |= BitMask;
4015 Imm |= ImmMask;
4016 } else if ((SplatBits & BitMask) != 0) {
4017 return SDValue();
4018 }
4019 BitMask <<= 8;
4020 ImmMask <<= 1;
4021 }
4022 // Op=1, Cmode=1110.
4023 OpCmode = 0x1e;
4024 SplatBits = Val;
4025 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4026 break;
4027 }
4028
4029 default:
4030 llvm_unreachable("unexpected size for isNEONModifiedImm");
4031 }
4032
4033 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4034 return DAG.getTargetConstant(EncodedVal, MVT::i32);
4035 }
4036
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const4037 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4038 const ARMSubtarget *ST) const {
4039 if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
4040 return SDValue();
4041
4042 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4043 assert(Op.getValueType() == MVT::f32 &&
4044 "ConstantFP custom lowering should only occur for f32.");
4045
4046 // Try splatting with a VMOV.f32...
4047 APFloat FPVal = CFP->getValueAPF();
4048 int ImmVal = ARM_AM::getFP32Imm(FPVal);
4049 if (ImmVal != -1) {
4050 DebugLoc DL = Op.getDebugLoc();
4051 SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4052 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4053 NewVal);
4054 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4055 DAG.getConstant(0, MVT::i32));
4056 }
4057
4058 // If that fails, try a VMOV.i32
4059 EVT VMovVT;
4060 unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
4061 SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
4062 VMOVModImm);
4063 if (NewVal != SDValue()) {
4064 DebugLoc DL = Op.getDebugLoc();
4065 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4066 NewVal);
4067 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4068 VecConstant);
4069 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4070 DAG.getConstant(0, MVT::i32));
4071 }
4072
4073 // Finally, try a VMVN.i32
4074 NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
4075 VMVNModImm);
4076 if (NewVal != SDValue()) {
4077 DebugLoc DL = Op.getDebugLoc();
4078 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4079 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4080 VecConstant);
4081 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4082 DAG.getConstant(0, MVT::i32));
4083 }
4084
4085 return SDValue();
4086 }
4087
4088 // check if an VEXT instruction can handle the shuffle mask when the
4089 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)4090 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4091 unsigned NumElts = VT.getVectorNumElements();
4092
4093 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4094 if (M[0] < 0)
4095 return false;
4096
4097 Imm = M[0];
4098
4099 // If this is a VEXT shuffle, the immediate value is the index of the first
4100 // element. The other shuffle indices must be the successive elements after
4101 // the first one.
4102 unsigned ExpectedElt = Imm;
4103 for (unsigned i = 1; i < NumElts; ++i) {
4104 // Increment the expected index. If it wraps around, just follow it
4105 // back to index zero and keep going.
4106 ++ExpectedElt;
4107 if (ExpectedElt == NumElts)
4108 ExpectedElt = 0;
4109
4110 if (M[i] < 0) continue; // ignore UNDEF indices
4111 if (ExpectedElt != static_cast<unsigned>(M[i]))
4112 return false;
4113 }
4114
4115 return true;
4116 }
4117
4118
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)4119 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4120 bool &ReverseVEXT, unsigned &Imm) {
4121 unsigned NumElts = VT.getVectorNumElements();
4122 ReverseVEXT = false;
4123
4124 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4125 if (M[0] < 0)
4126 return false;
4127
4128 Imm = M[0];
4129
4130 // If this is a VEXT shuffle, the immediate value is the index of the first
4131 // element. The other shuffle indices must be the successive elements after
4132 // the first one.
4133 unsigned ExpectedElt = Imm;
4134 for (unsigned i = 1; i < NumElts; ++i) {
4135 // Increment the expected index. If it wraps around, it may still be
4136 // a VEXT but the source vectors must be swapped.
4137 ExpectedElt += 1;
4138 if (ExpectedElt == NumElts * 2) {
4139 ExpectedElt = 0;
4140 ReverseVEXT = true;
4141 }
4142
4143 if (M[i] < 0) continue; // ignore UNDEF indices
4144 if (ExpectedElt != static_cast<unsigned>(M[i]))
4145 return false;
4146 }
4147
4148 // Adjust the index value if the source operands will be swapped.
4149 if (ReverseVEXT)
4150 Imm -= NumElts;
4151
4152 return true;
4153 }
4154
4155 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
4156 /// instruction with the specified blocksize. (The order of the elements
4157 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)4158 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4159 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4160 "Only possible block sizes for VREV are: 16, 32, 64");
4161
4162 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4163 if (EltSz == 64)
4164 return false;
4165
4166 unsigned NumElts = VT.getVectorNumElements();
4167 unsigned BlockElts = M[0] + 1;
4168 // If the first shuffle index is UNDEF, be optimistic.
4169 if (M[0] < 0)
4170 BlockElts = BlockSize / EltSz;
4171
4172 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4173 return false;
4174
4175 for (unsigned i = 0; i < NumElts; ++i) {
4176 if (M[i] < 0) continue; // ignore UNDEF indices
4177 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4178 return false;
4179 }
4180
4181 return true;
4182 }
4183
isVTBLMask(ArrayRef<int> M,EVT VT)4184 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4185 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4186 // range, then 0 is placed into the resulting vector. So pretty much any mask
4187 // of 8 elements can work here.
4188 return VT == MVT::v8i8 && M.size() == 8;
4189 }
4190
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4191 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4192 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4193 if (EltSz == 64)
4194 return false;
4195
4196 unsigned NumElts = VT.getVectorNumElements();
4197 WhichResult = (M[0] == 0 ? 0 : 1);
4198 for (unsigned i = 0; i < NumElts; i += 2) {
4199 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4200 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4201 return false;
4202 }
4203 return true;
4204 }
4205
4206 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4207 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4208 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4209 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4210 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4211 if (EltSz == 64)
4212 return false;
4213
4214 unsigned NumElts = VT.getVectorNumElements();
4215 WhichResult = (M[0] == 0 ? 0 : 1);
4216 for (unsigned i = 0; i < NumElts; i += 2) {
4217 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4218 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4219 return false;
4220 }
4221 return true;
4222 }
4223
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4224 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4225 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4226 if (EltSz == 64)
4227 return false;
4228
4229 unsigned NumElts = VT.getVectorNumElements();
4230 WhichResult = (M[0] == 0 ? 0 : 1);
4231 for (unsigned i = 0; i != NumElts; ++i) {
4232 if (M[i] < 0) continue; // ignore UNDEF indices
4233 if ((unsigned) M[i] != 2 * i + WhichResult)
4234 return false;
4235 }
4236
4237 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4238 if (VT.is64BitVector() && EltSz == 32)
4239 return false;
4240
4241 return true;
4242 }
4243
4244 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4245 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4246 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4247 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4248 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4249 if (EltSz == 64)
4250 return false;
4251
4252 unsigned Half = VT.getVectorNumElements() / 2;
4253 WhichResult = (M[0] == 0 ? 0 : 1);
4254 for (unsigned j = 0; j != 2; ++j) {
4255 unsigned Idx = WhichResult;
4256 for (unsigned i = 0; i != Half; ++i) {
4257 int MIdx = M[i + j * Half];
4258 if (MIdx >= 0 && (unsigned) MIdx != Idx)
4259 return false;
4260 Idx += 2;
4261 }
4262 }
4263
4264 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4265 if (VT.is64BitVector() && EltSz == 32)
4266 return false;
4267
4268 return true;
4269 }
4270
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4271 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4272 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4273 if (EltSz == 64)
4274 return false;
4275
4276 unsigned NumElts = VT.getVectorNumElements();
4277 WhichResult = (M[0] == 0 ? 0 : 1);
4278 unsigned Idx = WhichResult * NumElts / 2;
4279 for (unsigned i = 0; i != NumElts; i += 2) {
4280 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4281 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4282 return false;
4283 Idx += 1;
4284 }
4285
4286 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4287 if (VT.is64BitVector() && EltSz == 32)
4288 return false;
4289
4290 return true;
4291 }
4292
4293 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4294 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4295 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4296 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4297 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4298 if (EltSz == 64)
4299 return false;
4300
4301 unsigned NumElts = VT.getVectorNumElements();
4302 WhichResult = (M[0] == 0 ? 0 : 1);
4303 unsigned Idx = WhichResult * NumElts / 2;
4304 for (unsigned i = 0; i != NumElts; i += 2) {
4305 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4306 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4307 return false;
4308 Idx += 1;
4309 }
4310
4311 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4312 if (VT.is64BitVector() && EltSz == 32)
4313 return false;
4314
4315 return true;
4316 }
4317
4318 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)4319 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
4320 unsigned NumElts = VT.getVectorNumElements();
4321 // Make sure the mask has the right size.
4322 if (NumElts != M.size())
4323 return false;
4324
4325 // Look for <15, ..., 3, -1, 1, 0>.
4326 for (unsigned i = 0; i != NumElts; ++i)
4327 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
4328 return false;
4329
4330 return true;
4331 }
4332
4333 // If N is an integer constant that can be moved into a register in one
4334 // instruction, return an SDValue of such a constant (will become a MOV
4335 // instruction). Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,DebugLoc dl)4336 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4337 const ARMSubtarget *ST, DebugLoc dl) {
4338 uint64_t Val;
4339 if (!isa<ConstantSDNode>(N))
4340 return SDValue();
4341 Val = cast<ConstantSDNode>(N)->getZExtValue();
4342
4343 if (ST->isThumb1Only()) {
4344 if (Val <= 255 || ~Val <= 255)
4345 return DAG.getConstant(Val, MVT::i32);
4346 } else {
4347 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4348 return DAG.getConstant(Val, MVT::i32);
4349 }
4350 return SDValue();
4351 }
4352
4353 // If this is a case we can't handle, return null and let the default
4354 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const4355 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4356 const ARMSubtarget *ST) const {
4357 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4358 DebugLoc dl = Op.getDebugLoc();
4359 EVT VT = Op.getValueType();
4360
4361 APInt SplatBits, SplatUndef;
4362 unsigned SplatBitSize;
4363 bool HasAnyUndefs;
4364 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4365 if (SplatBitSize <= 64) {
4366 // Check if an immediate VMOV works.
4367 EVT VmovVT;
4368 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4369 SplatUndef.getZExtValue(), SplatBitSize,
4370 DAG, VmovVT, VT.is128BitVector(),
4371 VMOVModImm);
4372 if (Val.getNode()) {
4373 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4374 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4375 }
4376
4377 // Try an immediate VMVN.
4378 uint64_t NegatedImm = (~SplatBits).getZExtValue();
4379 Val = isNEONModifiedImm(NegatedImm,
4380 SplatUndef.getZExtValue(), SplatBitSize,
4381 DAG, VmovVT, VT.is128BitVector(),
4382 VMVNModImm);
4383 if (Val.getNode()) {
4384 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4385 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4386 }
4387
4388 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4389 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4390 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4391 if (ImmVal != -1) {
4392 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4393 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4394 }
4395 }
4396 }
4397 }
4398
4399 // Scan through the operands to see if only one value is used.
4400 //
4401 // As an optimisation, even if more than one value is used it may be more
4402 // profitable to splat with one value then change some lanes.
4403 //
4404 // Heuristically we decide to do this if the vector has a "dominant" value,
4405 // defined as splatted to more than half of the lanes.
4406 unsigned NumElts = VT.getVectorNumElements();
4407 bool isOnlyLowElement = true;
4408 bool usesOnlyOneValue = true;
4409 bool hasDominantValue = false;
4410 bool isConstant = true;
4411
4412 // Map of the number of times a particular SDValue appears in the
4413 // element list.
4414 DenseMap<SDValue, unsigned> ValueCounts;
4415 SDValue Value;
4416 for (unsigned i = 0; i < NumElts; ++i) {
4417 SDValue V = Op.getOperand(i);
4418 if (V.getOpcode() == ISD::UNDEF)
4419 continue;
4420 if (i > 0)
4421 isOnlyLowElement = false;
4422 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4423 isConstant = false;
4424
4425 ValueCounts.insert(std::make_pair(V, 0));
4426 unsigned &Count = ValueCounts[V];
4427
4428 // Is this value dominant? (takes up more than half of the lanes)
4429 if (++Count > (NumElts / 2)) {
4430 hasDominantValue = true;
4431 Value = V;
4432 }
4433 }
4434 if (ValueCounts.size() != 1)
4435 usesOnlyOneValue = false;
4436 if (!Value.getNode() && ValueCounts.size() > 0)
4437 Value = ValueCounts.begin()->first;
4438
4439 if (ValueCounts.size() == 0)
4440 return DAG.getUNDEF(VT);
4441
4442 if (isOnlyLowElement)
4443 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4444
4445 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4446
4447 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
4448 // i32 and try again.
4449 if (hasDominantValue && EltSize <= 32) {
4450 if (!isConstant) {
4451 SDValue N;
4452
4453 // If we are VDUPing a value that comes directly from a vector, that will
4454 // cause an unnecessary move to and from a GPR, where instead we could
4455 // just use VDUPLANE. We can only do this if the lane being extracted
4456 // is at a constant index, as the VDUP from lane instructions only have
4457 // constant-index forms.
4458 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4459 isa<ConstantSDNode>(Value->getOperand(1))) {
4460 // We need to create a new undef vector to use for the VDUPLANE if the
4461 // size of the vector from which we get the value is different than the
4462 // size of the vector that we need to create. We will insert the element
4463 // such that the register coalescer will remove unnecessary copies.
4464 if (VT != Value->getOperand(0).getValueType()) {
4465 ConstantSDNode *constIndex;
4466 constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4467 assert(constIndex && "The index is not a constant!");
4468 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4469 VT.getVectorNumElements();
4470 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4471 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4472 Value, DAG.getConstant(index, MVT::i32)),
4473 DAG.getConstant(index, MVT::i32));
4474 } else
4475 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4476 Value->getOperand(0), Value->getOperand(1));
4477 } else
4478 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4479
4480 if (!usesOnlyOneValue) {
4481 // The dominant value was splatted as 'N', but we now have to insert
4482 // all differing elements.
4483 for (unsigned I = 0; I < NumElts; ++I) {
4484 if (Op.getOperand(I) == Value)
4485 continue;
4486 SmallVector<SDValue, 3> Ops;
4487 Ops.push_back(N);
4488 Ops.push_back(Op.getOperand(I));
4489 Ops.push_back(DAG.getConstant(I, MVT::i32));
4490 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4491 }
4492 }
4493 return N;
4494 }
4495 if (VT.getVectorElementType().isFloatingPoint()) {
4496 SmallVector<SDValue, 8> Ops;
4497 for (unsigned i = 0; i < NumElts; ++i)
4498 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4499 Op.getOperand(i)));
4500 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4501 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4502 Val = LowerBUILD_VECTOR(Val, DAG, ST);
4503 if (Val.getNode())
4504 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4505 }
4506 if (usesOnlyOneValue) {
4507 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4508 if (isConstant && Val.getNode())
4509 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4510 }
4511 }
4512
4513 // If all elements are constants and the case above didn't get hit, fall back
4514 // to the default expansion, which will generate a load from the constant
4515 // pool.
4516 if (isConstant)
4517 return SDValue();
4518
4519 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4520 if (NumElts >= 4) {
4521 SDValue shuffle = ReconstructShuffle(Op, DAG);
4522 if (shuffle != SDValue())
4523 return shuffle;
4524 }
4525
4526 // Vectors with 32- or 64-bit elements can be built by directly assigning
4527 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
4528 // will be legalized.
4529 if (EltSize >= 32) {
4530 // Do the expansion with floating-point types, since that is what the VFP
4531 // registers are defined to use, and since i64 is not legal.
4532 EVT EltVT = EVT::getFloatingPointVT(EltSize);
4533 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4534 SmallVector<SDValue, 8> Ops;
4535 for (unsigned i = 0; i < NumElts; ++i)
4536 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4537 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4538 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4539 }
4540
4541 return SDValue();
4542 }
4543
4544 // Gather data to see if the operation can be modelled as a
4545 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const4546 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4547 SelectionDAG &DAG) const {
4548 DebugLoc dl = Op.getDebugLoc();
4549 EVT VT = Op.getValueType();
4550 unsigned NumElts = VT.getVectorNumElements();
4551
4552 SmallVector<SDValue, 2> SourceVecs;
4553 SmallVector<unsigned, 2> MinElts;
4554 SmallVector<unsigned, 2> MaxElts;
4555
4556 for (unsigned i = 0; i < NumElts; ++i) {
4557 SDValue V = Op.getOperand(i);
4558 if (V.getOpcode() == ISD::UNDEF)
4559 continue;
4560 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4561 // A shuffle can only come from building a vector from various
4562 // elements of other vectors.
4563 return SDValue();
4564 } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4565 VT.getVectorElementType()) {
4566 // This code doesn't know how to handle shuffles where the vector
4567 // element types do not match (this happens because type legalization
4568 // promotes the return type of EXTRACT_VECTOR_ELT).
4569 // FIXME: It might be appropriate to extend this code to handle
4570 // mismatched types.
4571 return SDValue();
4572 }
4573
4574 // Record this extraction against the appropriate vector if possible...
4575 SDValue SourceVec = V.getOperand(0);
4576 // If the element number isn't a constant, we can't effectively
4577 // analyze what's going on.
4578 if (!isa<ConstantSDNode>(V.getOperand(1)))
4579 return SDValue();
4580 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4581 bool FoundSource = false;
4582 for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4583 if (SourceVecs[j] == SourceVec) {
4584 if (MinElts[j] > EltNo)
4585 MinElts[j] = EltNo;
4586 if (MaxElts[j] < EltNo)
4587 MaxElts[j] = EltNo;
4588 FoundSource = true;
4589 break;
4590 }
4591 }
4592
4593 // Or record a new source if not...
4594 if (!FoundSource) {
4595 SourceVecs.push_back(SourceVec);
4596 MinElts.push_back(EltNo);
4597 MaxElts.push_back(EltNo);
4598 }
4599 }
4600
4601 // Currently only do something sane when at most two source vectors
4602 // involved.
4603 if (SourceVecs.size() > 2)
4604 return SDValue();
4605
4606 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4607 int VEXTOffsets[2] = {0, 0};
4608
4609 // This loop extracts the usage patterns of the source vectors
4610 // and prepares appropriate SDValues for a shuffle if possible.
4611 for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4612 if (SourceVecs[i].getValueType() == VT) {
4613 // No VEXT necessary
4614 ShuffleSrcs[i] = SourceVecs[i];
4615 VEXTOffsets[i] = 0;
4616 continue;
4617 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4618 // It probably isn't worth padding out a smaller vector just to
4619 // break it down again in a shuffle.
4620 return SDValue();
4621 }
4622
4623 // Since only 64-bit and 128-bit vectors are legal on ARM and
4624 // we've eliminated the other cases...
4625 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4626 "unexpected vector sizes in ReconstructShuffle");
4627
4628 if (MaxElts[i] - MinElts[i] >= NumElts) {
4629 // Span too large for a VEXT to cope
4630 return SDValue();
4631 }
4632
4633 if (MinElts[i] >= NumElts) {
4634 // The extraction can just take the second half
4635 VEXTOffsets[i] = NumElts;
4636 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4637 SourceVecs[i],
4638 DAG.getIntPtrConstant(NumElts));
4639 } else if (MaxElts[i] < NumElts) {
4640 // The extraction can just take the first half
4641 VEXTOffsets[i] = 0;
4642 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4643 SourceVecs[i],
4644 DAG.getIntPtrConstant(0));
4645 } else {
4646 // An actual VEXT is needed
4647 VEXTOffsets[i] = MinElts[i];
4648 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4649 SourceVecs[i],
4650 DAG.getIntPtrConstant(0));
4651 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4652 SourceVecs[i],
4653 DAG.getIntPtrConstant(NumElts));
4654 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4655 DAG.getConstant(VEXTOffsets[i], MVT::i32));
4656 }
4657 }
4658
4659 SmallVector<int, 8> Mask;
4660
4661 for (unsigned i = 0; i < NumElts; ++i) {
4662 SDValue Entry = Op.getOperand(i);
4663 if (Entry.getOpcode() == ISD::UNDEF) {
4664 Mask.push_back(-1);
4665 continue;
4666 }
4667
4668 SDValue ExtractVec = Entry.getOperand(0);
4669 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4670 .getOperand(1))->getSExtValue();
4671 if (ExtractVec == SourceVecs[0]) {
4672 Mask.push_back(ExtractElt - VEXTOffsets[0]);
4673 } else {
4674 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4675 }
4676 }
4677
4678 // Final check before we try to produce nonsense...
4679 if (isShuffleMaskLegal(Mask, VT))
4680 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4681 &Mask[0]);
4682
4683 return SDValue();
4684 }
4685
4686 /// isShuffleMaskLegal - Targets can use this to indicate that they only
4687 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4688 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4689 /// are assumed to be legal.
4690 bool
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const4691 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4692 EVT VT) const {
4693 if (VT.getVectorNumElements() == 4 &&
4694 (VT.is128BitVector() || VT.is64BitVector())) {
4695 unsigned PFIndexes[4];
4696 for (unsigned i = 0; i != 4; ++i) {
4697 if (M[i] < 0)
4698 PFIndexes[i] = 8;
4699 else
4700 PFIndexes[i] = M[i];
4701 }
4702
4703 // Compute the index in the perfect shuffle table.
4704 unsigned PFTableIndex =
4705 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4706 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4707 unsigned Cost = (PFEntry >> 30);
4708
4709 if (Cost <= 4)
4710 return true;
4711 }
4712
4713 bool ReverseVEXT;
4714 unsigned Imm, WhichResult;
4715
4716 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4717 return (EltSize >= 32 ||
4718 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4719 isVREVMask(M, VT, 64) ||
4720 isVREVMask(M, VT, 32) ||
4721 isVREVMask(M, VT, 16) ||
4722 isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4723 isVTBLMask(M, VT) ||
4724 isVTRNMask(M, VT, WhichResult) ||
4725 isVUZPMask(M, VT, WhichResult) ||
4726 isVZIPMask(M, VT, WhichResult) ||
4727 isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4728 isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4729 isVZIP_v_undef_Mask(M, VT, WhichResult) ||
4730 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
4731 }
4732
4733 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4734 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,DebugLoc dl)4735 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4736 SDValue RHS, SelectionDAG &DAG,
4737 DebugLoc dl) {
4738 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4739 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4740 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
4741
4742 enum {
4743 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4744 OP_VREV,
4745 OP_VDUP0,
4746 OP_VDUP1,
4747 OP_VDUP2,
4748 OP_VDUP3,
4749 OP_VEXT1,
4750 OP_VEXT2,
4751 OP_VEXT3,
4752 OP_VUZPL, // VUZP, left result
4753 OP_VUZPR, // VUZP, right result
4754 OP_VZIPL, // VZIP, left result
4755 OP_VZIPR, // VZIP, right result
4756 OP_VTRNL, // VTRN, left result
4757 OP_VTRNR // VTRN, right result
4758 };
4759
4760 if (OpNum == OP_COPY) {
4761 if (LHSID == (1*9+2)*9+3) return LHS;
4762 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4763 return RHS;
4764 }
4765
4766 SDValue OpLHS, OpRHS;
4767 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4768 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4769 EVT VT = OpLHS.getValueType();
4770
4771 switch (OpNum) {
4772 default: llvm_unreachable("Unknown shuffle opcode!");
4773 case OP_VREV:
4774 // VREV divides the vector in half and swaps within the half.
4775 if (VT.getVectorElementType() == MVT::i32 ||
4776 VT.getVectorElementType() == MVT::f32)
4777 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4778 // vrev <4 x i16> -> VREV32
4779 if (VT.getVectorElementType() == MVT::i16)
4780 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4781 // vrev <4 x i8> -> VREV16
4782 assert(VT.getVectorElementType() == MVT::i8);
4783 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4784 case OP_VDUP0:
4785 case OP_VDUP1:
4786 case OP_VDUP2:
4787 case OP_VDUP3:
4788 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4789 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4790 case OP_VEXT1:
4791 case OP_VEXT2:
4792 case OP_VEXT3:
4793 return DAG.getNode(ARMISD::VEXT, dl, VT,
4794 OpLHS, OpRHS,
4795 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4796 case OP_VUZPL:
4797 case OP_VUZPR:
4798 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4799 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4800 case OP_VZIPL:
4801 case OP_VZIPR:
4802 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4803 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4804 case OP_VTRNL:
4805 case OP_VTRNR:
4806 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4807 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4808 }
4809 }
4810
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)4811 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4812 ArrayRef<int> ShuffleMask,
4813 SelectionDAG &DAG) {
4814 // Check to see if we can use the VTBL instruction.
4815 SDValue V1 = Op.getOperand(0);
4816 SDValue V2 = Op.getOperand(1);
4817 DebugLoc DL = Op.getDebugLoc();
4818
4819 SmallVector<SDValue, 8> VTBLMask;
4820 for (ArrayRef<int>::iterator
4821 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4822 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4823
4824 if (V2.getNode()->getOpcode() == ISD::UNDEF)
4825 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4826 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4827 &VTBLMask[0], 8));
4828
4829 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4830 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4831 &VTBLMask[0], 8));
4832 }
4833
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)4834 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
4835 SelectionDAG &DAG) {
4836 DebugLoc DL = Op.getDebugLoc();
4837 SDValue OpLHS = Op.getOperand(0);
4838 EVT VT = OpLHS.getValueType();
4839
4840 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
4841 "Expect an v8i16/v16i8 type");
4842 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
4843 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
4844 // extract the first 8 bytes into the top double word and the last 8 bytes
4845 // into the bottom double word. The v8i16 case is similar.
4846 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
4847 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
4848 DAG.getConstant(ExtractNum, MVT::i32));
4849 }
4850
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)4851 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4852 SDValue V1 = Op.getOperand(0);
4853 SDValue V2 = Op.getOperand(1);
4854 DebugLoc dl = Op.getDebugLoc();
4855 EVT VT = Op.getValueType();
4856 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4857
4858 // Convert shuffles that are directly supported on NEON to target-specific
4859 // DAG nodes, instead of keeping them as shuffles and matching them again
4860 // during code selection. This is more efficient and avoids the possibility
4861 // of inconsistencies between legalization and selection.
4862 // FIXME: floating-point vectors should be canonicalized to integer vectors
4863 // of the same time so that they get CSEd properly.
4864 ArrayRef<int> ShuffleMask = SVN->getMask();
4865
4866 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4867 if (EltSize <= 32) {
4868 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4869 int Lane = SVN->getSplatIndex();
4870 // If this is undef splat, generate it via "just" vdup, if possible.
4871 if (Lane == -1) Lane = 0;
4872
4873 // Test if V1 is a SCALAR_TO_VECTOR.
4874 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4875 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4876 }
4877 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4878 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4879 // reaches it).
4880 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4881 !isa<ConstantSDNode>(V1.getOperand(0))) {
4882 bool IsScalarToVector = true;
4883 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4884 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4885 IsScalarToVector = false;
4886 break;
4887 }
4888 if (IsScalarToVector)
4889 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4890 }
4891 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4892 DAG.getConstant(Lane, MVT::i32));
4893 }
4894
4895 bool ReverseVEXT;
4896 unsigned Imm;
4897 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4898 if (ReverseVEXT)
4899 std::swap(V1, V2);
4900 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4901 DAG.getConstant(Imm, MVT::i32));
4902 }
4903
4904 if (isVREVMask(ShuffleMask, VT, 64))
4905 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4906 if (isVREVMask(ShuffleMask, VT, 32))
4907 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4908 if (isVREVMask(ShuffleMask, VT, 16))
4909 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4910
4911 if (V2->getOpcode() == ISD::UNDEF &&
4912 isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
4913 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
4914 DAG.getConstant(Imm, MVT::i32));
4915 }
4916
4917 // Check for Neon shuffles that modify both input vectors in place.
4918 // If both results are used, i.e., if there are two shuffles with the same
4919 // source operands and with masks corresponding to both results of one of
4920 // these operations, DAG memoization will ensure that a single node is
4921 // used for both shuffles.
4922 unsigned WhichResult;
4923 if (isVTRNMask(ShuffleMask, VT, WhichResult))
4924 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4925 V1, V2).getValue(WhichResult);
4926 if (isVUZPMask(ShuffleMask, VT, WhichResult))
4927 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4928 V1, V2).getValue(WhichResult);
4929 if (isVZIPMask(ShuffleMask, VT, WhichResult))
4930 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4931 V1, V2).getValue(WhichResult);
4932
4933 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4934 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4935 V1, V1).getValue(WhichResult);
4936 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4937 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4938 V1, V1).getValue(WhichResult);
4939 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4940 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4941 V1, V1).getValue(WhichResult);
4942 }
4943
4944 // If the shuffle is not directly supported and it has 4 elements, use
4945 // the PerfectShuffle-generated table to synthesize it from other shuffles.
4946 unsigned NumElts = VT.getVectorNumElements();
4947 if (NumElts == 4) {
4948 unsigned PFIndexes[4];
4949 for (unsigned i = 0; i != 4; ++i) {
4950 if (ShuffleMask[i] < 0)
4951 PFIndexes[i] = 8;
4952 else
4953 PFIndexes[i] = ShuffleMask[i];
4954 }
4955
4956 // Compute the index in the perfect shuffle table.
4957 unsigned PFTableIndex =
4958 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4959 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4960 unsigned Cost = (PFEntry >> 30);
4961
4962 if (Cost <= 4)
4963 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4964 }
4965
4966 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4967 if (EltSize >= 32) {
4968 // Do the expansion with floating-point types, since that is what the VFP
4969 // registers are defined to use, and since i64 is not legal.
4970 EVT EltVT = EVT::getFloatingPointVT(EltSize);
4971 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4972 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4973 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4974 SmallVector<SDValue, 8> Ops;
4975 for (unsigned i = 0; i < NumElts; ++i) {
4976 if (ShuffleMask[i] < 0)
4977 Ops.push_back(DAG.getUNDEF(EltVT));
4978 else
4979 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4980 ShuffleMask[i] < (int)NumElts ? V1 : V2,
4981 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4982 MVT::i32)));
4983 }
4984 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4985 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4986 }
4987
4988 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
4989 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
4990
4991 if (VT == MVT::v8i8) {
4992 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4993 if (NewOp.getNode())
4994 return NewOp;
4995 }
4996
4997 return SDValue();
4998 }
4999
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)5000 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5001 // INSERT_VECTOR_ELT is legal only for immediate indexes.
5002 SDValue Lane = Op.getOperand(2);
5003 if (!isa<ConstantSDNode>(Lane))
5004 return SDValue();
5005
5006 return Op;
5007 }
5008
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)5009 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5010 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5011 SDValue Lane = Op.getOperand(1);
5012 if (!isa<ConstantSDNode>(Lane))
5013 return SDValue();
5014
5015 SDValue Vec = Op.getOperand(0);
5016 if (Op.getValueType() == MVT::i32 &&
5017 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
5018 DebugLoc dl = Op.getDebugLoc();
5019 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5020 }
5021
5022 return Op;
5023 }
5024
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)5025 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5026 // The only time a CONCAT_VECTORS operation can have legal types is when
5027 // two 64-bit vectors are concatenated to a 128-bit vector.
5028 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
5029 "unexpected CONCAT_VECTORS");
5030 DebugLoc dl = Op.getDebugLoc();
5031 SDValue Val = DAG.getUNDEF(MVT::v2f64);
5032 SDValue Op0 = Op.getOperand(0);
5033 SDValue Op1 = Op.getOperand(1);
5034 if (Op0.getOpcode() != ISD::UNDEF)
5035 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5036 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5037 DAG.getIntPtrConstant(0));
5038 if (Op1.getOpcode() != ISD::UNDEF)
5039 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5040 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5041 DAG.getIntPtrConstant(1));
5042 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5043 }
5044
5045 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5046 /// element has been zero/sign-extended, depending on the isSigned parameter,
5047 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)5048 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
5049 bool isSigned) {
5050 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5051 EVT VT = N->getValueType(0);
5052 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5053 SDNode *BVN = N->getOperand(0).getNode();
5054 if (BVN->getValueType(0) != MVT::v4i32 ||
5055 BVN->getOpcode() != ISD::BUILD_VECTOR)
5056 return false;
5057 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5058 unsigned HiElt = 1 - LoElt;
5059 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5060 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5061 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5062 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5063 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5064 return false;
5065 if (isSigned) {
5066 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5067 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5068 return true;
5069 } else {
5070 if (Hi0->isNullValue() && Hi1->isNullValue())
5071 return true;
5072 }
5073 return false;
5074 }
5075
5076 if (N->getOpcode() != ISD::BUILD_VECTOR)
5077 return false;
5078
5079 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5080 SDNode *Elt = N->getOperand(i).getNode();
5081 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5082 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5083 unsigned HalfSize = EltSize / 2;
5084 if (isSigned) {
5085 if (!isIntN(HalfSize, C->getSExtValue()))
5086 return false;
5087 } else {
5088 if (!isUIntN(HalfSize, C->getZExtValue()))
5089 return false;
5090 }
5091 continue;
5092 }
5093 return false;
5094 }
5095
5096 return true;
5097 }
5098
5099 /// isSignExtended - Check if a node is a vector value that is sign-extended
5100 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)5101 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5102 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5103 return true;
5104 if (isExtendedBUILD_VECTOR(N, DAG, true))
5105 return true;
5106 return false;
5107 }
5108
5109 /// isZeroExtended - Check if a node is a vector value that is zero-extended
5110 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)5111 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5112 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5113 return true;
5114 if (isExtendedBUILD_VECTOR(N, DAG, false))
5115 return true;
5116 return false;
5117 }
5118
5119 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5120 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5121 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)5122 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5123 const EVT &OrigTy,
5124 const EVT &ExtTy,
5125 unsigned ExtOpcode) {
5126 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5127 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5128 // 64-bits we need to insert a new extension so that it will be 64-bits.
5129 assert(ExtTy.is128BitVector() && "Unexpected extension size");
5130 if (OrigTy.getSizeInBits() >= 64)
5131 return N;
5132
5133 // Must extend size to at least 64 bits to be used as an operand for VMULL.
5134 MVT::SimpleValueType OrigSimpleTy = OrigTy.getSimpleVT().SimpleTy;
5135 EVT NewVT;
5136 switch (OrigSimpleTy) {
5137 default: llvm_unreachable("Unexpected Orig Vector Type");
5138 case MVT::v2i8:
5139 case MVT::v2i16:
5140 NewVT = MVT::v2i32;
5141 break;
5142 case MVT::v4i8:
5143 NewVT = MVT::v4i16;
5144 break;
5145 }
5146 return DAG.getNode(ExtOpcode, N->getDebugLoc(), NewVT, N);
5147 }
5148
5149 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
5150 /// does not do any sign/zero extension. If the original vector is less
5151 /// than 64 bits, an appropriate extension will be added after the load to
5152 /// reach a total size of 64 bits. We have to add the extension separately
5153 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)5154 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5155 SDValue NonExtendingLoad =
5156 DAG.getLoad(LD->getMemoryVT(), LD->getDebugLoc(), LD->getChain(),
5157 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5158 LD->isNonTemporal(), LD->isInvariant(),
5159 LD->getAlignment());
5160 unsigned ExtOp = 0;
5161 switch (LD->getExtensionType()) {
5162 default: llvm_unreachable("Unexpected LoadExtType");
5163 case ISD::EXTLOAD:
5164 case ISD::SEXTLOAD: ExtOp = ISD::SIGN_EXTEND; break;
5165 case ISD::ZEXTLOAD: ExtOp = ISD::ZERO_EXTEND; break;
5166 }
5167 MVT::SimpleValueType MemType = LD->getMemoryVT().getSimpleVT().SimpleTy;
5168 MVT::SimpleValueType ExtType = LD->getValueType(0).getSimpleVT().SimpleTy;
5169 return AddRequiredExtensionForVMULL(NonExtendingLoad, DAG,
5170 MemType, ExtType, ExtOp);
5171 }
5172
5173 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5174 /// extending load, or BUILD_VECTOR with extended elements, return the
5175 /// unextended value. The unextended vector should be 64 bits so that it can
5176 /// be used as an operand to a VMULL instruction. If the original vector size
5177 /// before extension is less than 64 bits we add a an extension to resize
5178 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)5179 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5180 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5181 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5182 N->getOperand(0)->getValueType(0),
5183 N->getValueType(0),
5184 N->getOpcode());
5185
5186 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5187 return SkipLoadExtensionForVMULL(LD, DAG);
5188
5189 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
5190 // have been legalized as a BITCAST from v4i32.
5191 if (N->getOpcode() == ISD::BITCAST) {
5192 SDNode *BVN = N->getOperand(0).getNode();
5193 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5194 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5195 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5196 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
5197 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5198 }
5199 // Construct a new BUILD_VECTOR with elements truncated to half the size.
5200 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5201 EVT VT = N->getValueType(0);
5202 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5203 unsigned NumElts = VT.getVectorNumElements();
5204 MVT TruncVT = MVT::getIntegerVT(EltSize);
5205 SmallVector<SDValue, 8> Ops;
5206 for (unsigned i = 0; i != NumElts; ++i) {
5207 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5208 const APInt &CInt = C->getAPIntValue();
5209 // Element types smaller than 32 bits are not legal, so use i32 elements.
5210 // The values are implicitly truncated so sext vs. zext doesn't matter.
5211 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5212 }
5213 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5214 MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
5215 }
5216
isAddSubSExt(SDNode * N,SelectionDAG & DAG)5217 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5218 unsigned Opcode = N->getOpcode();
5219 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5220 SDNode *N0 = N->getOperand(0).getNode();
5221 SDNode *N1 = N->getOperand(1).getNode();
5222 return N0->hasOneUse() && N1->hasOneUse() &&
5223 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5224 }
5225 return false;
5226 }
5227
isAddSubZExt(SDNode * N,SelectionDAG & DAG)5228 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5229 unsigned Opcode = N->getOpcode();
5230 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5231 SDNode *N0 = N->getOperand(0).getNode();
5232 SDNode *N1 = N->getOperand(1).getNode();
5233 return N0->hasOneUse() && N1->hasOneUse() &&
5234 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5235 }
5236 return false;
5237 }
5238
LowerMUL(SDValue Op,SelectionDAG & DAG)5239 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5240 // Multiplications are only custom-lowered for 128-bit vectors so that
5241 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
5242 EVT VT = Op.getValueType();
5243 assert(VT.is128BitVector() && VT.isInteger() &&
5244 "unexpected type for custom-lowering ISD::MUL");
5245 SDNode *N0 = Op.getOperand(0).getNode();
5246 SDNode *N1 = Op.getOperand(1).getNode();
5247 unsigned NewOpc = 0;
5248 bool isMLA = false;
5249 bool isN0SExt = isSignExtended(N0, DAG);
5250 bool isN1SExt = isSignExtended(N1, DAG);
5251 if (isN0SExt && isN1SExt)
5252 NewOpc = ARMISD::VMULLs;
5253 else {
5254 bool isN0ZExt = isZeroExtended(N0, DAG);
5255 bool isN1ZExt = isZeroExtended(N1, DAG);
5256 if (isN0ZExt && isN1ZExt)
5257 NewOpc = ARMISD::VMULLu;
5258 else if (isN1SExt || isN1ZExt) {
5259 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5260 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5261 if (isN1SExt && isAddSubSExt(N0, DAG)) {
5262 NewOpc = ARMISD::VMULLs;
5263 isMLA = true;
5264 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5265 NewOpc = ARMISD::VMULLu;
5266 isMLA = true;
5267 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5268 std::swap(N0, N1);
5269 NewOpc = ARMISD::VMULLu;
5270 isMLA = true;
5271 }
5272 }
5273
5274 if (!NewOpc) {
5275 if (VT == MVT::v2i64)
5276 // Fall through to expand this. It is not legal.
5277 return SDValue();
5278 else
5279 // Other vector multiplications are legal.
5280 return Op;
5281 }
5282 }
5283
5284 // Legalize to a VMULL instruction.
5285 DebugLoc DL = Op.getDebugLoc();
5286 SDValue Op0;
5287 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5288 if (!isMLA) {
5289 Op0 = SkipExtensionForVMULL(N0, DAG);
5290 assert(Op0.getValueType().is64BitVector() &&
5291 Op1.getValueType().is64BitVector() &&
5292 "unexpected types for extended operands to VMULL");
5293 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5294 }
5295
5296 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5297 // isel lowering to take advantage of no-stall back to back vmul + vmla.
5298 // vmull q0, d4, d6
5299 // vmlal q0, d5, d6
5300 // is faster than
5301 // vaddl q0, d4, d5
5302 // vmovl q1, d6
5303 // vmul q0, q0, q1
5304 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5305 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5306 EVT Op1VT = Op1.getValueType();
5307 return DAG.getNode(N0->getOpcode(), DL, VT,
5308 DAG.getNode(NewOpc, DL, VT,
5309 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5310 DAG.getNode(NewOpc, DL, VT,
5311 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5312 }
5313
5314 static SDValue
LowerSDIV_v4i8(SDValue X,SDValue Y,DebugLoc dl,SelectionDAG & DAG)5315 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
5316 // Convert to float
5317 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5318 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5319 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5320 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5321 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5322 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5323 // Get reciprocal estimate.
5324 // float4 recip = vrecpeq_f32(yf);
5325 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5326 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5327 // Because char has a smaller range than uchar, we can actually get away
5328 // without any newton steps. This requires that we use a weird bias
5329 // of 0xb000, however (again, this has been exhaustively tested).
5330 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5331 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5332 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5333 Y = DAG.getConstant(0xb000, MVT::i32);
5334 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5335 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5336 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5337 // Convert back to short.
5338 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5339 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5340 return X;
5341 }
5342
5343 static SDValue
LowerSDIV_v4i16(SDValue N0,SDValue N1,DebugLoc dl,SelectionDAG & DAG)5344 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
5345 SDValue N2;
5346 // Convert to float.
5347 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5348 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5349 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5350 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5351 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5352 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5353
5354 // Use reciprocal estimate and one refinement step.
5355 // float4 recip = vrecpeq_f32(yf);
5356 // recip *= vrecpsq_f32(yf, recip);
5357 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5358 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5359 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5360 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5361 N1, N2);
5362 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5363 // Because short has a smaller range than ushort, we can actually get away
5364 // with only a single newton step. This requires that we use a weird bias
5365 // of 89, however (again, this has been exhaustively tested).
5366 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5367 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5368 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5369 N1 = DAG.getConstant(0x89, MVT::i32);
5370 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5371 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5372 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5373 // Convert back to integer and return.
5374 // return vmovn_s32(vcvt_s32_f32(result));
5375 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5376 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5377 return N0;
5378 }
5379
LowerSDIV(SDValue Op,SelectionDAG & DAG)5380 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5381 EVT VT = Op.getValueType();
5382 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5383 "unexpected type for custom-lowering ISD::SDIV");
5384
5385 DebugLoc dl = Op.getDebugLoc();
5386 SDValue N0 = Op.getOperand(0);
5387 SDValue N1 = Op.getOperand(1);
5388 SDValue N2, N3;
5389
5390 if (VT == MVT::v8i8) {
5391 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5392 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5393
5394 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5395 DAG.getIntPtrConstant(4));
5396 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5397 DAG.getIntPtrConstant(4));
5398 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5399 DAG.getIntPtrConstant(0));
5400 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5401 DAG.getIntPtrConstant(0));
5402
5403 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5404 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5405
5406 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5407 N0 = LowerCONCAT_VECTORS(N0, DAG);
5408
5409 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5410 return N0;
5411 }
5412 return LowerSDIV_v4i16(N0, N1, dl, DAG);
5413 }
5414
LowerUDIV(SDValue Op,SelectionDAG & DAG)5415 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5416 EVT VT = Op.getValueType();
5417 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5418 "unexpected type for custom-lowering ISD::UDIV");
5419
5420 DebugLoc dl = Op.getDebugLoc();
5421 SDValue N0 = Op.getOperand(0);
5422 SDValue N1 = Op.getOperand(1);
5423 SDValue N2, N3;
5424
5425 if (VT == MVT::v8i8) {
5426 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5427 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5428
5429 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5430 DAG.getIntPtrConstant(4));
5431 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5432 DAG.getIntPtrConstant(4));
5433 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5434 DAG.getIntPtrConstant(0));
5435 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5436 DAG.getIntPtrConstant(0));
5437
5438 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5439 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5440
5441 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5442 N0 = LowerCONCAT_VECTORS(N0, DAG);
5443
5444 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5445 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5446 N0);
5447 return N0;
5448 }
5449
5450 // v4i16 sdiv ... Convert to float.
5451 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5452 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5453 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5454 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5455 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5456 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5457
5458 // Use reciprocal estimate and two refinement steps.
5459 // float4 recip = vrecpeq_f32(yf);
5460 // recip *= vrecpsq_f32(yf, recip);
5461 // recip *= vrecpsq_f32(yf, recip);
5462 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5463 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5464 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5465 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5466 BN1, N2);
5467 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5468 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5469 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5470 BN1, N2);
5471 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5472 // Simply multiplying by the reciprocal estimate can leave us a few ulps
5473 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5474 // and that it will never cause us to return an answer too large).
5475 // float4 result = as_float4(as_int4(xf*recip) + 2);
5476 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5477 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5478 N1 = DAG.getConstant(2, MVT::i32);
5479 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5480 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5481 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5482 // Convert back to integer and return.
5483 // return vmovn_u32(vcvt_s32_f32(result));
5484 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5485 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5486 return N0;
5487 }
5488
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)5489 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5490 EVT VT = Op.getNode()->getValueType(0);
5491 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5492
5493 unsigned Opc;
5494 bool ExtraOp = false;
5495 switch (Op.getOpcode()) {
5496 default: llvm_unreachable("Invalid code");
5497 case ISD::ADDC: Opc = ARMISD::ADDC; break;
5498 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5499 case ISD::SUBC: Opc = ARMISD::SUBC; break;
5500 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5501 }
5502
5503 if (!ExtraOp)
5504 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5505 Op.getOperand(1));
5506 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5507 Op.getOperand(1), Op.getOperand(2));
5508 }
5509
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)5510 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5511 // Monotonic load/store is legal for all targets
5512 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5513 return Op;
5514
5515 // Aquire/Release load/store is not legal for targets without a
5516 // dmb or equivalent available.
5517 return SDValue();
5518 }
5519
5520
5521 static void
ReplaceATOMIC_OP_64(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned NewOp)5522 ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5523 SelectionDAG &DAG, unsigned NewOp) {
5524 DebugLoc dl = Node->getDebugLoc();
5525 assert (Node->getValueType(0) == MVT::i64 &&
5526 "Only know how to expand i64 atomics");
5527
5528 SmallVector<SDValue, 6> Ops;
5529 Ops.push_back(Node->getOperand(0)); // Chain
5530 Ops.push_back(Node->getOperand(1)); // Ptr
5531 // Low part of Val1
5532 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5533 Node->getOperand(2), DAG.getIntPtrConstant(0)));
5534 // High part of Val1
5535 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5536 Node->getOperand(2), DAG.getIntPtrConstant(1)));
5537 if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5538 // High part of Val1
5539 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5540 Node->getOperand(3), DAG.getIntPtrConstant(0)));
5541 // High part of Val2
5542 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5543 Node->getOperand(3), DAG.getIntPtrConstant(1)));
5544 }
5545 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5546 SDValue Result =
5547 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5548 cast<MemSDNode>(Node)->getMemOperand());
5549 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5550 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5551 Results.push_back(Result.getValue(2));
5552 }
5553
LowerOperation(SDValue Op,SelectionDAG & DAG) const5554 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5555 switch (Op.getOpcode()) {
5556 default: llvm_unreachable("Don't know how to custom lower this!");
5557 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5558 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
5559 case ISD::GlobalAddress:
5560 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5561 LowerGlobalAddressELF(Op, DAG);
5562 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5563 case ISD::SELECT: return LowerSELECT(Op, DAG);
5564 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
5565 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
5566 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
5567 case ISD::VASTART: return LowerVASTART(Op, DAG);
5568 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
5569 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5570 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
5571 case ISD::SINT_TO_FP:
5572 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
5573 case ISD::FP_TO_SINT:
5574 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
5575 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
5576 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5577 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5578 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5579 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5580 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5581 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5582 Subtarget);
5583 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
5584 case ISD::SHL:
5585 case ISD::SRL:
5586 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
5587 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
5588 case ISD::SRL_PARTS:
5589 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
5590 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5591 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
5592 case ISD::SETCC: return LowerVSETCC(Op, DAG);
5593 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
5594 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5595 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5596 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5597 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5598 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5599 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
5600 case ISD::MUL: return LowerMUL(Op, DAG);
5601 case ISD::SDIV: return LowerSDIV(Op, DAG);
5602 case ISD::UDIV: return LowerUDIV(Op, DAG);
5603 case ISD::ADDC:
5604 case ISD::ADDE:
5605 case ISD::SUBC:
5606 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5607 case ISD::ATOMIC_LOAD:
5608 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
5609 }
5610 }
5611
5612 /// ReplaceNodeResults - Replace the results of node with an illegal result
5613 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5614 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5615 SmallVectorImpl<SDValue>&Results,
5616 SelectionDAG &DAG) const {
5617 SDValue Res;
5618 switch (N->getOpcode()) {
5619 default:
5620 llvm_unreachable("Don't know how to custom expand this!");
5621 case ISD::BITCAST:
5622 Res = ExpandBITCAST(N, DAG);
5623 break;
5624 case ISD::SRL:
5625 case ISD::SRA:
5626 Res = Expand64BitShift(N, DAG, Subtarget);
5627 break;
5628 case ISD::ATOMIC_LOAD_ADD:
5629 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5630 return;
5631 case ISD::ATOMIC_LOAD_AND:
5632 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5633 return;
5634 case ISD::ATOMIC_LOAD_NAND:
5635 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5636 return;
5637 case ISD::ATOMIC_LOAD_OR:
5638 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5639 return;
5640 case ISD::ATOMIC_LOAD_SUB:
5641 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5642 return;
5643 case ISD::ATOMIC_LOAD_XOR:
5644 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5645 return;
5646 case ISD::ATOMIC_SWAP:
5647 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5648 return;
5649 case ISD::ATOMIC_CMP_SWAP:
5650 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5651 return;
5652 case ISD::ATOMIC_LOAD_MIN:
5653 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
5654 return;
5655 case ISD::ATOMIC_LOAD_UMIN:
5656 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
5657 return;
5658 case ISD::ATOMIC_LOAD_MAX:
5659 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
5660 return;
5661 case ISD::ATOMIC_LOAD_UMAX:
5662 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
5663 return;
5664 }
5665 if (Res.getNode())
5666 Results.push_back(Res);
5667 }
5668
5669 //===----------------------------------------------------------------------===//
5670 // ARM Scheduler Hooks
5671 //===----------------------------------------------------------------------===//
5672
5673 MachineBasicBlock *
EmitAtomicCmpSwap(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size) const5674 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5675 MachineBasicBlock *BB,
5676 unsigned Size) const {
5677 unsigned dest = MI->getOperand(0).getReg();
5678 unsigned ptr = MI->getOperand(1).getReg();
5679 unsigned oldval = MI->getOperand(2).getReg();
5680 unsigned newval = MI->getOperand(3).getReg();
5681 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5682 DebugLoc dl = MI->getDebugLoc();
5683 bool isThumb2 = Subtarget->isThumb2();
5684
5685 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5686 unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5687 (const TargetRegisterClass*)&ARM::rGPRRegClass :
5688 (const TargetRegisterClass*)&ARM::GPRRegClass);
5689
5690 if (isThumb2) {
5691 MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5692 MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5693 MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5694 }
5695
5696 unsigned ldrOpc, strOpc;
5697 switch (Size) {
5698 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5699 case 1:
5700 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5701 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5702 break;
5703 case 2:
5704 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5705 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5706 break;
5707 case 4:
5708 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5709 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5710 break;
5711 }
5712
5713 MachineFunction *MF = BB->getParent();
5714 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5715 MachineFunction::iterator It = BB;
5716 ++It; // insert the new blocks after the current block
5717
5718 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5719 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5720 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5721 MF->insert(It, loop1MBB);
5722 MF->insert(It, loop2MBB);
5723 MF->insert(It, exitMBB);
5724
5725 // Transfer the remainder of BB and its successor edges to exitMBB.
5726 exitMBB->splice(exitMBB->begin(), BB,
5727 llvm::next(MachineBasicBlock::iterator(MI)),
5728 BB->end());
5729 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5730
5731 // thisMBB:
5732 // ...
5733 // fallthrough --> loop1MBB
5734 BB->addSuccessor(loop1MBB);
5735
5736 // loop1MBB:
5737 // ldrex dest, [ptr]
5738 // cmp dest, oldval
5739 // bne exitMBB
5740 BB = loop1MBB;
5741 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5742 if (ldrOpc == ARM::t2LDREX)
5743 MIB.addImm(0);
5744 AddDefaultPred(MIB);
5745 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5746 .addReg(dest).addReg(oldval));
5747 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5748 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5749 BB->addSuccessor(loop2MBB);
5750 BB->addSuccessor(exitMBB);
5751
5752 // loop2MBB:
5753 // strex scratch, newval, [ptr]
5754 // cmp scratch, #0
5755 // bne loop1MBB
5756 BB = loop2MBB;
5757 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5758 if (strOpc == ARM::t2STREX)
5759 MIB.addImm(0);
5760 AddDefaultPred(MIB);
5761 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5762 .addReg(scratch).addImm(0));
5763 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5764 .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5765 BB->addSuccessor(loop1MBB);
5766 BB->addSuccessor(exitMBB);
5767
5768 // exitMBB:
5769 // ...
5770 BB = exitMBB;
5771
5772 MI->eraseFromParent(); // The instruction is gone now.
5773
5774 return BB;
5775 }
5776
5777 MachineBasicBlock *
EmitAtomicBinary(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size,unsigned BinOpcode) const5778 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5779 unsigned Size, unsigned BinOpcode) const {
5780 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5781 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5782
5783 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5784 MachineFunction *MF = BB->getParent();
5785 MachineFunction::iterator It = BB;
5786 ++It;
5787
5788 unsigned dest = MI->getOperand(0).getReg();
5789 unsigned ptr = MI->getOperand(1).getReg();
5790 unsigned incr = MI->getOperand(2).getReg();
5791 DebugLoc dl = MI->getDebugLoc();
5792 bool isThumb2 = Subtarget->isThumb2();
5793
5794 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5795 if (isThumb2) {
5796 MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5797 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5798 }
5799
5800 unsigned ldrOpc, strOpc;
5801 switch (Size) {
5802 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5803 case 1:
5804 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5805 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5806 break;
5807 case 2:
5808 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5809 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5810 break;
5811 case 4:
5812 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5813 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5814 break;
5815 }
5816
5817 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5818 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5819 MF->insert(It, loopMBB);
5820 MF->insert(It, exitMBB);
5821
5822 // Transfer the remainder of BB and its successor edges to exitMBB.
5823 exitMBB->splice(exitMBB->begin(), BB,
5824 llvm::next(MachineBasicBlock::iterator(MI)),
5825 BB->end());
5826 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5827
5828 const TargetRegisterClass *TRC = isThumb2 ?
5829 (const TargetRegisterClass*)&ARM::rGPRRegClass :
5830 (const TargetRegisterClass*)&ARM::GPRRegClass;
5831 unsigned scratch = MRI.createVirtualRegister(TRC);
5832 unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5833
5834 // thisMBB:
5835 // ...
5836 // fallthrough --> loopMBB
5837 BB->addSuccessor(loopMBB);
5838
5839 // loopMBB:
5840 // ldrex dest, ptr
5841 // <binop> scratch2, dest, incr
5842 // strex scratch, scratch2, ptr
5843 // cmp scratch, #0
5844 // bne- loopMBB
5845 // fallthrough --> exitMBB
5846 BB = loopMBB;
5847 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5848 if (ldrOpc == ARM::t2LDREX)
5849 MIB.addImm(0);
5850 AddDefaultPred(MIB);
5851 if (BinOpcode) {
5852 // operand order needs to go the other way for NAND
5853 if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5854 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5855 addReg(incr).addReg(dest)).addReg(0);
5856 else
5857 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5858 addReg(dest).addReg(incr)).addReg(0);
5859 }
5860
5861 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5862 if (strOpc == ARM::t2STREX)
5863 MIB.addImm(0);
5864 AddDefaultPred(MIB);
5865 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5866 .addReg(scratch).addImm(0));
5867 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5868 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5869
5870 BB->addSuccessor(loopMBB);
5871 BB->addSuccessor(exitMBB);
5872
5873 // exitMBB:
5874 // ...
5875 BB = exitMBB;
5876
5877 MI->eraseFromParent(); // The instruction is gone now.
5878
5879 return BB;
5880 }
5881
5882 MachineBasicBlock *
EmitAtomicBinaryMinMax(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size,bool signExtend,ARMCC::CondCodes Cond) const5883 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5884 MachineBasicBlock *BB,
5885 unsigned Size,
5886 bool signExtend,
5887 ARMCC::CondCodes Cond) const {
5888 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5889
5890 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5891 MachineFunction *MF = BB->getParent();
5892 MachineFunction::iterator It = BB;
5893 ++It;
5894
5895 unsigned dest = MI->getOperand(0).getReg();
5896 unsigned ptr = MI->getOperand(1).getReg();
5897 unsigned incr = MI->getOperand(2).getReg();
5898 unsigned oldval = dest;
5899 DebugLoc dl = MI->getDebugLoc();
5900 bool isThumb2 = Subtarget->isThumb2();
5901
5902 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5903 if (isThumb2) {
5904 MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5905 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5906 }
5907
5908 unsigned ldrOpc, strOpc, extendOpc;
5909 switch (Size) {
5910 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5911 case 1:
5912 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5913 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5914 extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5915 break;
5916 case 2:
5917 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5918 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5919 extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5920 break;
5921 case 4:
5922 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5923 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5924 extendOpc = 0;
5925 break;
5926 }
5927
5928 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5929 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5930 MF->insert(It, loopMBB);
5931 MF->insert(It, exitMBB);
5932
5933 // Transfer the remainder of BB and its successor edges to exitMBB.
5934 exitMBB->splice(exitMBB->begin(), BB,
5935 llvm::next(MachineBasicBlock::iterator(MI)),
5936 BB->end());
5937 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5938
5939 const TargetRegisterClass *TRC = isThumb2 ?
5940 (const TargetRegisterClass*)&ARM::rGPRRegClass :
5941 (const TargetRegisterClass*)&ARM::GPRRegClass;
5942 unsigned scratch = MRI.createVirtualRegister(TRC);
5943 unsigned scratch2 = MRI.createVirtualRegister(TRC);
5944
5945 // thisMBB:
5946 // ...
5947 // fallthrough --> loopMBB
5948 BB->addSuccessor(loopMBB);
5949
5950 // loopMBB:
5951 // ldrex dest, ptr
5952 // (sign extend dest, if required)
5953 // cmp dest, incr
5954 // cmov.cond scratch2, incr, dest
5955 // strex scratch, scratch2, ptr
5956 // cmp scratch, #0
5957 // bne- loopMBB
5958 // fallthrough --> exitMBB
5959 BB = loopMBB;
5960 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5961 if (ldrOpc == ARM::t2LDREX)
5962 MIB.addImm(0);
5963 AddDefaultPred(MIB);
5964
5965 // Sign extend the value, if necessary.
5966 if (signExtend && extendOpc) {
5967 oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5968 AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5969 .addReg(dest)
5970 .addImm(0));
5971 }
5972
5973 // Build compare and cmov instructions.
5974 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5975 .addReg(oldval).addReg(incr));
5976 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5977 .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
5978
5979 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5980 if (strOpc == ARM::t2STREX)
5981 MIB.addImm(0);
5982 AddDefaultPred(MIB);
5983 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5984 .addReg(scratch).addImm(0));
5985 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5986 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5987
5988 BB->addSuccessor(loopMBB);
5989 BB->addSuccessor(exitMBB);
5990
5991 // exitMBB:
5992 // ...
5993 BB = exitMBB;
5994
5995 MI->eraseFromParent(); // The instruction is gone now.
5996
5997 return BB;
5998 }
5999
6000 MachineBasicBlock *
EmitAtomicBinary64(MachineInstr * MI,MachineBasicBlock * BB,unsigned Op1,unsigned Op2,bool NeedsCarry,bool IsCmpxchg,bool IsMinMax,ARMCC::CondCodes CC) const6001 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
6002 unsigned Op1, unsigned Op2,
6003 bool NeedsCarry, bool IsCmpxchg,
6004 bool IsMinMax, ARMCC::CondCodes CC) const {
6005 // This also handles ATOMIC_SWAP, indicated by Op1==0.
6006 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6007
6008 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6009 MachineFunction *MF = BB->getParent();
6010 MachineFunction::iterator It = BB;
6011 ++It;
6012
6013 unsigned destlo = MI->getOperand(0).getReg();
6014 unsigned desthi = MI->getOperand(1).getReg();
6015 unsigned ptr = MI->getOperand(2).getReg();
6016 unsigned vallo = MI->getOperand(3).getReg();
6017 unsigned valhi = MI->getOperand(4).getReg();
6018 DebugLoc dl = MI->getDebugLoc();
6019 bool isThumb2 = Subtarget->isThumb2();
6020
6021 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6022 if (isThumb2) {
6023 MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
6024 MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
6025 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6026 }
6027
6028 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6029 MachineBasicBlock *contBB = 0, *cont2BB = 0;
6030 if (IsCmpxchg || IsMinMax)
6031 contBB = MF->CreateMachineBasicBlock(LLVM_BB);
6032 if (IsCmpxchg)
6033 cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
6034 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6035
6036 MF->insert(It, loopMBB);
6037 if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
6038 if (IsCmpxchg) MF->insert(It, cont2BB);
6039 MF->insert(It, exitMBB);
6040
6041 // Transfer the remainder of BB and its successor edges to exitMBB.
6042 exitMBB->splice(exitMBB->begin(), BB,
6043 llvm::next(MachineBasicBlock::iterator(MI)),
6044 BB->end());
6045 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6046
6047 const TargetRegisterClass *TRC = isThumb2 ?
6048 (const TargetRegisterClass*)&ARM::tGPRRegClass :
6049 (const TargetRegisterClass*)&ARM::GPRRegClass;
6050 unsigned storesuccess = MRI.createVirtualRegister(TRC);
6051
6052 // thisMBB:
6053 // ...
6054 // fallthrough --> loopMBB
6055 BB->addSuccessor(loopMBB);
6056
6057 // loopMBB:
6058 // ldrexd r2, r3, ptr
6059 // <binopa> r0, r2, incr
6060 // <binopb> r1, r3, incr
6061 // strexd storesuccess, r0, r1, ptr
6062 // cmp storesuccess, #0
6063 // bne- loopMBB
6064 // fallthrough --> exitMBB
6065 BB = loopMBB;
6066
6067 // Load
6068 if (isThumb2) {
6069 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD))
6070 .addReg(destlo, RegState::Define)
6071 .addReg(desthi, RegState::Define)
6072 .addReg(ptr));
6073 } else {
6074 unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6075 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD))
6076 .addReg(GPRPair0, RegState::Define).addReg(ptr));
6077 // Copy r2/r3 into dest. (This copy will normally be coalesced.)
6078 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
6079 .addReg(GPRPair0, 0, ARM::gsub_0);
6080 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
6081 .addReg(GPRPair0, 0, ARM::gsub_1);
6082 }
6083
6084 unsigned StoreLo, StoreHi;
6085 if (IsCmpxchg) {
6086 // Add early exit
6087 for (unsigned i = 0; i < 2; i++) {
6088 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
6089 ARM::CMPrr))
6090 .addReg(i == 0 ? destlo : desthi)
6091 .addReg(i == 0 ? vallo : valhi));
6092 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6093 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6094 BB->addSuccessor(exitMBB);
6095 BB->addSuccessor(i == 0 ? contBB : cont2BB);
6096 BB = (i == 0 ? contBB : cont2BB);
6097 }
6098
6099 // Copy to physregs for strexd
6100 StoreLo = MI->getOperand(5).getReg();
6101 StoreHi = MI->getOperand(6).getReg();
6102 } else if (Op1) {
6103 // Perform binary operation
6104 unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
6105 AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
6106 .addReg(destlo).addReg(vallo))
6107 .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
6108 unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
6109 AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
6110 .addReg(desthi).addReg(valhi))
6111 .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
6112
6113 StoreLo = tmpRegLo;
6114 StoreHi = tmpRegHi;
6115 } else {
6116 // Copy to physregs for strexd
6117 StoreLo = vallo;
6118 StoreHi = valhi;
6119 }
6120 if (IsMinMax) {
6121 // Compare and branch to exit block.
6122 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6123 .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
6124 BB->addSuccessor(exitMBB);
6125 BB->addSuccessor(contBB);
6126 BB = contBB;
6127 StoreLo = vallo;
6128 StoreHi = valhi;
6129 }
6130
6131 // Store
6132 if (isThumb2) {
6133 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess)
6134 .addReg(StoreLo).addReg(StoreHi).addReg(ptr));
6135 } else {
6136 // Marshal a pair...
6137 unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6138 unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6139 unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6140 BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
6141 BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6142 .addReg(UndefPair)
6143 .addReg(StoreLo)
6144 .addImm(ARM::gsub_0);
6145 BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair)
6146 .addReg(r1)
6147 .addReg(StoreHi)
6148 .addImm(ARM::gsub_1);
6149
6150 // ...and store it
6151 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess)
6152 .addReg(StorePair).addReg(ptr));
6153 }
6154 // Cmp+jump
6155 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6156 .addReg(storesuccess).addImm(0));
6157 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6158 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6159
6160 BB->addSuccessor(loopMBB);
6161 BB->addSuccessor(exitMBB);
6162
6163 // exitMBB:
6164 // ...
6165 BB = exitMBB;
6166
6167 MI->eraseFromParent(); // The instruction is gone now.
6168
6169 return BB;
6170 }
6171
6172 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6173 /// registers the function context.
6174 void ARMTargetLowering::
SetupEntryBlockForSjLj(MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const6175 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6176 MachineBasicBlock *DispatchBB, int FI) const {
6177 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6178 DebugLoc dl = MI->getDebugLoc();
6179 MachineFunction *MF = MBB->getParent();
6180 MachineRegisterInfo *MRI = &MF->getRegInfo();
6181 MachineConstantPool *MCP = MF->getConstantPool();
6182 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6183 const Function *F = MF->getFunction();
6184
6185 bool isThumb = Subtarget->isThumb();
6186 bool isThumb2 = Subtarget->isThumb2();
6187
6188 unsigned PCLabelId = AFI->createPICLabelUId();
6189 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6190 ARMConstantPoolValue *CPV =
6191 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6192 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6193
6194 const TargetRegisterClass *TRC = isThumb ?
6195 (const TargetRegisterClass*)&ARM::tGPRRegClass :
6196 (const TargetRegisterClass*)&ARM::GPRRegClass;
6197
6198 // Grab constant pool and fixed stack memory operands.
6199 MachineMemOperand *CPMMO =
6200 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6201 MachineMemOperand::MOLoad, 4, 4);
6202
6203 MachineMemOperand *FIMMOSt =
6204 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6205 MachineMemOperand::MOStore, 4, 4);
6206
6207 // Load the address of the dispatch MBB into the jump buffer.
6208 if (isThumb2) {
6209 // Incoming value: jbuf
6210 // ldr.n r5, LCPI1_1
6211 // orr r5, r5, #1
6212 // add r5, pc
6213 // str r5, [$jbuf, #+4] ; &jbuf[1]
6214 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6215 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6216 .addConstantPoolIndex(CPI)
6217 .addMemOperand(CPMMO));
6218 // Set the low bit because of thumb mode.
6219 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6220 AddDefaultCC(
6221 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6222 .addReg(NewVReg1, RegState::Kill)
6223 .addImm(0x01)));
6224 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6225 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6226 .addReg(NewVReg2, RegState::Kill)
6227 .addImm(PCLabelId);
6228 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6229 .addReg(NewVReg3, RegState::Kill)
6230 .addFrameIndex(FI)
6231 .addImm(36) // &jbuf[1] :: pc
6232 .addMemOperand(FIMMOSt));
6233 } else if (isThumb) {
6234 // Incoming value: jbuf
6235 // ldr.n r1, LCPI1_4
6236 // add r1, pc
6237 // mov r2, #1
6238 // orrs r1, r2
6239 // add r2, $jbuf, #+4 ; &jbuf[1]
6240 // str r1, [r2]
6241 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6242 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6243 .addConstantPoolIndex(CPI)
6244 .addMemOperand(CPMMO));
6245 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6246 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6247 .addReg(NewVReg1, RegState::Kill)
6248 .addImm(PCLabelId);
6249 // Set the low bit because of thumb mode.
6250 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6251 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6252 .addReg(ARM::CPSR, RegState::Define)
6253 .addImm(1));
6254 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6255 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6256 .addReg(ARM::CPSR, RegState::Define)
6257 .addReg(NewVReg2, RegState::Kill)
6258 .addReg(NewVReg3, RegState::Kill));
6259 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6260 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6261 .addFrameIndex(FI)
6262 .addImm(36)); // &jbuf[1] :: pc
6263 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6264 .addReg(NewVReg4, RegState::Kill)
6265 .addReg(NewVReg5, RegState::Kill)
6266 .addImm(0)
6267 .addMemOperand(FIMMOSt));
6268 } else {
6269 // Incoming value: jbuf
6270 // ldr r1, LCPI1_1
6271 // add r1, pc, r1
6272 // str r1, [$jbuf, #+4] ; &jbuf[1]
6273 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6274 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
6275 .addConstantPoolIndex(CPI)
6276 .addImm(0)
6277 .addMemOperand(CPMMO));
6278 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6279 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6280 .addReg(NewVReg1, RegState::Kill)
6281 .addImm(PCLabelId));
6282 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6283 .addReg(NewVReg2, RegState::Kill)
6284 .addFrameIndex(FI)
6285 .addImm(36) // &jbuf[1] :: pc
6286 .addMemOperand(FIMMOSt));
6287 }
6288 }
6289
6290 MachineBasicBlock *ARMTargetLowering::
EmitSjLjDispatchBlock(MachineInstr * MI,MachineBasicBlock * MBB) const6291 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6292 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6293 DebugLoc dl = MI->getDebugLoc();
6294 MachineFunction *MF = MBB->getParent();
6295 MachineRegisterInfo *MRI = &MF->getRegInfo();
6296 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6297 MachineFrameInfo *MFI = MF->getFrameInfo();
6298 int FI = MFI->getFunctionContextIndex();
6299
6300 const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6301 (const TargetRegisterClass*)&ARM::tGPRRegClass :
6302 (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6303
6304 // Get a mapping of the call site numbers to all of the landing pads they're
6305 // associated with.
6306 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6307 unsigned MaxCSNum = 0;
6308 MachineModuleInfo &MMI = MF->getMMI();
6309 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6310 ++BB) {
6311 if (!BB->isLandingPad()) continue;
6312
6313 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6314 // pad.
6315 for (MachineBasicBlock::iterator
6316 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6317 if (!II->isEHLabel()) continue;
6318
6319 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6320 if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6321
6322 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6323 for (SmallVectorImpl<unsigned>::iterator
6324 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6325 CSI != CSE; ++CSI) {
6326 CallSiteNumToLPad[*CSI].push_back(BB);
6327 MaxCSNum = std::max(MaxCSNum, *CSI);
6328 }
6329 break;
6330 }
6331 }
6332
6333 // Get an ordered list of the machine basic blocks for the jump table.
6334 std::vector<MachineBasicBlock*> LPadList;
6335 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6336 LPadList.reserve(CallSiteNumToLPad.size());
6337 for (unsigned I = 1; I <= MaxCSNum; ++I) {
6338 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6339 for (SmallVectorImpl<MachineBasicBlock*>::iterator
6340 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6341 LPadList.push_back(*II);
6342 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6343 }
6344 }
6345
6346 assert(!LPadList.empty() &&
6347 "No landing pad destinations for the dispatch jump table!");
6348
6349 // Create the jump table and associated information.
6350 MachineJumpTableInfo *JTI =
6351 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6352 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6353 unsigned UId = AFI->createJumpTableUId();
6354 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
6355
6356 // Create the MBBs for the dispatch code.
6357
6358 // Shove the dispatch's address into the return slot in the function context.
6359 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6360 DispatchBB->setIsLandingPad();
6361
6362 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6363 unsigned trap_opcode;
6364 if (Subtarget->isThumb())
6365 trap_opcode = ARM::tTRAP;
6366 else
6367 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6368
6369 BuildMI(TrapBB, dl, TII->get(trap_opcode));
6370 DispatchBB->addSuccessor(TrapBB);
6371
6372 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6373 DispatchBB->addSuccessor(DispContBB);
6374
6375 // Insert and MBBs.
6376 MF->insert(MF->end(), DispatchBB);
6377 MF->insert(MF->end(), DispContBB);
6378 MF->insert(MF->end(), TrapBB);
6379
6380 // Insert code into the entry block that creates and registers the function
6381 // context.
6382 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6383
6384 MachineMemOperand *FIMMOLd =
6385 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6386 MachineMemOperand::MOLoad |
6387 MachineMemOperand::MOVolatile, 4, 4);
6388
6389 MachineInstrBuilder MIB;
6390 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6391
6392 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6393 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6394
6395 // Add a register mask with no preserved registers. This results in all
6396 // registers being marked as clobbered.
6397 MIB.addRegMask(RI.getNoPreservedMask());
6398
6399 unsigned NumLPads = LPadList.size();
6400 if (Subtarget->isThumb2()) {
6401 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6402 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6403 .addFrameIndex(FI)
6404 .addImm(4)
6405 .addMemOperand(FIMMOLd));
6406
6407 if (NumLPads < 256) {
6408 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6409 .addReg(NewVReg1)
6410 .addImm(LPadList.size()));
6411 } else {
6412 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6413 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6414 .addImm(NumLPads & 0xFFFF));
6415
6416 unsigned VReg2 = VReg1;
6417 if ((NumLPads & 0xFFFF0000) != 0) {
6418 VReg2 = MRI->createVirtualRegister(TRC);
6419 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6420 .addReg(VReg1)
6421 .addImm(NumLPads >> 16));
6422 }
6423
6424 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6425 .addReg(NewVReg1)
6426 .addReg(VReg2));
6427 }
6428
6429 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6430 .addMBB(TrapBB)
6431 .addImm(ARMCC::HI)
6432 .addReg(ARM::CPSR);
6433
6434 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6435 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6436 .addJumpTableIndex(MJTI)
6437 .addImm(UId));
6438
6439 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6440 AddDefaultCC(
6441 AddDefaultPred(
6442 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6443 .addReg(NewVReg3, RegState::Kill)
6444 .addReg(NewVReg1)
6445 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6446
6447 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6448 .addReg(NewVReg4, RegState::Kill)
6449 .addReg(NewVReg1)
6450 .addJumpTableIndex(MJTI)
6451 .addImm(UId);
6452 } else if (Subtarget->isThumb()) {
6453 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6454 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6455 .addFrameIndex(FI)
6456 .addImm(1)
6457 .addMemOperand(FIMMOLd));
6458
6459 if (NumLPads < 256) {
6460 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6461 .addReg(NewVReg1)
6462 .addImm(NumLPads));
6463 } else {
6464 MachineConstantPool *ConstantPool = MF->getConstantPool();
6465 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6466 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6467
6468 // MachineConstantPool wants an explicit alignment.
6469 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6470 if (Align == 0)
6471 Align = getDataLayout()->getTypeAllocSize(C->getType());
6472 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6473
6474 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6475 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6476 .addReg(VReg1, RegState::Define)
6477 .addConstantPoolIndex(Idx));
6478 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6479 .addReg(NewVReg1)
6480 .addReg(VReg1));
6481 }
6482
6483 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6484 .addMBB(TrapBB)
6485 .addImm(ARMCC::HI)
6486 .addReg(ARM::CPSR);
6487
6488 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6489 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6490 .addReg(ARM::CPSR, RegState::Define)
6491 .addReg(NewVReg1)
6492 .addImm(2));
6493
6494 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6495 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6496 .addJumpTableIndex(MJTI)
6497 .addImm(UId));
6498
6499 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6500 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6501 .addReg(ARM::CPSR, RegState::Define)
6502 .addReg(NewVReg2, RegState::Kill)
6503 .addReg(NewVReg3));
6504
6505 MachineMemOperand *JTMMOLd =
6506 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6507 MachineMemOperand::MOLoad, 4, 4);
6508
6509 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6510 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6511 .addReg(NewVReg4, RegState::Kill)
6512 .addImm(0)
6513 .addMemOperand(JTMMOLd));
6514
6515 unsigned NewVReg6 = NewVReg5;
6516 if (RelocM == Reloc::PIC_) {
6517 NewVReg6 = MRI->createVirtualRegister(TRC);
6518 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6519 .addReg(ARM::CPSR, RegState::Define)
6520 .addReg(NewVReg5, RegState::Kill)
6521 .addReg(NewVReg3));
6522 }
6523
6524 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6525 .addReg(NewVReg6, RegState::Kill)
6526 .addJumpTableIndex(MJTI)
6527 .addImm(UId);
6528 } else {
6529 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6530 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6531 .addFrameIndex(FI)
6532 .addImm(4)
6533 .addMemOperand(FIMMOLd));
6534
6535 if (NumLPads < 256) {
6536 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6537 .addReg(NewVReg1)
6538 .addImm(NumLPads));
6539 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6540 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6541 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6542 .addImm(NumLPads & 0xFFFF));
6543
6544 unsigned VReg2 = VReg1;
6545 if ((NumLPads & 0xFFFF0000) != 0) {
6546 VReg2 = MRI->createVirtualRegister(TRC);
6547 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6548 .addReg(VReg1)
6549 .addImm(NumLPads >> 16));
6550 }
6551
6552 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6553 .addReg(NewVReg1)
6554 .addReg(VReg2));
6555 } else {
6556 MachineConstantPool *ConstantPool = MF->getConstantPool();
6557 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6558 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6559
6560 // MachineConstantPool wants an explicit alignment.
6561 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6562 if (Align == 0)
6563 Align = getDataLayout()->getTypeAllocSize(C->getType());
6564 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6565
6566 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6567 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6568 .addReg(VReg1, RegState::Define)
6569 .addConstantPoolIndex(Idx)
6570 .addImm(0));
6571 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6572 .addReg(NewVReg1)
6573 .addReg(VReg1, RegState::Kill));
6574 }
6575
6576 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6577 .addMBB(TrapBB)
6578 .addImm(ARMCC::HI)
6579 .addReg(ARM::CPSR);
6580
6581 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6582 AddDefaultCC(
6583 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6584 .addReg(NewVReg1)
6585 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6586 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6587 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6588 .addJumpTableIndex(MJTI)
6589 .addImm(UId));
6590
6591 MachineMemOperand *JTMMOLd =
6592 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6593 MachineMemOperand::MOLoad, 4, 4);
6594 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6595 AddDefaultPred(
6596 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6597 .addReg(NewVReg3, RegState::Kill)
6598 .addReg(NewVReg4)
6599 .addImm(0)
6600 .addMemOperand(JTMMOLd));
6601
6602 if (RelocM == Reloc::PIC_) {
6603 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6604 .addReg(NewVReg5, RegState::Kill)
6605 .addReg(NewVReg4)
6606 .addJumpTableIndex(MJTI)
6607 .addImm(UId);
6608 } else {
6609 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
6610 .addReg(NewVReg5, RegState::Kill)
6611 .addJumpTableIndex(MJTI)
6612 .addImm(UId);
6613 }
6614 }
6615
6616 // Add the jump table entries as successors to the MBB.
6617 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6618 for (std::vector<MachineBasicBlock*>::iterator
6619 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6620 MachineBasicBlock *CurMBB = *I;
6621 if (SeenMBBs.insert(CurMBB))
6622 DispContBB->addSuccessor(CurMBB);
6623 }
6624
6625 // N.B. the order the invoke BBs are processed in doesn't matter here.
6626 const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6627 SmallVector<MachineBasicBlock*, 64> MBBLPads;
6628 for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6629 I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6630 MachineBasicBlock *BB = *I;
6631
6632 // Remove the landing pad successor from the invoke block and replace it
6633 // with the new dispatch block.
6634 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6635 BB->succ_end());
6636 while (!Successors.empty()) {
6637 MachineBasicBlock *SMBB = Successors.pop_back_val();
6638 if (SMBB->isLandingPad()) {
6639 BB->removeSuccessor(SMBB);
6640 MBBLPads.push_back(SMBB);
6641 }
6642 }
6643
6644 BB->addSuccessor(DispatchBB);
6645
6646 // Find the invoke call and mark all of the callee-saved registers as
6647 // 'implicit defined' so that they're spilled. This prevents code from
6648 // moving instructions to before the EH block, where they will never be
6649 // executed.
6650 for (MachineBasicBlock::reverse_iterator
6651 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6652 if (!II->isCall()) continue;
6653
6654 DenseMap<unsigned, bool> DefRegs;
6655 for (MachineInstr::mop_iterator
6656 OI = II->operands_begin(), OE = II->operands_end();
6657 OI != OE; ++OI) {
6658 if (!OI->isReg()) continue;
6659 DefRegs[OI->getReg()] = true;
6660 }
6661
6662 MachineInstrBuilder MIB(*MF, &*II);
6663
6664 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6665 unsigned Reg = SavedRegs[i];
6666 if (Subtarget->isThumb2() &&
6667 !ARM::tGPRRegClass.contains(Reg) &&
6668 !ARM::hGPRRegClass.contains(Reg))
6669 continue;
6670 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6671 continue;
6672 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6673 continue;
6674 if (!DefRegs[Reg])
6675 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6676 }
6677
6678 break;
6679 }
6680 }
6681
6682 // Mark all former landing pads as non-landing pads. The dispatch is the only
6683 // landing pad now.
6684 for (SmallVectorImpl<MachineBasicBlock*>::iterator
6685 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6686 (*I)->setIsLandingPad(false);
6687
6688 // The instruction is gone now.
6689 MI->eraseFromParent();
6690
6691 return MBB;
6692 }
6693
6694 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)6695 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6696 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6697 E = MBB->succ_end(); I != E; ++I)
6698 if (*I != Succ)
6699 return *I;
6700 llvm_unreachable("Expecting a BB with two successors!");
6701 }
6702
6703 MachineBasicBlock *ARMTargetLowering::
EmitStructByval(MachineInstr * MI,MachineBasicBlock * BB) const6704 EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6705 // This pseudo instruction has 3 operands: dst, src, size
6706 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6707 // Otherwise, we will generate unrolled scalar copies.
6708 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6709 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6710 MachineFunction::iterator It = BB;
6711 ++It;
6712
6713 unsigned dest = MI->getOperand(0).getReg();
6714 unsigned src = MI->getOperand(1).getReg();
6715 unsigned SizeVal = MI->getOperand(2).getImm();
6716 unsigned Align = MI->getOperand(3).getImm();
6717 DebugLoc dl = MI->getDebugLoc();
6718
6719 bool isThumb2 = Subtarget->isThumb2();
6720 MachineFunction *MF = BB->getParent();
6721 MachineRegisterInfo &MRI = MF->getRegInfo();
6722 unsigned ldrOpc, strOpc, UnitSize = 0;
6723
6724 const TargetRegisterClass *TRC = isThumb2 ?
6725 (const TargetRegisterClass*)&ARM::tGPRRegClass :
6726 (const TargetRegisterClass*)&ARM::GPRRegClass;
6727 const TargetRegisterClass *TRC_Vec = 0;
6728
6729 if (Align & 1) {
6730 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6731 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6732 UnitSize = 1;
6733 } else if (Align & 2) {
6734 ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6735 strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6736 UnitSize = 2;
6737 } else {
6738 // Check whether we can use NEON instructions.
6739 if (!MF->getFunction()->getAttributes().
6740 hasAttribute(AttributeSet::FunctionIndex,
6741 Attribute::NoImplicitFloat) &&
6742 Subtarget->hasNEON()) {
6743 if ((Align % 16 == 0) && SizeVal >= 16) {
6744 ldrOpc = ARM::VLD1q32wb_fixed;
6745 strOpc = ARM::VST1q32wb_fixed;
6746 UnitSize = 16;
6747 TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6748 }
6749 else if ((Align % 8 == 0) && SizeVal >= 8) {
6750 ldrOpc = ARM::VLD1d32wb_fixed;
6751 strOpc = ARM::VST1d32wb_fixed;
6752 UnitSize = 8;
6753 TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
6754 }
6755 }
6756 // Can't use NEON instructions.
6757 if (UnitSize == 0) {
6758 ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6759 strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
6760 UnitSize = 4;
6761 }
6762 }
6763
6764 unsigned BytesLeft = SizeVal % UnitSize;
6765 unsigned LoopSize = SizeVal - BytesLeft;
6766
6767 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6768 // Use LDR and STR to copy.
6769 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6770 // [destOut] = STR_POST(scratch, destIn, UnitSize)
6771 unsigned srcIn = src;
6772 unsigned destIn = dest;
6773 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6774 unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6775 unsigned srcOut = MRI.createVirtualRegister(TRC);
6776 unsigned destOut = MRI.createVirtualRegister(TRC);
6777 if (UnitSize >= 8) {
6778 AddDefaultPred(BuildMI(*BB, MI, dl,
6779 TII->get(ldrOpc), scratch)
6780 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
6781
6782 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6783 .addReg(destIn).addImm(0).addReg(scratch));
6784 } else if (isThumb2) {
6785 AddDefaultPred(BuildMI(*BB, MI, dl,
6786 TII->get(ldrOpc), scratch)
6787 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
6788
6789 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6790 .addReg(scratch).addReg(destIn)
6791 .addImm(UnitSize));
6792 } else {
6793 AddDefaultPred(BuildMI(*BB, MI, dl,
6794 TII->get(ldrOpc), scratch)
6795 .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
6796 .addImm(UnitSize));
6797
6798 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6799 .addReg(scratch).addReg(destIn)
6800 .addReg(0).addImm(UnitSize));
6801 }
6802 srcIn = srcOut;
6803 destIn = destOut;
6804 }
6805
6806 // Handle the leftover bytes with LDRB and STRB.
6807 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6808 // [destOut] = STRB_POST(scratch, destIn, 1)
6809 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6810 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6811 for (unsigned i = 0; i < BytesLeft; i++) {
6812 unsigned scratch = MRI.createVirtualRegister(TRC);
6813 unsigned srcOut = MRI.createVirtualRegister(TRC);
6814 unsigned destOut = MRI.createVirtualRegister(TRC);
6815 if (isThumb2) {
6816 AddDefaultPred(BuildMI(*BB, MI, dl,
6817 TII->get(ldrOpc),scratch)
6818 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6819
6820 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6821 .addReg(scratch).addReg(destIn)
6822 .addReg(0).addImm(1));
6823 } else {
6824 AddDefaultPred(BuildMI(*BB, MI, dl,
6825 TII->get(ldrOpc),scratch)
6826 .addReg(srcOut, RegState::Define).addReg(srcIn)
6827 .addReg(0).addImm(1));
6828
6829 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6830 .addReg(scratch).addReg(destIn)
6831 .addReg(0).addImm(1));
6832 }
6833 srcIn = srcOut;
6834 destIn = destOut;
6835 }
6836 MI->eraseFromParent(); // The instruction is gone now.
6837 return BB;
6838 }
6839
6840 // Expand the pseudo op to a loop.
6841 // thisMBB:
6842 // ...
6843 // movw varEnd, # --> with thumb2
6844 // movt varEnd, #
6845 // ldrcp varEnd, idx --> without thumb2
6846 // fallthrough --> loopMBB
6847 // loopMBB:
6848 // PHI varPhi, varEnd, varLoop
6849 // PHI srcPhi, src, srcLoop
6850 // PHI destPhi, dst, destLoop
6851 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6852 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6853 // subs varLoop, varPhi, #UnitSize
6854 // bne loopMBB
6855 // fallthrough --> exitMBB
6856 // exitMBB:
6857 // epilogue to handle left-over bytes
6858 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6859 // [destOut] = STRB_POST(scratch, destLoop, 1)
6860 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6861 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6862 MF->insert(It, loopMBB);
6863 MF->insert(It, exitMBB);
6864
6865 // Transfer the remainder of BB and its successor edges to exitMBB.
6866 exitMBB->splice(exitMBB->begin(), BB,
6867 llvm::next(MachineBasicBlock::iterator(MI)),
6868 BB->end());
6869 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6870
6871 // Load an immediate to varEnd.
6872 unsigned varEnd = MRI.createVirtualRegister(TRC);
6873 if (isThumb2) {
6874 unsigned VReg1 = varEnd;
6875 if ((LoopSize & 0xFFFF0000) != 0)
6876 VReg1 = MRI.createVirtualRegister(TRC);
6877 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
6878 .addImm(LoopSize & 0xFFFF));
6879
6880 if ((LoopSize & 0xFFFF0000) != 0)
6881 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
6882 .addReg(VReg1)
6883 .addImm(LoopSize >> 16));
6884 } else {
6885 MachineConstantPool *ConstantPool = MF->getConstantPool();
6886 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6887 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
6888
6889 // MachineConstantPool wants an explicit alignment.
6890 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6891 if (Align == 0)
6892 Align = getDataLayout()->getTypeAllocSize(C->getType());
6893 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6894
6895 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
6896 .addReg(varEnd, RegState::Define)
6897 .addConstantPoolIndex(Idx)
6898 .addImm(0));
6899 }
6900 BB->addSuccessor(loopMBB);
6901
6902 // Generate the loop body:
6903 // varPhi = PHI(varLoop, varEnd)
6904 // srcPhi = PHI(srcLoop, src)
6905 // destPhi = PHI(destLoop, dst)
6906 MachineBasicBlock *entryBB = BB;
6907 BB = loopMBB;
6908 unsigned varLoop = MRI.createVirtualRegister(TRC);
6909 unsigned varPhi = MRI.createVirtualRegister(TRC);
6910 unsigned srcLoop = MRI.createVirtualRegister(TRC);
6911 unsigned srcPhi = MRI.createVirtualRegister(TRC);
6912 unsigned destLoop = MRI.createVirtualRegister(TRC);
6913 unsigned destPhi = MRI.createVirtualRegister(TRC);
6914
6915 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
6916 .addReg(varLoop).addMBB(loopMBB)
6917 .addReg(varEnd).addMBB(entryBB);
6918 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
6919 .addReg(srcLoop).addMBB(loopMBB)
6920 .addReg(src).addMBB(entryBB);
6921 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
6922 .addReg(destLoop).addMBB(loopMBB)
6923 .addReg(dest).addMBB(entryBB);
6924
6925 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6926 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
6927 unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6928 if (UnitSize >= 8) {
6929 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6930 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
6931
6932 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6933 .addReg(destPhi).addImm(0).addReg(scratch));
6934 } else if (isThumb2) {
6935 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6936 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
6937
6938 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6939 .addReg(scratch).addReg(destPhi)
6940 .addImm(UnitSize));
6941 } else {
6942 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6943 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
6944 .addImm(UnitSize));
6945
6946 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6947 .addReg(scratch).addReg(destPhi)
6948 .addReg(0).addImm(UnitSize));
6949 }
6950
6951 // Decrement loop variable by UnitSize.
6952 MachineInstrBuilder MIB = BuildMI(BB, dl,
6953 TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
6954 AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
6955 MIB->getOperand(5).setReg(ARM::CPSR);
6956 MIB->getOperand(5).setIsDef(true);
6957
6958 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6959 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6960
6961 // loopMBB can loop back to loopMBB or fall through to exitMBB.
6962 BB->addSuccessor(loopMBB);
6963 BB->addSuccessor(exitMBB);
6964
6965 // Add epilogue to handle BytesLeft.
6966 BB = exitMBB;
6967 MachineInstr *StartOfExit = exitMBB->begin();
6968 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6969 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6970
6971 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6972 // [destOut] = STRB_POST(scratch, destLoop, 1)
6973 unsigned srcIn = srcLoop;
6974 unsigned destIn = destLoop;
6975 for (unsigned i = 0; i < BytesLeft; i++) {
6976 unsigned scratch = MRI.createVirtualRegister(TRC);
6977 unsigned srcOut = MRI.createVirtualRegister(TRC);
6978 unsigned destOut = MRI.createVirtualRegister(TRC);
6979 if (isThumb2) {
6980 AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6981 TII->get(ldrOpc),scratch)
6982 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6983
6984 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6985 .addReg(scratch).addReg(destIn)
6986 .addImm(1));
6987 } else {
6988 AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6989 TII->get(ldrOpc),scratch)
6990 .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
6991
6992 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6993 .addReg(scratch).addReg(destIn)
6994 .addReg(0).addImm(1));
6995 }
6996 srcIn = srcOut;
6997 destIn = destOut;
6998 }
6999
7000 MI->eraseFromParent(); // The instruction is gone now.
7001 return BB;
7002 }
7003
7004 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const7005 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7006 MachineBasicBlock *BB) const {
7007 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7008 DebugLoc dl = MI->getDebugLoc();
7009 bool isThumb2 = Subtarget->isThumb2();
7010 switch (MI->getOpcode()) {
7011 default: {
7012 MI->dump();
7013 llvm_unreachable("Unexpected instr type to insert");
7014 }
7015 // The Thumb2 pre-indexed stores have the same MI operands, they just
7016 // define them differently in the .td files from the isel patterns, so
7017 // they need pseudos.
7018 case ARM::t2STR_preidx:
7019 MI->setDesc(TII->get(ARM::t2STR_PRE));
7020 return BB;
7021 case ARM::t2STRB_preidx:
7022 MI->setDesc(TII->get(ARM::t2STRB_PRE));
7023 return BB;
7024 case ARM::t2STRH_preidx:
7025 MI->setDesc(TII->get(ARM::t2STRH_PRE));
7026 return BB;
7027
7028 case ARM::STRi_preidx:
7029 case ARM::STRBi_preidx: {
7030 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7031 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7032 // Decode the offset.
7033 unsigned Offset = MI->getOperand(4).getImm();
7034 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7035 Offset = ARM_AM::getAM2Offset(Offset);
7036 if (isSub)
7037 Offset = -Offset;
7038
7039 MachineMemOperand *MMO = *MI->memoperands_begin();
7040 BuildMI(*BB, MI, dl, TII->get(NewOpc))
7041 .addOperand(MI->getOperand(0)) // Rn_wb
7042 .addOperand(MI->getOperand(1)) // Rt
7043 .addOperand(MI->getOperand(2)) // Rn
7044 .addImm(Offset) // offset (skip GPR==zero_reg)
7045 .addOperand(MI->getOperand(5)) // pred
7046 .addOperand(MI->getOperand(6))
7047 .addMemOperand(MMO);
7048 MI->eraseFromParent();
7049 return BB;
7050 }
7051 case ARM::STRr_preidx:
7052 case ARM::STRBr_preidx:
7053 case ARM::STRH_preidx: {
7054 unsigned NewOpc;
7055 switch (MI->getOpcode()) {
7056 default: llvm_unreachable("unexpected opcode!");
7057 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7058 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7059 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7060 }
7061 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7062 for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7063 MIB.addOperand(MI->getOperand(i));
7064 MI->eraseFromParent();
7065 return BB;
7066 }
7067 case ARM::ATOMIC_LOAD_ADD_I8:
7068 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7069 case ARM::ATOMIC_LOAD_ADD_I16:
7070 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7071 case ARM::ATOMIC_LOAD_ADD_I32:
7072 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7073
7074 case ARM::ATOMIC_LOAD_AND_I8:
7075 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7076 case ARM::ATOMIC_LOAD_AND_I16:
7077 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7078 case ARM::ATOMIC_LOAD_AND_I32:
7079 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7080
7081 case ARM::ATOMIC_LOAD_OR_I8:
7082 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7083 case ARM::ATOMIC_LOAD_OR_I16:
7084 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7085 case ARM::ATOMIC_LOAD_OR_I32:
7086 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7087
7088 case ARM::ATOMIC_LOAD_XOR_I8:
7089 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7090 case ARM::ATOMIC_LOAD_XOR_I16:
7091 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7092 case ARM::ATOMIC_LOAD_XOR_I32:
7093 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7094
7095 case ARM::ATOMIC_LOAD_NAND_I8:
7096 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7097 case ARM::ATOMIC_LOAD_NAND_I16:
7098 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7099 case ARM::ATOMIC_LOAD_NAND_I32:
7100 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7101
7102 case ARM::ATOMIC_LOAD_SUB_I8:
7103 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7104 case ARM::ATOMIC_LOAD_SUB_I16:
7105 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7106 case ARM::ATOMIC_LOAD_SUB_I32:
7107 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7108
7109 case ARM::ATOMIC_LOAD_MIN_I8:
7110 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
7111 case ARM::ATOMIC_LOAD_MIN_I16:
7112 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
7113 case ARM::ATOMIC_LOAD_MIN_I32:
7114 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
7115
7116 case ARM::ATOMIC_LOAD_MAX_I8:
7117 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
7118 case ARM::ATOMIC_LOAD_MAX_I16:
7119 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
7120 case ARM::ATOMIC_LOAD_MAX_I32:
7121 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
7122
7123 case ARM::ATOMIC_LOAD_UMIN_I8:
7124 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
7125 case ARM::ATOMIC_LOAD_UMIN_I16:
7126 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
7127 case ARM::ATOMIC_LOAD_UMIN_I32:
7128 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
7129
7130 case ARM::ATOMIC_LOAD_UMAX_I8:
7131 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
7132 case ARM::ATOMIC_LOAD_UMAX_I16:
7133 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
7134 case ARM::ATOMIC_LOAD_UMAX_I32:
7135 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
7136
7137 case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
7138 case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
7139 case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
7140
7141 case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
7142 case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
7143 case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
7144
7145
7146 case ARM::ATOMADD6432:
7147 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
7148 isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
7149 /*NeedsCarry*/ true);
7150 case ARM::ATOMSUB6432:
7151 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7152 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7153 /*NeedsCarry*/ true);
7154 case ARM::ATOMOR6432:
7155 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
7156 isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7157 case ARM::ATOMXOR6432:
7158 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
7159 isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7160 case ARM::ATOMAND6432:
7161 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
7162 isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7163 case ARM::ATOMSWAP6432:
7164 return EmitAtomicBinary64(MI, BB, 0, 0, false);
7165 case ARM::ATOMCMPXCHG6432:
7166 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7167 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7168 /*NeedsCarry*/ false, /*IsCmpxchg*/true);
7169 case ARM::ATOMMIN6432:
7170 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7171 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7172 /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7173 /*IsMinMax*/ true, ARMCC::LT);
7174 case ARM::ATOMMAX6432:
7175 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7176 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7177 /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7178 /*IsMinMax*/ true, ARMCC::GE);
7179 case ARM::ATOMUMIN6432:
7180 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7181 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7182 /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7183 /*IsMinMax*/ true, ARMCC::LO);
7184 case ARM::ATOMUMAX6432:
7185 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7186 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7187 /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7188 /*IsMinMax*/ true, ARMCC::HS);
7189
7190 case ARM::tMOVCCr_pseudo: {
7191 // To "insert" a SELECT_CC instruction, we actually have to insert the
7192 // diamond control-flow pattern. The incoming instruction knows the
7193 // destination vreg to set, the condition code register to branch on, the
7194 // true/false values to select between, and a branch opcode to use.
7195 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7196 MachineFunction::iterator It = BB;
7197 ++It;
7198
7199 // thisMBB:
7200 // ...
7201 // TrueVal = ...
7202 // cmpTY ccX, r1, r2
7203 // bCC copy1MBB
7204 // fallthrough --> copy0MBB
7205 MachineBasicBlock *thisMBB = BB;
7206 MachineFunction *F = BB->getParent();
7207 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7208 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7209 F->insert(It, copy0MBB);
7210 F->insert(It, sinkMBB);
7211
7212 // Transfer the remainder of BB and its successor edges to sinkMBB.
7213 sinkMBB->splice(sinkMBB->begin(), BB,
7214 llvm::next(MachineBasicBlock::iterator(MI)),
7215 BB->end());
7216 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7217
7218 BB->addSuccessor(copy0MBB);
7219 BB->addSuccessor(sinkMBB);
7220
7221 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7222 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7223
7224 // copy0MBB:
7225 // %FalseValue = ...
7226 // # fallthrough to sinkMBB
7227 BB = copy0MBB;
7228
7229 // Update machine-CFG edges
7230 BB->addSuccessor(sinkMBB);
7231
7232 // sinkMBB:
7233 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7234 // ...
7235 BB = sinkMBB;
7236 BuildMI(*BB, BB->begin(), dl,
7237 TII->get(ARM::PHI), MI->getOperand(0).getReg())
7238 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7239 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7240
7241 MI->eraseFromParent(); // The pseudo instruction is gone now.
7242 return BB;
7243 }
7244
7245 case ARM::BCCi64:
7246 case ARM::BCCZi64: {
7247 // If there is an unconditional branch to the other successor, remove it.
7248 BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
7249
7250 // Compare both parts that make up the double comparison separately for
7251 // equality.
7252 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7253
7254 unsigned LHS1 = MI->getOperand(1).getReg();
7255 unsigned LHS2 = MI->getOperand(2).getReg();
7256 if (RHSisZero) {
7257 AddDefaultPred(BuildMI(BB, dl,
7258 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7259 .addReg(LHS1).addImm(0));
7260 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7261 .addReg(LHS2).addImm(0)
7262 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7263 } else {
7264 unsigned RHS1 = MI->getOperand(3).getReg();
7265 unsigned RHS2 = MI->getOperand(4).getReg();
7266 AddDefaultPred(BuildMI(BB, dl,
7267 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7268 .addReg(LHS1).addReg(RHS1));
7269 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7270 .addReg(LHS2).addReg(RHS2)
7271 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7272 }
7273
7274 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7275 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7276 if (MI->getOperand(0).getImm() == ARMCC::NE)
7277 std::swap(destMBB, exitMBB);
7278
7279 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7280 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7281 if (isThumb2)
7282 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7283 else
7284 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7285
7286 MI->eraseFromParent(); // The pseudo instruction is gone now.
7287 return BB;
7288 }
7289
7290 case ARM::Int_eh_sjlj_setjmp:
7291 case ARM::Int_eh_sjlj_setjmp_nofp:
7292 case ARM::tInt_eh_sjlj_setjmp:
7293 case ARM::t2Int_eh_sjlj_setjmp:
7294 case ARM::t2Int_eh_sjlj_setjmp_nofp:
7295 EmitSjLjDispatchBlock(MI, BB);
7296 return BB;
7297
7298 case ARM::ABS:
7299 case ARM::t2ABS: {
7300 // To insert an ABS instruction, we have to insert the
7301 // diamond control-flow pattern. The incoming instruction knows the
7302 // source vreg to test against 0, the destination vreg to set,
7303 // the condition code register to branch on, the
7304 // true/false values to select between, and a branch opcode to use.
7305 // It transforms
7306 // V1 = ABS V0
7307 // into
7308 // V2 = MOVS V0
7309 // BCC (branch to SinkBB if V0 >= 0)
7310 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
7311 // SinkBB: V1 = PHI(V2, V3)
7312 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7313 MachineFunction::iterator BBI = BB;
7314 ++BBI;
7315 MachineFunction *Fn = BB->getParent();
7316 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7317 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7318 Fn->insert(BBI, RSBBB);
7319 Fn->insert(BBI, SinkBB);
7320
7321 unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7322 unsigned int ABSDstReg = MI->getOperand(0).getReg();
7323 bool isThumb2 = Subtarget->isThumb2();
7324 MachineRegisterInfo &MRI = Fn->getRegInfo();
7325 // In Thumb mode S must not be specified if source register is the SP or
7326 // PC and if destination register is the SP, so restrict register class
7327 unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7328 (const TargetRegisterClass*)&ARM::rGPRRegClass :
7329 (const TargetRegisterClass*)&ARM::GPRRegClass);
7330
7331 // Transfer the remainder of BB and its successor edges to sinkMBB.
7332 SinkBB->splice(SinkBB->begin(), BB,
7333 llvm::next(MachineBasicBlock::iterator(MI)),
7334 BB->end());
7335 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7336
7337 BB->addSuccessor(RSBBB);
7338 BB->addSuccessor(SinkBB);
7339
7340 // fall through to SinkMBB
7341 RSBBB->addSuccessor(SinkBB);
7342
7343 // insert a cmp at the end of BB
7344 AddDefaultPred(BuildMI(BB, dl,
7345 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7346 .addReg(ABSSrcReg).addImm(0));
7347
7348 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7349 BuildMI(BB, dl,
7350 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7351 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7352
7353 // insert rsbri in RSBBB
7354 // Note: BCC and rsbri will be converted into predicated rsbmi
7355 // by if-conversion pass
7356 BuildMI(*RSBBB, RSBBB->begin(), dl,
7357 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7358 .addReg(ABSSrcReg, RegState::Kill)
7359 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7360
7361 // insert PHI in SinkBB,
7362 // reuse ABSDstReg to not change uses of ABS instruction
7363 BuildMI(*SinkBB, SinkBB->begin(), dl,
7364 TII->get(ARM::PHI), ABSDstReg)
7365 .addReg(NewRsbDstReg).addMBB(RSBBB)
7366 .addReg(ABSSrcReg).addMBB(BB);
7367
7368 // remove ABS instruction
7369 MI->eraseFromParent();
7370
7371 // return last added BB
7372 return SinkBB;
7373 }
7374 case ARM::COPY_STRUCT_BYVAL_I32:
7375 ++NumLoopByVals;
7376 return EmitStructByval(MI, BB);
7377 }
7378 }
7379
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const7380 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7381 SDNode *Node) const {
7382 if (!MI->hasPostISelHook()) {
7383 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7384 "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7385 return;
7386 }
7387
7388 const MCInstrDesc *MCID = &MI->getDesc();
7389 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7390 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7391 // operand is still set to noreg. If needed, set the optional operand's
7392 // register to CPSR, and remove the redundant implicit def.
7393 //
7394 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7395
7396 // Rename pseudo opcodes.
7397 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7398 if (NewOpc) {
7399 const ARMBaseInstrInfo *TII =
7400 static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7401 MCID = &TII->get(NewOpc);
7402
7403 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7404 "converted opcode should be the same except for cc_out");
7405
7406 MI->setDesc(*MCID);
7407
7408 // Add the optional cc_out operand
7409 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7410 }
7411 unsigned ccOutIdx = MCID->getNumOperands() - 1;
7412
7413 // Any ARM instruction that sets the 's' bit should specify an optional
7414 // "cc_out" operand in the last operand position.
7415 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7416 assert(!NewOpc && "Optional cc_out operand required");
7417 return;
7418 }
7419 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7420 // since we already have an optional CPSR def.
7421 bool definesCPSR = false;
7422 bool deadCPSR = false;
7423 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7424 i != e; ++i) {
7425 const MachineOperand &MO = MI->getOperand(i);
7426 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7427 definesCPSR = true;
7428 if (MO.isDead())
7429 deadCPSR = true;
7430 MI->RemoveOperand(i);
7431 break;
7432 }
7433 }
7434 if (!definesCPSR) {
7435 assert(!NewOpc && "Optional cc_out operand required");
7436 return;
7437 }
7438 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7439 if (deadCPSR) {
7440 assert(!MI->getOperand(ccOutIdx).getReg() &&
7441 "expect uninitialized optional cc_out operand");
7442 return;
7443 }
7444
7445 // If this instruction was defined with an optional CPSR def and its dag node
7446 // had a live implicit CPSR def, then activate the optional CPSR def.
7447 MachineOperand &MO = MI->getOperand(ccOutIdx);
7448 MO.setReg(ARM::CPSR);
7449 MO.setIsDef(true);
7450 }
7451
7452 //===----------------------------------------------------------------------===//
7453 // ARM Optimization Hooks
7454 //===----------------------------------------------------------------------===//
7455
7456 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)7457 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7458 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7459 if (!C)
7460 return false;
7461 return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7462 }
7463
7464 // Return true if N is conditionally 0 or all ones.
7465 // Detects these expressions where cc is an i1 value:
7466 //
7467 // (select cc 0, y) [AllOnes=0]
7468 // (select cc y, 0) [AllOnes=0]
7469 // (zext cc) [AllOnes=0]
7470 // (sext cc) [AllOnes=0/1]
7471 // (select cc -1, y) [AllOnes=1]
7472 // (select cc y, -1) [AllOnes=1]
7473 //
7474 // Invert is set when N is the null/all ones constant when CC is false.
7475 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)7476 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7477 SDValue &CC, bool &Invert,
7478 SDValue &OtherOp,
7479 SelectionDAG &DAG) {
7480 switch (N->getOpcode()) {
7481 default: return false;
7482 case ISD::SELECT: {
7483 CC = N->getOperand(0);
7484 SDValue N1 = N->getOperand(1);
7485 SDValue N2 = N->getOperand(2);
7486 if (isZeroOrAllOnes(N1, AllOnes)) {
7487 Invert = false;
7488 OtherOp = N2;
7489 return true;
7490 }
7491 if (isZeroOrAllOnes(N2, AllOnes)) {
7492 Invert = true;
7493 OtherOp = N1;
7494 return true;
7495 }
7496 return false;
7497 }
7498 case ISD::ZERO_EXTEND:
7499 // (zext cc) can never be the all ones value.
7500 if (AllOnes)
7501 return false;
7502 // Fall through.
7503 case ISD::SIGN_EXTEND: {
7504 EVT VT = N->getValueType(0);
7505 CC = N->getOperand(0);
7506 if (CC.getValueType() != MVT::i1)
7507 return false;
7508 Invert = !AllOnes;
7509 if (AllOnes)
7510 // When looking for an AllOnes constant, N is an sext, and the 'other'
7511 // value is 0.
7512 OtherOp = DAG.getConstant(0, VT);
7513 else if (N->getOpcode() == ISD::ZERO_EXTEND)
7514 // When looking for a 0 constant, N can be zext or sext.
7515 OtherOp = DAG.getConstant(1, VT);
7516 else
7517 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7518 return true;
7519 }
7520 }
7521 }
7522
7523 // Combine a constant select operand into its use:
7524 //
7525 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7526 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7527 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
7528 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7529 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
7530 //
7531 // The transform is rejected if the select doesn't have a constant operand that
7532 // is null, or all ones when AllOnes is set.
7533 //
7534 // Also recognize sext/zext from i1:
7535 //
7536 // (add (zext cc), x) -> (select cc (add x, 1), x)
7537 // (add (sext cc), x) -> (select cc (add x, -1), x)
7538 //
7539 // These transformations eventually create predicated instructions.
7540 //
7541 // @param N The node to transform.
7542 // @param Slct The N operand that is a select.
7543 // @param OtherOp The other N operand (x above).
7544 // @param DCI Context.
7545 // @param AllOnes Require the select constant to be all ones instead of null.
7546 // @returns The new node, or SDValue() on failure.
7547 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)7548 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7549 TargetLowering::DAGCombinerInfo &DCI,
7550 bool AllOnes = false) {
7551 SelectionDAG &DAG = DCI.DAG;
7552 EVT VT = N->getValueType(0);
7553 SDValue NonConstantVal;
7554 SDValue CCOp;
7555 bool SwapSelectOps;
7556 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7557 NonConstantVal, DAG))
7558 return SDValue();
7559
7560 // Slct is now know to be the desired identity constant when CC is true.
7561 SDValue TrueVal = OtherOp;
7562 SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
7563 OtherOp, NonConstantVal);
7564 // Unless SwapSelectOps says CC should be false.
7565 if (SwapSelectOps)
7566 std::swap(TrueVal, FalseVal);
7567
7568 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
7569 CCOp, TrueVal, FalseVal);
7570 }
7571
7572 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7573 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)7574 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7575 TargetLowering::DAGCombinerInfo &DCI) {
7576 SDValue N0 = N->getOperand(0);
7577 SDValue N1 = N->getOperand(1);
7578 if (N0.getNode()->hasOneUse()) {
7579 SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7580 if (Result.getNode())
7581 return Result;
7582 }
7583 if (N1.getNode()->hasOneUse()) {
7584 SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7585 if (Result.getNode())
7586 return Result;
7587 }
7588 return SDValue();
7589 }
7590
7591 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7592 // (only after legalization).
AddCombineToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7593 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7594 TargetLowering::DAGCombinerInfo &DCI,
7595 const ARMSubtarget *Subtarget) {
7596
7597 // Only perform optimization if after legalize, and if NEON is available. We
7598 // also expected both operands to be BUILD_VECTORs.
7599 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7600 || N0.getOpcode() != ISD::BUILD_VECTOR
7601 || N1.getOpcode() != ISD::BUILD_VECTOR)
7602 return SDValue();
7603
7604 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7605 EVT VT = N->getValueType(0);
7606 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7607 return SDValue();
7608
7609 // Check that the vector operands are of the right form.
7610 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7611 // operands, where N is the size of the formed vector.
7612 // Each EXTRACT_VECTOR should have the same input vector and odd or even
7613 // index such that we have a pair wise add pattern.
7614
7615 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7616 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7617 return SDValue();
7618 SDValue Vec = N0->getOperand(0)->getOperand(0);
7619 SDNode *V = Vec.getNode();
7620 unsigned nextIndex = 0;
7621
7622 // For each operands to the ADD which are BUILD_VECTORs,
7623 // check to see if each of their operands are an EXTRACT_VECTOR with
7624 // the same vector and appropriate index.
7625 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7626 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7627 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7628
7629 SDValue ExtVec0 = N0->getOperand(i);
7630 SDValue ExtVec1 = N1->getOperand(i);
7631
7632 // First operand is the vector, verify its the same.
7633 if (V != ExtVec0->getOperand(0).getNode() ||
7634 V != ExtVec1->getOperand(0).getNode())
7635 return SDValue();
7636
7637 // Second is the constant, verify its correct.
7638 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7639 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7640
7641 // For the constant, we want to see all the even or all the odd.
7642 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7643 || C1->getZExtValue() != nextIndex+1)
7644 return SDValue();
7645
7646 // Increment index.
7647 nextIndex+=2;
7648 } else
7649 return SDValue();
7650 }
7651
7652 // Create VPADDL node.
7653 SelectionDAG &DAG = DCI.DAG;
7654 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7655
7656 // Build operand list.
7657 SmallVector<SDValue, 8> Ops;
7658 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7659 TLI.getPointerTy()));
7660
7661 // Input is the vector.
7662 Ops.push_back(Vec);
7663
7664 // Get widened type and narrowed type.
7665 MVT widenType;
7666 unsigned numElem = VT.getVectorNumElements();
7667 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7668 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7669 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7670 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7671 default:
7672 llvm_unreachable("Invalid vector element type for padd optimization.");
7673 }
7674
7675 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7676 widenType, &Ops[0], Ops.size());
7677 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
7678 }
7679
findMUL_LOHI(SDValue V)7680 static SDValue findMUL_LOHI(SDValue V) {
7681 if (V->getOpcode() == ISD::UMUL_LOHI ||
7682 V->getOpcode() == ISD::SMUL_LOHI)
7683 return V;
7684 return SDValue();
7685 }
7686
AddCombineTo64bitMLAL(SDNode * AddcNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7687 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7688 TargetLowering::DAGCombinerInfo &DCI,
7689 const ARMSubtarget *Subtarget) {
7690
7691 if (Subtarget->isThumb1Only()) return SDValue();
7692
7693 // Only perform the checks after legalize when the pattern is available.
7694 if (DCI.isBeforeLegalize()) return SDValue();
7695
7696 // Look for multiply add opportunities.
7697 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7698 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7699 // a glue link from the first add to the second add.
7700 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7701 // a S/UMLAL instruction.
7702 // loAdd UMUL_LOHI
7703 // \ / :lo \ :hi
7704 // \ / \ [no multiline comment]
7705 // ADDC | hiAdd
7706 // \ :glue / /
7707 // \ / /
7708 // ADDE
7709 //
7710 assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7711 SDValue AddcOp0 = AddcNode->getOperand(0);
7712 SDValue AddcOp1 = AddcNode->getOperand(1);
7713
7714 // Check if the two operands are from the same mul_lohi node.
7715 if (AddcOp0.getNode() == AddcOp1.getNode())
7716 return SDValue();
7717
7718 assert(AddcNode->getNumValues() == 2 &&
7719 AddcNode->getValueType(0) == MVT::i32 &&
7720 AddcNode->getValueType(1) == MVT::Glue &&
7721 "Expect ADDC with two result values: i32, glue");
7722
7723 // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7724 if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7725 AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7726 AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7727 AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7728 return SDValue();
7729
7730 // Look for the glued ADDE.
7731 SDNode* AddeNode = AddcNode->getGluedUser();
7732 if (AddeNode == NULL)
7733 return SDValue();
7734
7735 // Make sure it is really an ADDE.
7736 if (AddeNode->getOpcode() != ISD::ADDE)
7737 return SDValue();
7738
7739 assert(AddeNode->getNumOperands() == 3 &&
7740 AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7741 "ADDE node has the wrong inputs");
7742
7743 // Check for the triangle shape.
7744 SDValue AddeOp0 = AddeNode->getOperand(0);
7745 SDValue AddeOp1 = AddeNode->getOperand(1);
7746
7747 // Make sure that the ADDE operands are not coming from the same node.
7748 if (AddeOp0.getNode() == AddeOp1.getNode())
7749 return SDValue();
7750
7751 // Find the MUL_LOHI node walking up ADDE's operands.
7752 bool IsLeftOperandMUL = false;
7753 SDValue MULOp = findMUL_LOHI(AddeOp0);
7754 if (MULOp == SDValue())
7755 MULOp = findMUL_LOHI(AddeOp1);
7756 else
7757 IsLeftOperandMUL = true;
7758 if (MULOp == SDValue())
7759 return SDValue();
7760
7761 // Figure out the right opcode.
7762 unsigned Opc = MULOp->getOpcode();
7763 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7764
7765 // Figure out the high and low input values to the MLAL node.
7766 SDValue* HiMul = &MULOp;
7767 SDValue* HiAdd = NULL;
7768 SDValue* LoMul = NULL;
7769 SDValue* LowAdd = NULL;
7770
7771 if (IsLeftOperandMUL)
7772 HiAdd = &AddeOp1;
7773 else
7774 HiAdd = &AddeOp0;
7775
7776
7777 if (AddcOp0->getOpcode() == Opc) {
7778 LoMul = &AddcOp0;
7779 LowAdd = &AddcOp1;
7780 }
7781 if (AddcOp1->getOpcode() == Opc) {
7782 LoMul = &AddcOp1;
7783 LowAdd = &AddcOp0;
7784 }
7785
7786 if (LoMul == NULL)
7787 return SDValue();
7788
7789 if (LoMul->getNode() != HiMul->getNode())
7790 return SDValue();
7791
7792 // Create the merged node.
7793 SelectionDAG &DAG = DCI.DAG;
7794
7795 // Build operand list.
7796 SmallVector<SDValue, 8> Ops;
7797 Ops.push_back(LoMul->getOperand(0));
7798 Ops.push_back(LoMul->getOperand(1));
7799 Ops.push_back(*LowAdd);
7800 Ops.push_back(*HiAdd);
7801
7802 SDValue MLALNode = DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
7803 DAG.getVTList(MVT::i32, MVT::i32),
7804 &Ops[0], Ops.size());
7805
7806 // Replace the ADDs' nodes uses by the MLA node's values.
7807 SDValue HiMLALResult(MLALNode.getNode(), 1);
7808 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7809
7810 SDValue LoMLALResult(MLALNode.getNode(), 0);
7811 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7812
7813 // Return original node to notify the driver to stop replacing.
7814 SDValue resNode(AddcNode, 0);
7815 return resNode;
7816 }
7817
7818 /// PerformADDCCombine - Target-specific dag combine transform from
7819 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
PerformADDCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7820 static SDValue PerformADDCCombine(SDNode *N,
7821 TargetLowering::DAGCombinerInfo &DCI,
7822 const ARMSubtarget *Subtarget) {
7823
7824 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7825
7826 }
7827
7828 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7829 /// operands N0 and N1. This is a helper for PerformADDCombine that is
7830 /// called with the default operands, and if that fails, with commuted
7831 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7832 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7833 TargetLowering::DAGCombinerInfo &DCI,
7834 const ARMSubtarget *Subtarget){
7835
7836 // Attempt to create vpaddl for this add.
7837 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7838 if (Result.getNode())
7839 return Result;
7840
7841 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7842 if (N0.getNode()->hasOneUse()) {
7843 SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7844 if (Result.getNode()) return Result;
7845 }
7846 return SDValue();
7847 }
7848
7849 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7850 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7851 static SDValue PerformADDCombine(SDNode *N,
7852 TargetLowering::DAGCombinerInfo &DCI,
7853 const ARMSubtarget *Subtarget) {
7854 SDValue N0 = N->getOperand(0);
7855 SDValue N1 = N->getOperand(1);
7856
7857 // First try with the default operand order.
7858 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7859 if (Result.getNode())
7860 return Result;
7861
7862 // If that didn't work, try again with the operands commuted.
7863 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7864 }
7865
7866 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7867 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7868 static SDValue PerformSUBCombine(SDNode *N,
7869 TargetLowering::DAGCombinerInfo &DCI) {
7870 SDValue N0 = N->getOperand(0);
7871 SDValue N1 = N->getOperand(1);
7872
7873 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7874 if (N1.getNode()->hasOneUse()) {
7875 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7876 if (Result.getNode()) return Result;
7877 }
7878
7879 return SDValue();
7880 }
7881
7882 /// PerformVMULCombine
7883 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7884 /// special multiplier accumulator forwarding.
7885 /// vmul d3, d0, d2
7886 /// vmla d3, d1, d2
7887 /// is faster than
7888 /// vadd d3, d0, d1
7889 /// vmul d3, d3, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7890 static SDValue PerformVMULCombine(SDNode *N,
7891 TargetLowering::DAGCombinerInfo &DCI,
7892 const ARMSubtarget *Subtarget) {
7893 if (!Subtarget->hasVMLxForwarding())
7894 return SDValue();
7895
7896 SelectionDAG &DAG = DCI.DAG;
7897 SDValue N0 = N->getOperand(0);
7898 SDValue N1 = N->getOperand(1);
7899 unsigned Opcode = N0.getOpcode();
7900 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7901 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7902 Opcode = N1.getOpcode();
7903 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7904 Opcode != ISD::FADD && Opcode != ISD::FSUB)
7905 return SDValue();
7906 std::swap(N0, N1);
7907 }
7908
7909 EVT VT = N->getValueType(0);
7910 DebugLoc DL = N->getDebugLoc();
7911 SDValue N00 = N0->getOperand(0);
7912 SDValue N01 = N0->getOperand(1);
7913 return DAG.getNode(Opcode, DL, VT,
7914 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7915 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7916 }
7917
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7918 static SDValue PerformMULCombine(SDNode *N,
7919 TargetLowering::DAGCombinerInfo &DCI,
7920 const ARMSubtarget *Subtarget) {
7921 SelectionDAG &DAG = DCI.DAG;
7922
7923 if (Subtarget->isThumb1Only())
7924 return SDValue();
7925
7926 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7927 return SDValue();
7928
7929 EVT VT = N->getValueType(0);
7930 if (VT.is64BitVector() || VT.is128BitVector())
7931 return PerformVMULCombine(N, DCI, Subtarget);
7932 if (VT != MVT::i32)
7933 return SDValue();
7934
7935 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7936 if (!C)
7937 return SDValue();
7938
7939 int64_t MulAmt = C->getSExtValue();
7940 unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
7941
7942 ShiftAmt = ShiftAmt & (32 - 1);
7943 SDValue V = N->getOperand(0);
7944 DebugLoc DL = N->getDebugLoc();
7945
7946 SDValue Res;
7947 MulAmt >>= ShiftAmt;
7948
7949 if (MulAmt >= 0) {
7950 if (isPowerOf2_32(MulAmt - 1)) {
7951 // (mul x, 2^N + 1) => (add (shl x, N), x)
7952 Res = DAG.getNode(ISD::ADD, DL, VT,
7953 V,
7954 DAG.getNode(ISD::SHL, DL, VT,
7955 V,
7956 DAG.getConstant(Log2_32(MulAmt - 1),
7957 MVT::i32)));
7958 } else if (isPowerOf2_32(MulAmt + 1)) {
7959 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7960 Res = DAG.getNode(ISD::SUB, DL, VT,
7961 DAG.getNode(ISD::SHL, DL, VT,
7962 V,
7963 DAG.getConstant(Log2_32(MulAmt + 1),
7964 MVT::i32)),
7965 V);
7966 } else
7967 return SDValue();
7968 } else {
7969 uint64_t MulAmtAbs = -MulAmt;
7970 if (isPowerOf2_32(MulAmtAbs + 1)) {
7971 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7972 Res = DAG.getNode(ISD::SUB, DL, VT,
7973 V,
7974 DAG.getNode(ISD::SHL, DL, VT,
7975 V,
7976 DAG.getConstant(Log2_32(MulAmtAbs + 1),
7977 MVT::i32)));
7978 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7979 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7980 Res = DAG.getNode(ISD::ADD, DL, VT,
7981 V,
7982 DAG.getNode(ISD::SHL, DL, VT,
7983 V,
7984 DAG.getConstant(Log2_32(MulAmtAbs-1),
7985 MVT::i32)));
7986 Res = DAG.getNode(ISD::SUB, DL, VT,
7987 DAG.getConstant(0, MVT::i32),Res);
7988
7989 } else
7990 return SDValue();
7991 }
7992
7993 if (ShiftAmt != 0)
7994 Res = DAG.getNode(ISD::SHL, DL, VT,
7995 Res, DAG.getConstant(ShiftAmt, MVT::i32));
7996
7997 // Do not add new nodes to DAG combiner worklist.
7998 DCI.CombineTo(N, Res, false);
7999 return SDValue();
8000 }
8001
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8002 static SDValue PerformANDCombine(SDNode *N,
8003 TargetLowering::DAGCombinerInfo &DCI,
8004 const ARMSubtarget *Subtarget) {
8005
8006 // Attempt to use immediate-form VBIC
8007 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8008 DebugLoc dl = N->getDebugLoc();
8009 EVT VT = N->getValueType(0);
8010 SelectionDAG &DAG = DCI.DAG;
8011
8012 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8013 return SDValue();
8014
8015 APInt SplatBits, SplatUndef;
8016 unsigned SplatBitSize;
8017 bool HasAnyUndefs;
8018 if (BVN &&
8019 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8020 if (SplatBitSize <= 64) {
8021 EVT VbicVT;
8022 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8023 SplatUndef.getZExtValue(), SplatBitSize,
8024 DAG, VbicVT, VT.is128BitVector(),
8025 OtherModImm);
8026 if (Val.getNode()) {
8027 SDValue Input =
8028 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8029 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8030 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8031 }
8032 }
8033 }
8034
8035 if (!Subtarget->isThumb1Only()) {
8036 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8037 SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8038 if (Result.getNode())
8039 return Result;
8040 }
8041
8042 return SDValue();
8043 }
8044
8045 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8046 static SDValue PerformORCombine(SDNode *N,
8047 TargetLowering::DAGCombinerInfo &DCI,
8048 const ARMSubtarget *Subtarget) {
8049 // Attempt to use immediate-form VORR
8050 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8051 DebugLoc dl = N->getDebugLoc();
8052 EVT VT = N->getValueType(0);
8053 SelectionDAG &DAG = DCI.DAG;
8054
8055 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8056 return SDValue();
8057
8058 APInt SplatBits, SplatUndef;
8059 unsigned SplatBitSize;
8060 bool HasAnyUndefs;
8061 if (BVN && Subtarget->hasNEON() &&
8062 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8063 if (SplatBitSize <= 64) {
8064 EVT VorrVT;
8065 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8066 SplatUndef.getZExtValue(), SplatBitSize,
8067 DAG, VorrVT, VT.is128BitVector(),
8068 OtherModImm);
8069 if (Val.getNode()) {
8070 SDValue Input =
8071 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8072 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8073 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8074 }
8075 }
8076 }
8077
8078 if (!Subtarget->isThumb1Only()) {
8079 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8080 SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8081 if (Result.getNode())
8082 return Result;
8083 }
8084
8085 // The code below optimizes (or (and X, Y), Z).
8086 // The AND operand needs to have a single user to make these optimizations
8087 // profitable.
8088 SDValue N0 = N->getOperand(0);
8089 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8090 return SDValue();
8091 SDValue N1 = N->getOperand(1);
8092
8093 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8094 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8095 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8096 APInt SplatUndef;
8097 unsigned SplatBitSize;
8098 bool HasAnyUndefs;
8099
8100 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8101 APInt SplatBits0;
8102 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8103 HasAnyUndefs) && !HasAnyUndefs) {
8104 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8105 APInt SplatBits1;
8106 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8107 HasAnyUndefs) && !HasAnyUndefs &&
8108 SplatBits0 == ~SplatBits1) {
8109 // Canonicalize the vector type to make instruction selection simpler.
8110 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8111 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8112 N0->getOperand(1), N0->getOperand(0),
8113 N1->getOperand(0));
8114 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8115 }
8116 }
8117 }
8118
8119 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8120 // reasonable.
8121
8122 // BFI is only available on V6T2+
8123 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8124 return SDValue();
8125
8126 DebugLoc DL = N->getDebugLoc();
8127 // 1) or (and A, mask), val => ARMbfi A, val, mask
8128 // iff (val & mask) == val
8129 //
8130 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8131 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8132 // && mask == ~mask2
8133 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8134 // && ~mask == mask2
8135 // (i.e., copy a bitfield value into another bitfield of the same width)
8136
8137 if (VT != MVT::i32)
8138 return SDValue();
8139
8140 SDValue N00 = N0.getOperand(0);
8141
8142 // The value and the mask need to be constants so we can verify this is
8143 // actually a bitfield set. If the mask is 0xffff, we can do better
8144 // via a movt instruction, so don't use BFI in that case.
8145 SDValue MaskOp = N0.getOperand(1);
8146 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8147 if (!MaskC)
8148 return SDValue();
8149 unsigned Mask = MaskC->getZExtValue();
8150 if (Mask == 0xffff)
8151 return SDValue();
8152 SDValue Res;
8153 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8154 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8155 if (N1C) {
8156 unsigned Val = N1C->getZExtValue();
8157 if ((Val & ~Mask) != Val)
8158 return SDValue();
8159
8160 if (ARM::isBitFieldInvertedMask(Mask)) {
8161 Val >>= CountTrailingZeros_32(~Mask);
8162
8163 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8164 DAG.getConstant(Val, MVT::i32),
8165 DAG.getConstant(Mask, MVT::i32));
8166
8167 // Do not add new nodes to DAG combiner worklist.
8168 DCI.CombineTo(N, Res, false);
8169 return SDValue();
8170 }
8171 } else if (N1.getOpcode() == ISD::AND) {
8172 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8173 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8174 if (!N11C)
8175 return SDValue();
8176 unsigned Mask2 = N11C->getZExtValue();
8177
8178 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8179 // as is to match.
8180 if (ARM::isBitFieldInvertedMask(Mask) &&
8181 (Mask == ~Mask2)) {
8182 // The pack halfword instruction works better for masks that fit it,
8183 // so use that when it's available.
8184 if (Subtarget->hasT2ExtractPack() &&
8185 (Mask == 0xffff || Mask == 0xffff0000))
8186 return SDValue();
8187 // 2a
8188 unsigned amt = CountTrailingZeros_32(Mask2);
8189 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8190 DAG.getConstant(amt, MVT::i32));
8191 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8192 DAG.getConstant(Mask, MVT::i32));
8193 // Do not add new nodes to DAG combiner worklist.
8194 DCI.CombineTo(N, Res, false);
8195 return SDValue();
8196 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8197 (~Mask == Mask2)) {
8198 // The pack halfword instruction works better for masks that fit it,
8199 // so use that when it's available.
8200 if (Subtarget->hasT2ExtractPack() &&
8201 (Mask2 == 0xffff || Mask2 == 0xffff0000))
8202 return SDValue();
8203 // 2b
8204 unsigned lsb = CountTrailingZeros_32(Mask);
8205 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8206 DAG.getConstant(lsb, MVT::i32));
8207 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8208 DAG.getConstant(Mask2, MVT::i32));
8209 // Do not add new nodes to DAG combiner worklist.
8210 DCI.CombineTo(N, Res, false);
8211 return SDValue();
8212 }
8213 }
8214
8215 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8216 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8217 ARM::isBitFieldInvertedMask(~Mask)) {
8218 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8219 // where lsb(mask) == #shamt and masked bits of B are known zero.
8220 SDValue ShAmt = N00.getOperand(1);
8221 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8222 unsigned LSB = CountTrailingZeros_32(Mask);
8223 if (ShAmtC != LSB)
8224 return SDValue();
8225
8226 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8227 DAG.getConstant(~Mask, MVT::i32));
8228
8229 // Do not add new nodes to DAG combiner worklist.
8230 DCI.CombineTo(N, Res, false);
8231 }
8232
8233 return SDValue();
8234 }
8235
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8236 static SDValue PerformXORCombine(SDNode *N,
8237 TargetLowering::DAGCombinerInfo &DCI,
8238 const ARMSubtarget *Subtarget) {
8239 EVT VT = N->getValueType(0);
8240 SelectionDAG &DAG = DCI.DAG;
8241
8242 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8243 return SDValue();
8244
8245 if (!Subtarget->isThumb1Only()) {
8246 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8247 SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8248 if (Result.getNode())
8249 return Result;
8250 }
8251
8252 return SDValue();
8253 }
8254
8255 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8256 /// the bits being cleared by the AND are not demanded by the BFI.
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8257 static SDValue PerformBFICombine(SDNode *N,
8258 TargetLowering::DAGCombinerInfo &DCI) {
8259 SDValue N1 = N->getOperand(1);
8260 if (N1.getOpcode() == ISD::AND) {
8261 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8262 if (!N11C)
8263 return SDValue();
8264 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8265 unsigned LSB = CountTrailingZeros_32(~InvMask);
8266 unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
8267 unsigned Mask = (1 << Width)-1;
8268 unsigned Mask2 = N11C->getZExtValue();
8269 if ((Mask & (~Mask2)) == 0)
8270 return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
8271 N->getOperand(0), N1.getOperand(0),
8272 N->getOperand(2));
8273 }
8274 return SDValue();
8275 }
8276
8277 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8278 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8279 static SDValue PerformVMOVRRDCombine(SDNode *N,
8280 TargetLowering::DAGCombinerInfo &DCI) {
8281 // vmovrrd(vmovdrr x, y) -> x,y
8282 SDValue InDouble = N->getOperand(0);
8283 if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8284 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8285
8286 // vmovrrd(load f64) -> (load i32), (load i32)
8287 SDNode *InNode = InDouble.getNode();
8288 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8289 InNode->getValueType(0) == MVT::f64 &&
8290 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8291 !cast<LoadSDNode>(InNode)->isVolatile()) {
8292 // TODO: Should this be done for non-FrameIndex operands?
8293 LoadSDNode *LD = cast<LoadSDNode>(InNode);
8294
8295 SelectionDAG &DAG = DCI.DAG;
8296 DebugLoc DL = LD->getDebugLoc();
8297 SDValue BasePtr = LD->getBasePtr();
8298 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8299 LD->getPointerInfo(), LD->isVolatile(),
8300 LD->isNonTemporal(), LD->isInvariant(),
8301 LD->getAlignment());
8302
8303 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8304 DAG.getConstant(4, MVT::i32));
8305 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8306 LD->getPointerInfo(), LD->isVolatile(),
8307 LD->isNonTemporal(), LD->isInvariant(),
8308 std::min(4U, LD->getAlignment() / 2));
8309
8310 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8311 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8312 DCI.RemoveFromWorklist(LD);
8313 DAG.DeleteNode(LD);
8314 return Result;
8315 }
8316
8317 return SDValue();
8318 }
8319
8320 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8321 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)8322 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8323 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8324 SDValue Op0 = N->getOperand(0);
8325 SDValue Op1 = N->getOperand(1);
8326 if (Op0.getOpcode() == ISD::BITCAST)
8327 Op0 = Op0.getOperand(0);
8328 if (Op1.getOpcode() == ISD::BITCAST)
8329 Op1 = Op1.getOperand(0);
8330 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8331 Op0.getNode() == Op1.getNode() &&
8332 Op0.getResNo() == 0 && Op1.getResNo() == 1)
8333 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
8334 N->getValueType(0), Op0.getOperand(0));
8335 return SDValue();
8336 }
8337
8338 /// PerformSTORECombine - Target-specific dag combine xforms for
8339 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8340 static SDValue PerformSTORECombine(SDNode *N,
8341 TargetLowering::DAGCombinerInfo &DCI) {
8342 StoreSDNode *St = cast<StoreSDNode>(N);
8343 if (St->isVolatile())
8344 return SDValue();
8345
8346 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
8347 // pack all of the elements in one place. Next, store to memory in fewer
8348 // chunks.
8349 SDValue StVal = St->getValue();
8350 EVT VT = StVal.getValueType();
8351 if (St->isTruncatingStore() && VT.isVector()) {
8352 SelectionDAG &DAG = DCI.DAG;
8353 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8354 EVT StVT = St->getMemoryVT();
8355 unsigned NumElems = VT.getVectorNumElements();
8356 assert(StVT != VT && "Cannot truncate to the same type");
8357 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8358 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8359
8360 // From, To sizes and ElemCount must be pow of two
8361 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8362
8363 // We are going to use the original vector elt for storing.
8364 // Accumulated smaller vector elements must be a multiple of the store size.
8365 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8366
8367 unsigned SizeRatio = FromEltSz / ToEltSz;
8368 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8369
8370 // Create a type on which we perform the shuffle.
8371 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
8372 NumElems*SizeRatio);
8373 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
8374
8375 DebugLoc DL = St->getDebugLoc();
8376 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
8377 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
8378 for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
8379
8380 // Can't shuffle using an illegal type.
8381 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
8382
8383 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
8384 DAG.getUNDEF(WideVec.getValueType()),
8385 ShuffleVec.data());
8386 // At this point all of the data is stored at the bottom of the
8387 // register. We now need to save it to mem.
8388
8389 // Find the largest store unit
8390 MVT StoreType = MVT::i8;
8391 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8392 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8393 MVT Tp = (MVT::SimpleValueType)tp;
8394 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8395 StoreType = Tp;
8396 }
8397 // Didn't find a legal store type.
8398 if (!TLI.isTypeLegal(StoreType))
8399 return SDValue();
8400
8401 // Bitcast the original vector into a vector of store-size units
8402 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8403 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8404 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8405 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8406 SmallVector<SDValue, 8> Chains;
8407 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8408 TLI.getPointerTy());
8409 SDValue BasePtr = St->getBasePtr();
8410
8411 // Perform one or more big stores into memory.
8412 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8413 for (unsigned I = 0; I < E; I++) {
8414 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8415 StoreType, ShuffWide,
8416 DAG.getIntPtrConstant(I));
8417 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8418 St->getPointerInfo(), St->isVolatile(),
8419 St->isNonTemporal(), St->getAlignment());
8420 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8421 Increment);
8422 Chains.push_back(Ch);
8423 }
8424 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8425 Chains.size());
8426 }
8427
8428 if (!ISD::isNormalStore(St))
8429 return SDValue();
8430
8431 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8432 // ARM stores of arguments in the same cache line.
8433 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8434 StVal.getNode()->hasOneUse()) {
8435 SelectionDAG &DAG = DCI.DAG;
8436 DebugLoc DL = St->getDebugLoc();
8437 SDValue BasePtr = St->getBasePtr();
8438 SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8439 StVal.getNode()->getOperand(0), BasePtr,
8440 St->getPointerInfo(), St->isVolatile(),
8441 St->isNonTemporal(), St->getAlignment());
8442
8443 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8444 DAG.getConstant(4, MVT::i32));
8445 return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8446 OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8447 St->isNonTemporal(),
8448 std::min(4U, St->getAlignment() / 2));
8449 }
8450
8451 if (StVal.getValueType() != MVT::i64 ||
8452 StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8453 return SDValue();
8454
8455 // Bitcast an i64 store extracted from a vector to f64.
8456 // Otherwise, the i64 value will be legalized to a pair of i32 values.
8457 SelectionDAG &DAG = DCI.DAG;
8458 DebugLoc dl = StVal.getDebugLoc();
8459 SDValue IntVec = StVal.getOperand(0);
8460 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8461 IntVec.getValueType().getVectorNumElements());
8462 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8463 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8464 Vec, StVal.getOperand(1));
8465 dl = N->getDebugLoc();
8466 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8467 // Make the DAGCombiner fold the bitcasts.
8468 DCI.AddToWorklist(Vec.getNode());
8469 DCI.AddToWorklist(ExtElt.getNode());
8470 DCI.AddToWorklist(V.getNode());
8471 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8472 St->getPointerInfo(), St->isVolatile(),
8473 St->isNonTemporal(), St->getAlignment(),
8474 St->getTBAAInfo());
8475 }
8476
8477 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8478 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
8479 /// i64 vector to have f64 elements, since the value can then be loaded
8480 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)8481 static bool hasNormalLoadOperand(SDNode *N) {
8482 unsigned NumElts = N->getValueType(0).getVectorNumElements();
8483 for (unsigned i = 0; i < NumElts; ++i) {
8484 SDNode *Elt = N->getOperand(i).getNode();
8485 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8486 return true;
8487 }
8488 return false;
8489 }
8490
8491 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8492 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8493 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8494 TargetLowering::DAGCombinerInfo &DCI){
8495 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8496 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
8497 // into a pair of GPRs, which is fine when the value is used as a scalar,
8498 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8499 SelectionDAG &DAG = DCI.DAG;
8500 if (N->getNumOperands() == 2) {
8501 SDValue RV = PerformVMOVDRRCombine(N, DAG);
8502 if (RV.getNode())
8503 return RV;
8504 }
8505
8506 // Load i64 elements as f64 values so that type legalization does not split
8507 // them up into i32 values.
8508 EVT VT = N->getValueType(0);
8509 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8510 return SDValue();
8511 DebugLoc dl = N->getDebugLoc();
8512 SmallVector<SDValue, 8> Ops;
8513 unsigned NumElts = VT.getVectorNumElements();
8514 for (unsigned i = 0; i < NumElts; ++i) {
8515 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8516 Ops.push_back(V);
8517 // Make the DAGCombiner fold the bitcast.
8518 DCI.AddToWorklist(V.getNode());
8519 }
8520 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8521 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8522 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8523 }
8524
8525 /// PerformInsertEltCombine - Target-specific dag combine xforms for
8526 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8527 static SDValue PerformInsertEltCombine(SDNode *N,
8528 TargetLowering::DAGCombinerInfo &DCI) {
8529 // Bitcast an i64 load inserted into a vector to f64.
8530 // Otherwise, the i64 value will be legalized to a pair of i32 values.
8531 EVT VT = N->getValueType(0);
8532 SDNode *Elt = N->getOperand(1).getNode();
8533 if (VT.getVectorElementType() != MVT::i64 ||
8534 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8535 return SDValue();
8536
8537 SelectionDAG &DAG = DCI.DAG;
8538 DebugLoc dl = N->getDebugLoc();
8539 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8540 VT.getVectorNumElements());
8541 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8542 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8543 // Make the DAGCombiner fold the bitcasts.
8544 DCI.AddToWorklist(Vec.getNode());
8545 DCI.AddToWorklist(V.getNode());
8546 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8547 Vec, V, N->getOperand(2));
8548 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8549 }
8550
8551 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8552 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)8553 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8554 // The LLVM shufflevector instruction does not require the shuffle mask
8555 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8556 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
8557 // operands do not match the mask length, they are extended by concatenating
8558 // them with undef vectors. That is probably the right thing for other
8559 // targets, but for NEON it is better to concatenate two double-register
8560 // size vector operands into a single quad-register size vector. Do that
8561 // transformation here:
8562 // shuffle(concat(v1, undef), concat(v2, undef)) ->
8563 // shuffle(concat(v1, v2), undef)
8564 SDValue Op0 = N->getOperand(0);
8565 SDValue Op1 = N->getOperand(1);
8566 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8567 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8568 Op0.getNumOperands() != 2 ||
8569 Op1.getNumOperands() != 2)
8570 return SDValue();
8571 SDValue Concat0Op1 = Op0.getOperand(1);
8572 SDValue Concat1Op1 = Op1.getOperand(1);
8573 if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8574 Concat1Op1.getOpcode() != ISD::UNDEF)
8575 return SDValue();
8576 // Skip the transformation if any of the types are illegal.
8577 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8578 EVT VT = N->getValueType(0);
8579 if (!TLI.isTypeLegal(VT) ||
8580 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8581 !TLI.isTypeLegal(Concat1Op1.getValueType()))
8582 return SDValue();
8583
8584 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8585 Op0.getOperand(0), Op1.getOperand(0));
8586 // Translate the shuffle mask.
8587 SmallVector<int, 16> NewMask;
8588 unsigned NumElts = VT.getVectorNumElements();
8589 unsigned HalfElts = NumElts/2;
8590 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8591 for (unsigned n = 0; n < NumElts; ++n) {
8592 int MaskElt = SVN->getMaskElt(n);
8593 int NewElt = -1;
8594 if (MaskElt < (int)HalfElts)
8595 NewElt = MaskElt;
8596 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8597 NewElt = HalfElts + MaskElt - NumElts;
8598 NewMask.push_back(NewElt);
8599 }
8600 return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
8601 DAG.getUNDEF(VT), NewMask.data());
8602 }
8603
8604 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8605 /// NEON load/store intrinsics to merge base address updates.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8606 static SDValue CombineBaseUpdate(SDNode *N,
8607 TargetLowering::DAGCombinerInfo &DCI) {
8608 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8609 return SDValue();
8610
8611 SelectionDAG &DAG = DCI.DAG;
8612 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8613 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8614 unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8615 SDValue Addr = N->getOperand(AddrOpIdx);
8616
8617 // Search for a use of the address operand that is an increment.
8618 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8619 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8620 SDNode *User = *UI;
8621 if (User->getOpcode() != ISD::ADD ||
8622 UI.getUse().getResNo() != Addr.getResNo())
8623 continue;
8624
8625 // Check that the add is independent of the load/store. Otherwise, folding
8626 // it would create a cycle.
8627 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8628 continue;
8629
8630 // Find the new opcode for the updating load/store.
8631 bool isLoad = true;
8632 bool isLaneOp = false;
8633 unsigned NewOpc = 0;
8634 unsigned NumVecs = 0;
8635 if (isIntrinsic) {
8636 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8637 switch (IntNo) {
8638 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8639 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
8640 NumVecs = 1; break;
8641 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
8642 NumVecs = 2; break;
8643 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
8644 NumVecs = 3; break;
8645 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
8646 NumVecs = 4; break;
8647 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8648 NumVecs = 2; isLaneOp = true; break;
8649 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8650 NumVecs = 3; isLaneOp = true; break;
8651 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8652 NumVecs = 4; isLaneOp = true; break;
8653 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
8654 NumVecs = 1; isLoad = false; break;
8655 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
8656 NumVecs = 2; isLoad = false; break;
8657 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
8658 NumVecs = 3; isLoad = false; break;
8659 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
8660 NumVecs = 4; isLoad = false; break;
8661 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8662 NumVecs = 2; isLoad = false; isLaneOp = true; break;
8663 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8664 NumVecs = 3; isLoad = false; isLaneOp = true; break;
8665 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8666 NumVecs = 4; isLoad = false; isLaneOp = true; break;
8667 }
8668 } else {
8669 isLaneOp = true;
8670 switch (N->getOpcode()) {
8671 default: llvm_unreachable("unexpected opcode for Neon base update");
8672 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8673 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8674 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8675 }
8676 }
8677
8678 // Find the size of memory referenced by the load/store.
8679 EVT VecTy;
8680 if (isLoad)
8681 VecTy = N->getValueType(0);
8682 else
8683 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8684 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8685 if (isLaneOp)
8686 NumBytes /= VecTy.getVectorNumElements();
8687
8688 // If the increment is a constant, it must match the memory ref size.
8689 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8690 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8691 uint64_t IncVal = CInc->getZExtValue();
8692 if (IncVal != NumBytes)
8693 continue;
8694 } else if (NumBytes >= 3 * 16) {
8695 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8696 // separate instructions that make it harder to use a non-constant update.
8697 continue;
8698 }
8699
8700 // Create the new updating load/store node.
8701 EVT Tys[6];
8702 unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8703 unsigned n;
8704 for (n = 0; n < NumResultVecs; ++n)
8705 Tys[n] = VecTy;
8706 Tys[n++] = MVT::i32;
8707 Tys[n] = MVT::Other;
8708 SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
8709 SmallVector<SDValue, 8> Ops;
8710 Ops.push_back(N->getOperand(0)); // incoming chain
8711 Ops.push_back(N->getOperand(AddrOpIdx));
8712 Ops.push_back(Inc);
8713 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8714 Ops.push_back(N->getOperand(i));
8715 }
8716 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8717 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
8718 Ops.data(), Ops.size(),
8719 MemInt->getMemoryVT(),
8720 MemInt->getMemOperand());
8721
8722 // Update the uses.
8723 std::vector<SDValue> NewResults;
8724 for (unsigned i = 0; i < NumResultVecs; ++i) {
8725 NewResults.push_back(SDValue(UpdN.getNode(), i));
8726 }
8727 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8728 DCI.CombineTo(N, NewResults);
8729 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8730
8731 break;
8732 }
8733 return SDValue();
8734 }
8735
8736 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8737 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8738 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
8739 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8740 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8741 SelectionDAG &DAG = DCI.DAG;
8742 EVT VT = N->getValueType(0);
8743 // vldN-dup instructions only support 64-bit vectors for N > 1.
8744 if (!VT.is64BitVector())
8745 return false;
8746
8747 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8748 SDNode *VLD = N->getOperand(0).getNode();
8749 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8750 return false;
8751 unsigned NumVecs = 0;
8752 unsigned NewOpc = 0;
8753 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8754 if (IntNo == Intrinsic::arm_neon_vld2lane) {
8755 NumVecs = 2;
8756 NewOpc = ARMISD::VLD2DUP;
8757 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8758 NumVecs = 3;
8759 NewOpc = ARMISD::VLD3DUP;
8760 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8761 NumVecs = 4;
8762 NewOpc = ARMISD::VLD4DUP;
8763 } else {
8764 return false;
8765 }
8766
8767 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8768 // numbers match the load.
8769 unsigned VLDLaneNo =
8770 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8771 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8772 UI != UE; ++UI) {
8773 // Ignore uses of the chain result.
8774 if (UI.getUse().getResNo() == NumVecs)
8775 continue;
8776 SDNode *User = *UI;
8777 if (User->getOpcode() != ARMISD::VDUPLANE ||
8778 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8779 return false;
8780 }
8781
8782 // Create the vldN-dup node.
8783 EVT Tys[5];
8784 unsigned n;
8785 for (n = 0; n < NumVecs; ++n)
8786 Tys[n] = VT;
8787 Tys[n] = MVT::Other;
8788 SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
8789 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8790 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8791 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
8792 Ops, 2, VLDMemInt->getMemoryVT(),
8793 VLDMemInt->getMemOperand());
8794
8795 // Update the uses.
8796 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8797 UI != UE; ++UI) {
8798 unsigned ResNo = UI.getUse().getResNo();
8799 // Ignore uses of the chain result.
8800 if (ResNo == NumVecs)
8801 continue;
8802 SDNode *User = *UI;
8803 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8804 }
8805
8806 // Now the vldN-lane intrinsic is dead except for its chain result.
8807 // Update uses of the chain.
8808 std::vector<SDValue> VLDDupResults;
8809 for (unsigned n = 0; n < NumVecs; ++n)
8810 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8811 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8812 DCI.CombineTo(VLD, VLDDupResults);
8813
8814 return true;
8815 }
8816
8817 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
8818 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8819 static SDValue PerformVDUPLANECombine(SDNode *N,
8820 TargetLowering::DAGCombinerInfo &DCI) {
8821 SDValue Op = N->getOperand(0);
8822
8823 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8824 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8825 if (CombineVLDDUP(N, DCI))
8826 return SDValue(N, 0);
8827
8828 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8829 // redundant. Ignore bit_converts for now; element sizes are checked below.
8830 while (Op.getOpcode() == ISD::BITCAST)
8831 Op = Op.getOperand(0);
8832 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8833 return SDValue();
8834
8835 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8836 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8837 // The canonical VMOV for a zero vector uses a 32-bit element size.
8838 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8839 unsigned EltBits;
8840 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8841 EltSize = 8;
8842 EVT VT = N->getValueType(0);
8843 if (EltSize > VT.getVectorElementType().getSizeInBits())
8844 return SDValue();
8845
8846 return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
8847 }
8848
8849 // isConstVecPow2 - Return true if each vector element is a power of 2, all
8850 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
isConstVecPow2(SDValue ConstVec,bool isSigned,uint64_t & C)8851 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8852 {
8853 integerPart cN;
8854 integerPart c0 = 0;
8855 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8856 I != E; I++) {
8857 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8858 if (!C)
8859 return false;
8860
8861 bool isExact;
8862 APFloat APF = C->getValueAPF();
8863 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8864 != APFloat::opOK || !isExact)
8865 return false;
8866
8867 c0 = (I == 0) ? cN : c0;
8868 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8869 return false;
8870 }
8871 C = c0;
8872 return true;
8873 }
8874
8875 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8876 /// can replace combinations of VMUL and VCVT (floating-point to integer)
8877 /// when the VMUL has a constant operand that is a power of 2.
8878 ///
8879 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8880 /// vmul.f32 d16, d17, d16
8881 /// vcvt.s32.f32 d16, d16
8882 /// becomes:
8883 /// vcvt.s32.f32 d16, d16, #3
PerformVCVTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8884 static SDValue PerformVCVTCombine(SDNode *N,
8885 TargetLowering::DAGCombinerInfo &DCI,
8886 const ARMSubtarget *Subtarget) {
8887 SelectionDAG &DAG = DCI.DAG;
8888 SDValue Op = N->getOperand(0);
8889
8890 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8891 Op.getOpcode() != ISD::FMUL)
8892 return SDValue();
8893
8894 uint64_t C;
8895 SDValue N0 = Op->getOperand(0);
8896 SDValue ConstVec = Op->getOperand(1);
8897 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8898
8899 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8900 !isConstVecPow2(ConstVec, isSigned, C))
8901 return SDValue();
8902
8903 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
8904 Intrinsic::arm_neon_vcvtfp2fxu;
8905 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8906 N->getValueType(0),
8907 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
8908 DAG.getConstant(Log2_64(C), MVT::i32));
8909 }
8910
8911 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
8912 /// can replace combinations of VCVT (integer to floating-point) and VDIV
8913 /// when the VDIV has a constant operand that is a power of 2.
8914 ///
8915 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8916 /// vcvt.f32.s32 d16, d16
8917 /// vdiv.f32 d16, d17, d16
8918 /// becomes:
8919 /// vcvt.f32.s32 d16, d16, #3
PerformVDIVCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8920 static SDValue PerformVDIVCombine(SDNode *N,
8921 TargetLowering::DAGCombinerInfo &DCI,
8922 const ARMSubtarget *Subtarget) {
8923 SelectionDAG &DAG = DCI.DAG;
8924 SDValue Op = N->getOperand(0);
8925 unsigned OpOpcode = Op.getNode()->getOpcode();
8926
8927 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
8928 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
8929 return SDValue();
8930
8931 uint64_t C;
8932 SDValue ConstVec = N->getOperand(1);
8933 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
8934
8935 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8936 !isConstVecPow2(ConstVec, isSigned, C))
8937 return SDValue();
8938
8939 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
8940 Intrinsic::arm_neon_vcvtfxu2fp;
8941 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8942 Op.getValueType(),
8943 DAG.getConstant(IntrinsicOpcode, MVT::i32),
8944 Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
8945 }
8946
8947 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
8948 /// operand of a vector shift operation, where all the elements of the
8949 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)8950 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8951 // Ignore bit_converts.
8952 while (Op.getOpcode() == ISD::BITCAST)
8953 Op = Op.getOperand(0);
8954 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8955 APInt SplatBits, SplatUndef;
8956 unsigned SplatBitSize;
8957 bool HasAnyUndefs;
8958 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8959 HasAnyUndefs, ElementBits) ||
8960 SplatBitSize > ElementBits)
8961 return false;
8962 Cnt = SplatBits.getSExtValue();
8963 return true;
8964 }
8965
8966 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
8967 /// operand of a vector shift left operation. That value must be in the range:
8968 /// 0 <= Value < ElementBits for a left shift; or
8969 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)8970 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8971 assert(VT.isVector() && "vector shift count is not a vector type");
8972 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8973 if (! getVShiftImm(Op, ElementBits, Cnt))
8974 return false;
8975 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8976 }
8977
8978 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
8979 /// operand of a vector shift right operation. For a shift opcode, the value
8980 /// is positive, but for an intrinsic the value count must be negative. The
8981 /// absolute value must be in the range:
8982 /// 1 <= |Value| <= ElementBits for a right shift; or
8983 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)8984 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8985 int64_t &Cnt) {
8986 assert(VT.isVector() && "vector shift count is not a vector type");
8987 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8988 if (! getVShiftImm(Op, ElementBits, Cnt))
8989 return false;
8990 if (isIntrinsic)
8991 Cnt = -Cnt;
8992 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8993 }
8994
8995 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)8996 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8997 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8998 switch (IntNo) {
8999 default:
9000 // Don't do anything for most intrinsics.
9001 break;
9002
9003 // Vector shifts: check for immediate versions and lower them.
9004 // Note: This is done during DAG combining instead of DAG legalizing because
9005 // the build_vectors for 64-bit vector element shift counts are generally
9006 // not legal, and it is hard to see their values after they get legalized to
9007 // loads from a constant pool.
9008 case Intrinsic::arm_neon_vshifts:
9009 case Intrinsic::arm_neon_vshiftu:
9010 case Intrinsic::arm_neon_vshiftls:
9011 case Intrinsic::arm_neon_vshiftlu:
9012 case Intrinsic::arm_neon_vshiftn:
9013 case Intrinsic::arm_neon_vrshifts:
9014 case Intrinsic::arm_neon_vrshiftu:
9015 case Intrinsic::arm_neon_vrshiftn:
9016 case Intrinsic::arm_neon_vqshifts:
9017 case Intrinsic::arm_neon_vqshiftu:
9018 case Intrinsic::arm_neon_vqshiftsu:
9019 case Intrinsic::arm_neon_vqshiftns:
9020 case Intrinsic::arm_neon_vqshiftnu:
9021 case Intrinsic::arm_neon_vqshiftnsu:
9022 case Intrinsic::arm_neon_vqrshiftns:
9023 case Intrinsic::arm_neon_vqrshiftnu:
9024 case Intrinsic::arm_neon_vqrshiftnsu: {
9025 EVT VT = N->getOperand(1).getValueType();
9026 int64_t Cnt;
9027 unsigned VShiftOpc = 0;
9028
9029 switch (IntNo) {
9030 case Intrinsic::arm_neon_vshifts:
9031 case Intrinsic::arm_neon_vshiftu:
9032 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9033 VShiftOpc = ARMISD::VSHL;
9034 break;
9035 }
9036 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9037 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9038 ARMISD::VSHRs : ARMISD::VSHRu);
9039 break;
9040 }
9041 return SDValue();
9042
9043 case Intrinsic::arm_neon_vshiftls:
9044 case Intrinsic::arm_neon_vshiftlu:
9045 if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
9046 break;
9047 llvm_unreachable("invalid shift count for vshll intrinsic");
9048
9049 case Intrinsic::arm_neon_vrshifts:
9050 case Intrinsic::arm_neon_vrshiftu:
9051 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9052 break;
9053 return SDValue();
9054
9055 case Intrinsic::arm_neon_vqshifts:
9056 case Intrinsic::arm_neon_vqshiftu:
9057 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9058 break;
9059 return SDValue();
9060
9061 case Intrinsic::arm_neon_vqshiftsu:
9062 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9063 break;
9064 llvm_unreachable("invalid shift count for vqshlu intrinsic");
9065
9066 case Intrinsic::arm_neon_vshiftn:
9067 case Intrinsic::arm_neon_vrshiftn:
9068 case Intrinsic::arm_neon_vqshiftns:
9069 case Intrinsic::arm_neon_vqshiftnu:
9070 case Intrinsic::arm_neon_vqshiftnsu:
9071 case Intrinsic::arm_neon_vqrshiftns:
9072 case Intrinsic::arm_neon_vqrshiftnu:
9073 case Intrinsic::arm_neon_vqrshiftnsu:
9074 // Narrowing shifts require an immediate right shift.
9075 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9076 break;
9077 llvm_unreachable("invalid shift count for narrowing vector shift "
9078 "intrinsic");
9079
9080 default:
9081 llvm_unreachable("unhandled vector shift");
9082 }
9083
9084 switch (IntNo) {
9085 case Intrinsic::arm_neon_vshifts:
9086 case Intrinsic::arm_neon_vshiftu:
9087 // Opcode already set above.
9088 break;
9089 case Intrinsic::arm_neon_vshiftls:
9090 case Intrinsic::arm_neon_vshiftlu:
9091 if (Cnt == VT.getVectorElementType().getSizeInBits())
9092 VShiftOpc = ARMISD::VSHLLi;
9093 else
9094 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
9095 ARMISD::VSHLLs : ARMISD::VSHLLu);
9096 break;
9097 case Intrinsic::arm_neon_vshiftn:
9098 VShiftOpc = ARMISD::VSHRN; break;
9099 case Intrinsic::arm_neon_vrshifts:
9100 VShiftOpc = ARMISD::VRSHRs; break;
9101 case Intrinsic::arm_neon_vrshiftu:
9102 VShiftOpc = ARMISD::VRSHRu; break;
9103 case Intrinsic::arm_neon_vrshiftn:
9104 VShiftOpc = ARMISD::VRSHRN; break;
9105 case Intrinsic::arm_neon_vqshifts:
9106 VShiftOpc = ARMISD::VQSHLs; break;
9107 case Intrinsic::arm_neon_vqshiftu:
9108 VShiftOpc = ARMISD::VQSHLu; break;
9109 case Intrinsic::arm_neon_vqshiftsu:
9110 VShiftOpc = ARMISD::VQSHLsu; break;
9111 case Intrinsic::arm_neon_vqshiftns:
9112 VShiftOpc = ARMISD::VQSHRNs; break;
9113 case Intrinsic::arm_neon_vqshiftnu:
9114 VShiftOpc = ARMISD::VQSHRNu; break;
9115 case Intrinsic::arm_neon_vqshiftnsu:
9116 VShiftOpc = ARMISD::VQSHRNsu; break;
9117 case Intrinsic::arm_neon_vqrshiftns:
9118 VShiftOpc = ARMISD::VQRSHRNs; break;
9119 case Intrinsic::arm_neon_vqrshiftnu:
9120 VShiftOpc = ARMISD::VQRSHRNu; break;
9121 case Intrinsic::arm_neon_vqrshiftnsu:
9122 VShiftOpc = ARMISD::VQRSHRNsu; break;
9123 }
9124
9125 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
9126 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9127 }
9128
9129 case Intrinsic::arm_neon_vshiftins: {
9130 EVT VT = N->getOperand(1).getValueType();
9131 int64_t Cnt;
9132 unsigned VShiftOpc = 0;
9133
9134 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9135 VShiftOpc = ARMISD::VSLI;
9136 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9137 VShiftOpc = ARMISD::VSRI;
9138 else {
9139 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9140 }
9141
9142 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
9143 N->getOperand(1), N->getOperand(2),
9144 DAG.getConstant(Cnt, MVT::i32));
9145 }
9146
9147 case Intrinsic::arm_neon_vqrshifts:
9148 case Intrinsic::arm_neon_vqrshiftu:
9149 // No immediate versions of these to check for.
9150 break;
9151 }
9152
9153 return SDValue();
9154 }
9155
9156 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
9157 /// lowers them. As with the vector shift intrinsics, this is done during DAG
9158 /// combining instead of DAG legalizing because the build_vectors for 64-bit
9159 /// vector element shift counts are generally not legal, and it is hard to see
9160 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)9161 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9162 const ARMSubtarget *ST) {
9163 EVT VT = N->getValueType(0);
9164 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9165 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9166 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9167 SDValue N1 = N->getOperand(1);
9168 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9169 SDValue N0 = N->getOperand(0);
9170 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9171 DAG.MaskedValueIsZero(N0.getOperand(0),
9172 APInt::getHighBitsSet(32, 16)))
9173 return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
9174 }
9175 }
9176
9177 // Nothing to be done for scalar shifts.
9178 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9179 if (!VT.isVector() || !TLI.isTypeLegal(VT))
9180 return SDValue();
9181
9182 assert(ST->hasNEON() && "unexpected vector shift");
9183 int64_t Cnt;
9184
9185 switch (N->getOpcode()) {
9186 default: llvm_unreachable("unexpected shift opcode");
9187
9188 case ISD::SHL:
9189 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9190 return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
9191 DAG.getConstant(Cnt, MVT::i32));
9192 break;
9193
9194 case ISD::SRA:
9195 case ISD::SRL:
9196 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9197 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9198 ARMISD::VSHRs : ARMISD::VSHRu);
9199 return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
9200 DAG.getConstant(Cnt, MVT::i32));
9201 }
9202 }
9203 return SDValue();
9204 }
9205
9206 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9207 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)9208 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9209 const ARMSubtarget *ST) {
9210 SDValue N0 = N->getOperand(0);
9211
9212 // Check for sign- and zero-extensions of vector extract operations of 8-
9213 // and 16-bit vector elements. NEON supports these directly. They are
9214 // handled during DAG combining because type legalization will promote them
9215 // to 32-bit types and it is messy to recognize the operations after that.
9216 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9217 SDValue Vec = N0.getOperand(0);
9218 SDValue Lane = N0.getOperand(1);
9219 EVT VT = N->getValueType(0);
9220 EVT EltVT = N0.getValueType();
9221 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9222
9223 if (VT == MVT::i32 &&
9224 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9225 TLI.isTypeLegal(Vec.getValueType()) &&
9226 isa<ConstantSDNode>(Lane)) {
9227
9228 unsigned Opc = 0;
9229 switch (N->getOpcode()) {
9230 default: llvm_unreachable("unexpected opcode");
9231 case ISD::SIGN_EXTEND:
9232 Opc = ARMISD::VGETLANEs;
9233 break;
9234 case ISD::ZERO_EXTEND:
9235 case ISD::ANY_EXTEND:
9236 Opc = ARMISD::VGETLANEu;
9237 break;
9238 }
9239 return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
9240 }
9241 }
9242
9243 return SDValue();
9244 }
9245
9246 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9247 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
PerformSELECT_CCCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)9248 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9249 const ARMSubtarget *ST) {
9250 // If the target supports NEON, try to use vmax/vmin instructions for f32
9251 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
9252 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
9253 // a NaN; only do the transformation when it matches that behavior.
9254
9255 // For now only do this when using NEON for FP operations; if using VFP, it
9256 // is not obvious that the benefit outweighs the cost of switching to the
9257 // NEON pipeline.
9258 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9259 N->getValueType(0) != MVT::f32)
9260 return SDValue();
9261
9262 SDValue CondLHS = N->getOperand(0);
9263 SDValue CondRHS = N->getOperand(1);
9264 SDValue LHS = N->getOperand(2);
9265 SDValue RHS = N->getOperand(3);
9266 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9267
9268 unsigned Opcode = 0;
9269 bool IsReversed;
9270 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9271 IsReversed = false; // x CC y ? x : y
9272 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9273 IsReversed = true ; // x CC y ? y : x
9274 } else {
9275 return SDValue();
9276 }
9277
9278 bool IsUnordered;
9279 switch (CC) {
9280 default: break;
9281 case ISD::SETOLT:
9282 case ISD::SETOLE:
9283 case ISD::SETLT:
9284 case ISD::SETLE:
9285 case ISD::SETULT:
9286 case ISD::SETULE:
9287 // If LHS is NaN, an ordered comparison will be false and the result will
9288 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
9289 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
9290 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9291 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9292 break;
9293 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9294 // will return -0, so vmin can only be used for unsafe math or if one of
9295 // the operands is known to be nonzero.
9296 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9297 !DAG.getTarget().Options.UnsafeFPMath &&
9298 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9299 break;
9300 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9301 break;
9302
9303 case ISD::SETOGT:
9304 case ISD::SETOGE:
9305 case ISD::SETGT:
9306 case ISD::SETGE:
9307 case ISD::SETUGT:
9308 case ISD::SETUGE:
9309 // If LHS is NaN, an ordered comparison will be false and the result will
9310 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
9311 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
9312 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9313 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9314 break;
9315 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9316 // will return +0, so vmax can only be used for unsafe math or if one of
9317 // the operands is known to be nonzero.
9318 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9319 !DAG.getTarget().Options.UnsafeFPMath &&
9320 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9321 break;
9322 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9323 break;
9324 }
9325
9326 if (!Opcode)
9327 return SDValue();
9328 return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
9329 }
9330
9331 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9332 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const9333 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9334 SDValue Cmp = N->getOperand(4);
9335 if (Cmp.getOpcode() != ARMISD::CMPZ)
9336 // Only looking at EQ and NE cases.
9337 return SDValue();
9338
9339 EVT VT = N->getValueType(0);
9340 DebugLoc dl = N->getDebugLoc();
9341 SDValue LHS = Cmp.getOperand(0);
9342 SDValue RHS = Cmp.getOperand(1);
9343 SDValue FalseVal = N->getOperand(0);
9344 SDValue TrueVal = N->getOperand(1);
9345 SDValue ARMcc = N->getOperand(2);
9346 ARMCC::CondCodes CC =
9347 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9348
9349 // Simplify
9350 // mov r1, r0
9351 // cmp r1, x
9352 // mov r0, y
9353 // moveq r0, x
9354 // to
9355 // cmp r0, x
9356 // movne r0, y
9357 //
9358 // mov r1, r0
9359 // cmp r1, x
9360 // mov r0, x
9361 // movne r0, y
9362 // to
9363 // cmp r0, x
9364 // movne r0, y
9365 /// FIXME: Turn this into a target neutral optimization?
9366 SDValue Res;
9367 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9368 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9369 N->getOperand(3), Cmp);
9370 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9371 SDValue ARMcc;
9372 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9373 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9374 N->getOperand(3), NewCmp);
9375 }
9376
9377 if (Res.getNode()) {
9378 APInt KnownZero, KnownOne;
9379 DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
9380 // Capture demanded bits information that would be otherwise lost.
9381 if (KnownZero == 0xfffffffe)
9382 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9383 DAG.getValueType(MVT::i1));
9384 else if (KnownZero == 0xffffff00)
9385 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9386 DAG.getValueType(MVT::i8));
9387 else if (KnownZero == 0xffff0000)
9388 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9389 DAG.getValueType(MVT::i16));
9390 }
9391
9392 return Res;
9393 }
9394
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const9395 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9396 DAGCombinerInfo &DCI) const {
9397 switch (N->getOpcode()) {
9398 default: break;
9399 case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
9400 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
9401 case ISD::SUB: return PerformSUBCombine(N, DCI);
9402 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
9403 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
9404 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
9405 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
9406 case ARMISD::BFI: return PerformBFICombine(N, DCI);
9407 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9408 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9409 case ISD::STORE: return PerformSTORECombine(N, DCI);
9410 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9411 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9412 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9413 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9414 case ISD::FP_TO_SINT:
9415 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9416 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
9417 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9418 case ISD::SHL:
9419 case ISD::SRA:
9420 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
9421 case ISD::SIGN_EXTEND:
9422 case ISD::ZERO_EXTEND:
9423 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9424 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9425 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9426 case ARMISD::VLD2DUP:
9427 case ARMISD::VLD3DUP:
9428 case ARMISD::VLD4DUP:
9429 return CombineBaseUpdate(N, DCI);
9430 case ISD::INTRINSIC_VOID:
9431 case ISD::INTRINSIC_W_CHAIN:
9432 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9433 case Intrinsic::arm_neon_vld1:
9434 case Intrinsic::arm_neon_vld2:
9435 case Intrinsic::arm_neon_vld3:
9436 case Intrinsic::arm_neon_vld4:
9437 case Intrinsic::arm_neon_vld2lane:
9438 case Intrinsic::arm_neon_vld3lane:
9439 case Intrinsic::arm_neon_vld4lane:
9440 case Intrinsic::arm_neon_vst1:
9441 case Intrinsic::arm_neon_vst2:
9442 case Intrinsic::arm_neon_vst3:
9443 case Intrinsic::arm_neon_vst4:
9444 case Intrinsic::arm_neon_vst2lane:
9445 case Intrinsic::arm_neon_vst3lane:
9446 case Intrinsic::arm_neon_vst4lane:
9447 return CombineBaseUpdate(N, DCI);
9448 default: break;
9449 }
9450 break;
9451 }
9452 return SDValue();
9453 }
9454
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const9455 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9456 EVT VT) const {
9457 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9458 }
9459
allowsUnalignedMemoryAccesses(EVT VT,bool * Fast) const9460 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
9461 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9462 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9463
9464 switch (VT.getSimpleVT().SimpleTy) {
9465 default:
9466 return false;
9467 case MVT::i8:
9468 case MVT::i16:
9469 case MVT::i32: {
9470 // Unaligned access can use (for example) LRDB, LRDH, LDR
9471 if (AllowsUnaligned) {
9472 if (Fast)
9473 *Fast = Subtarget->hasV7Ops();
9474 return true;
9475 }
9476 return false;
9477 }
9478 case MVT::f64:
9479 case MVT::v2f64: {
9480 // For any little-endian targets with neon, we can support unaligned ld/st
9481 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9482 // A big-endian target may also explictly support unaligned accesses
9483 if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9484 if (Fast)
9485 *Fast = true;
9486 return true;
9487 }
9488 return false;
9489 }
9490 }
9491 }
9492
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)9493 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9494 unsigned AlignCheck) {
9495 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9496 (DstAlign == 0 || DstAlign % AlignCheck == 0));
9497 }
9498
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const9499 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9500 unsigned DstAlign, unsigned SrcAlign,
9501 bool IsMemset, bool ZeroMemset,
9502 bool MemcpyStrSrc,
9503 MachineFunction &MF) const {
9504 const Function *F = MF.getFunction();
9505
9506 // See if we can use NEON instructions for this...
9507 if ((!IsMemset || ZeroMemset) &&
9508 Subtarget->hasNEON() &&
9509 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
9510 Attribute::NoImplicitFloat)) {
9511 bool Fast;
9512 if (Size >= 16 &&
9513 (memOpAlign(SrcAlign, DstAlign, 16) ||
9514 (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
9515 return MVT::v2f64;
9516 } else if (Size >= 8 &&
9517 (memOpAlign(SrcAlign, DstAlign, 8) ||
9518 (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
9519 return MVT::f64;
9520 }
9521 }
9522
9523 // Lowering to i32/i16 if the size permits.
9524 if (Size >= 4)
9525 return MVT::i32;
9526 else if (Size >= 2)
9527 return MVT::i16;
9528
9529 // Let the target-independent logic figure it out.
9530 return MVT::Other;
9531 }
9532
isZExtFree(SDValue Val,EVT VT2) const9533 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
9534 if (Val.getOpcode() != ISD::LOAD)
9535 return false;
9536
9537 EVT VT1 = Val.getValueType();
9538 if (!VT1.isSimple() || !VT1.isInteger() ||
9539 !VT2.isSimple() || !VT2.isInteger())
9540 return false;
9541
9542 switch (VT1.getSimpleVT().SimpleTy) {
9543 default: break;
9544 case MVT::i1:
9545 case MVT::i8:
9546 case MVT::i16:
9547 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
9548 return true;
9549 }
9550
9551 return false;
9552 }
9553
isLegalT1AddressImmediate(int64_t V,EVT VT)9554 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9555 if (V < 0)
9556 return false;
9557
9558 unsigned Scale = 1;
9559 switch (VT.getSimpleVT().SimpleTy) {
9560 default: return false;
9561 case MVT::i1:
9562 case MVT::i8:
9563 // Scale == 1;
9564 break;
9565 case MVT::i16:
9566 // Scale == 2;
9567 Scale = 2;
9568 break;
9569 case MVT::i32:
9570 // Scale == 4;
9571 Scale = 4;
9572 break;
9573 }
9574
9575 if ((V & (Scale - 1)) != 0)
9576 return false;
9577 V /= Scale;
9578 return V == (V & ((1LL << 5) - 1));
9579 }
9580
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)9581 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9582 const ARMSubtarget *Subtarget) {
9583 bool isNeg = false;
9584 if (V < 0) {
9585 isNeg = true;
9586 V = - V;
9587 }
9588
9589 switch (VT.getSimpleVT().SimpleTy) {
9590 default: return false;
9591 case MVT::i1:
9592 case MVT::i8:
9593 case MVT::i16:
9594 case MVT::i32:
9595 // + imm12 or - imm8
9596 if (isNeg)
9597 return V == (V & ((1LL << 8) - 1));
9598 return V == (V & ((1LL << 12) - 1));
9599 case MVT::f32:
9600 case MVT::f64:
9601 // Same as ARM mode. FIXME: NEON?
9602 if (!Subtarget->hasVFP2())
9603 return false;
9604 if ((V & 3) != 0)
9605 return false;
9606 V >>= 2;
9607 return V == (V & ((1LL << 8) - 1));
9608 }
9609 }
9610
9611 /// isLegalAddressImmediate - Return true if the integer value can be used
9612 /// as the offset of the target addressing mode for load / store of the
9613 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)9614 static bool isLegalAddressImmediate(int64_t V, EVT VT,
9615 const ARMSubtarget *Subtarget) {
9616 if (V == 0)
9617 return true;
9618
9619 if (!VT.isSimple())
9620 return false;
9621
9622 if (Subtarget->isThumb1Only())
9623 return isLegalT1AddressImmediate(V, VT);
9624 else if (Subtarget->isThumb2())
9625 return isLegalT2AddressImmediate(V, VT, Subtarget);
9626
9627 // ARM mode.
9628 if (V < 0)
9629 V = - V;
9630 switch (VT.getSimpleVT().SimpleTy) {
9631 default: return false;
9632 case MVT::i1:
9633 case MVT::i8:
9634 case MVT::i32:
9635 // +- imm12
9636 return V == (V & ((1LL << 12) - 1));
9637 case MVT::i16:
9638 // +- imm8
9639 return V == (V & ((1LL << 8) - 1));
9640 case MVT::f32:
9641 case MVT::f64:
9642 if (!Subtarget->hasVFP2()) // FIXME: NEON?
9643 return false;
9644 if ((V & 3) != 0)
9645 return false;
9646 V >>= 2;
9647 return V == (V & ((1LL << 8) - 1));
9648 }
9649 }
9650
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const9651 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9652 EVT VT) const {
9653 int Scale = AM.Scale;
9654 if (Scale < 0)
9655 return false;
9656
9657 switch (VT.getSimpleVT().SimpleTy) {
9658 default: return false;
9659 case MVT::i1:
9660 case MVT::i8:
9661 case MVT::i16:
9662 case MVT::i32:
9663 if (Scale == 1)
9664 return true;
9665 // r + r << imm
9666 Scale = Scale & ~1;
9667 return Scale == 2 || Scale == 4 || Scale == 8;
9668 case MVT::i64:
9669 // r + r
9670 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9671 return true;
9672 return false;
9673 case MVT::isVoid:
9674 // Note, we allow "void" uses (basically, uses that aren't loads or
9675 // stores), because arm allows folding a scale into many arithmetic
9676 // operations. This should be made more precise and revisited later.
9677
9678 // Allow r << imm, but the imm has to be a multiple of two.
9679 if (Scale & 1) return false;
9680 return isPowerOf2_32(Scale);
9681 }
9682 }
9683
9684 /// isLegalAddressingMode - Return true if the addressing mode represented
9685 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const9686 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9687 Type *Ty) const {
9688 EVT VT = getValueType(Ty, true);
9689 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9690 return false;
9691
9692 // Can never fold addr of global into load/store.
9693 if (AM.BaseGV)
9694 return false;
9695
9696 switch (AM.Scale) {
9697 case 0: // no scale reg, must be "r+i" or "r", or "i".
9698 break;
9699 case 1:
9700 if (Subtarget->isThumb1Only())
9701 return false;
9702 // FALL THROUGH.
9703 default:
9704 // ARM doesn't support any R+R*scale+imm addr modes.
9705 if (AM.BaseOffs)
9706 return false;
9707
9708 if (!VT.isSimple())
9709 return false;
9710
9711 if (Subtarget->isThumb2())
9712 return isLegalT2ScaledAddressingMode(AM, VT);
9713
9714 int Scale = AM.Scale;
9715 switch (VT.getSimpleVT().SimpleTy) {
9716 default: return false;
9717 case MVT::i1:
9718 case MVT::i8:
9719 case MVT::i32:
9720 if (Scale < 0) Scale = -Scale;
9721 if (Scale == 1)
9722 return true;
9723 // r + r << imm
9724 return isPowerOf2_32(Scale & ~1);
9725 case MVT::i16:
9726 case MVT::i64:
9727 // r + r
9728 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9729 return true;
9730 return false;
9731
9732 case MVT::isVoid:
9733 // Note, we allow "void" uses (basically, uses that aren't loads or
9734 // stores), because arm allows folding a scale into many arithmetic
9735 // operations. This should be made more precise and revisited later.
9736
9737 // Allow r << imm, but the imm has to be a multiple of two.
9738 if (Scale & 1) return false;
9739 return isPowerOf2_32(Scale);
9740 }
9741 }
9742 return true;
9743 }
9744
9745 /// isLegalICmpImmediate - Return true if the specified immediate is legal
9746 /// icmp immediate, that is the target has icmp instructions which can compare
9747 /// a register against the immediate without having to materialize the
9748 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const9749 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9750 // Thumb2 and ARM modes can use cmn for negative immediates.
9751 if (!Subtarget->isThumb())
9752 return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9753 if (Subtarget->isThumb2())
9754 return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9755 // Thumb1 doesn't have cmn, and only 8-bit immediates.
9756 return Imm >= 0 && Imm <= 255;
9757 }
9758
9759 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
9760 /// *or sub* immediate, that is the target has add or sub instructions which can
9761 /// add a register with the immediate without having to materialize the
9762 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const9763 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9764 // Same encoding for add/sub, just flip the sign.
9765 int64_t AbsImm = llvm::abs64(Imm);
9766 if (!Subtarget->isThumb())
9767 return ARM_AM::getSOImmVal(AbsImm) != -1;
9768 if (Subtarget->isThumb2())
9769 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9770 // Thumb1 only has 8-bit unsigned immediate.
9771 return AbsImm >= 0 && AbsImm <= 255;
9772 }
9773
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)9774 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9775 bool isSEXTLoad, SDValue &Base,
9776 SDValue &Offset, bool &isInc,
9777 SelectionDAG &DAG) {
9778 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9779 return false;
9780
9781 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9782 // AddressingMode 3
9783 Base = Ptr->getOperand(0);
9784 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9785 int RHSC = (int)RHS->getZExtValue();
9786 if (RHSC < 0 && RHSC > -256) {
9787 assert(Ptr->getOpcode() == ISD::ADD);
9788 isInc = false;
9789 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9790 return true;
9791 }
9792 }
9793 isInc = (Ptr->getOpcode() == ISD::ADD);
9794 Offset = Ptr->getOperand(1);
9795 return true;
9796 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9797 // AddressingMode 2
9798 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9799 int RHSC = (int)RHS->getZExtValue();
9800 if (RHSC < 0 && RHSC > -0x1000) {
9801 assert(Ptr->getOpcode() == ISD::ADD);
9802 isInc = false;
9803 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9804 Base = Ptr->getOperand(0);
9805 return true;
9806 }
9807 }
9808
9809 if (Ptr->getOpcode() == ISD::ADD) {
9810 isInc = true;
9811 ARM_AM::ShiftOpc ShOpcVal=
9812 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9813 if (ShOpcVal != ARM_AM::no_shift) {
9814 Base = Ptr->getOperand(1);
9815 Offset = Ptr->getOperand(0);
9816 } else {
9817 Base = Ptr->getOperand(0);
9818 Offset = Ptr->getOperand(1);
9819 }
9820 return true;
9821 }
9822
9823 isInc = (Ptr->getOpcode() == ISD::ADD);
9824 Base = Ptr->getOperand(0);
9825 Offset = Ptr->getOperand(1);
9826 return true;
9827 }
9828
9829 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9830 return false;
9831 }
9832
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)9833 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9834 bool isSEXTLoad, SDValue &Base,
9835 SDValue &Offset, bool &isInc,
9836 SelectionDAG &DAG) {
9837 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9838 return false;
9839
9840 Base = Ptr->getOperand(0);
9841 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9842 int RHSC = (int)RHS->getZExtValue();
9843 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9844 assert(Ptr->getOpcode() == ISD::ADD);
9845 isInc = false;
9846 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9847 return true;
9848 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9849 isInc = Ptr->getOpcode() == ISD::ADD;
9850 Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9851 return true;
9852 }
9853 }
9854
9855 return false;
9856 }
9857
9858 /// getPreIndexedAddressParts - returns true by value, base pointer and
9859 /// offset pointer and addressing mode by reference if the node's address
9860 /// can be legally represented as pre-indexed load / store address.
9861 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const9862 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9863 SDValue &Offset,
9864 ISD::MemIndexedMode &AM,
9865 SelectionDAG &DAG) const {
9866 if (Subtarget->isThumb1Only())
9867 return false;
9868
9869 EVT VT;
9870 SDValue Ptr;
9871 bool isSEXTLoad = false;
9872 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9873 Ptr = LD->getBasePtr();
9874 VT = LD->getMemoryVT();
9875 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9876 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9877 Ptr = ST->getBasePtr();
9878 VT = ST->getMemoryVT();
9879 } else
9880 return false;
9881
9882 bool isInc;
9883 bool isLegal = false;
9884 if (Subtarget->isThumb2())
9885 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9886 Offset, isInc, DAG);
9887 else
9888 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9889 Offset, isInc, DAG);
9890 if (!isLegal)
9891 return false;
9892
9893 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
9894 return true;
9895 }
9896
9897 /// getPostIndexedAddressParts - returns true by value, base pointer and
9898 /// offset pointer and addressing mode by reference if this node can be
9899 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const9900 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
9901 SDValue &Base,
9902 SDValue &Offset,
9903 ISD::MemIndexedMode &AM,
9904 SelectionDAG &DAG) const {
9905 if (Subtarget->isThumb1Only())
9906 return false;
9907
9908 EVT VT;
9909 SDValue Ptr;
9910 bool isSEXTLoad = false;
9911 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9912 VT = LD->getMemoryVT();
9913 Ptr = LD->getBasePtr();
9914 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9915 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9916 VT = ST->getMemoryVT();
9917 Ptr = ST->getBasePtr();
9918 } else
9919 return false;
9920
9921 bool isInc;
9922 bool isLegal = false;
9923 if (Subtarget->isThumb2())
9924 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9925 isInc, DAG);
9926 else
9927 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9928 isInc, DAG);
9929 if (!isLegal)
9930 return false;
9931
9932 if (Ptr != Base) {
9933 // Swap base ptr and offset to catch more post-index load / store when
9934 // it's legal. In Thumb2 mode, offset must be an immediate.
9935 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
9936 !Subtarget->isThumb2())
9937 std::swap(Base, Offset);
9938
9939 // Post-indexed load / store update the base pointer.
9940 if (Ptr != Base)
9941 return false;
9942 }
9943
9944 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
9945 return true;
9946 }
9947
computeMaskedBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const9948 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9949 APInt &KnownZero,
9950 APInt &KnownOne,
9951 const SelectionDAG &DAG,
9952 unsigned Depth) const {
9953 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
9954 switch (Op.getOpcode()) {
9955 default: break;
9956 case ARMISD::CMOV: {
9957 // Bits are known zero/one if known on the LHS and RHS.
9958 DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
9959 if (KnownZero == 0 && KnownOne == 0) return;
9960
9961 APInt KnownZeroRHS, KnownOneRHS;
9962 DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
9963 KnownZero &= KnownZeroRHS;
9964 KnownOne &= KnownOneRHS;
9965 return;
9966 }
9967 }
9968 }
9969
9970 //===----------------------------------------------------------------------===//
9971 // ARM Inline Assembly Support
9972 //===----------------------------------------------------------------------===//
9973
ExpandInlineAsm(CallInst * CI) const9974 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
9975 // Looking for "rev" which is V6+.
9976 if (!Subtarget->hasV6Ops())
9977 return false;
9978
9979 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9980 std::string AsmStr = IA->getAsmString();
9981 SmallVector<StringRef, 4> AsmPieces;
9982 SplitString(AsmStr, AsmPieces, ";\n");
9983
9984 switch (AsmPieces.size()) {
9985 default: return false;
9986 case 1:
9987 AsmStr = AsmPieces[0];
9988 AsmPieces.clear();
9989 SplitString(AsmStr, AsmPieces, " \t,");
9990
9991 // rev $0, $1
9992 if (AsmPieces.size() == 3 &&
9993 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
9994 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
9995 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9996 if (Ty && Ty->getBitWidth() == 32)
9997 return IntrinsicLowering::LowerToByteSwap(CI);
9998 }
9999 break;
10000 }
10001
10002 return false;
10003 }
10004
10005 /// getConstraintType - Given a constraint letter, return the type of
10006 /// constraint it is for this target.
10007 ARMTargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const10008 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10009 if (Constraint.size() == 1) {
10010 switch (Constraint[0]) {
10011 default: break;
10012 case 'l': return C_RegisterClass;
10013 case 'w': return C_RegisterClass;
10014 case 'h': return C_RegisterClass;
10015 case 'x': return C_RegisterClass;
10016 case 't': return C_RegisterClass;
10017 case 'j': return C_Other; // Constant for movw.
10018 // An address with a single base register. Due to the way we
10019 // currently handle addresses it is the same as an 'r' memory constraint.
10020 case 'Q': return C_Memory;
10021 }
10022 } else if (Constraint.size() == 2) {
10023 switch (Constraint[0]) {
10024 default: break;
10025 // All 'U+' constraints are addresses.
10026 case 'U': return C_Memory;
10027 }
10028 }
10029 return TargetLowering::getConstraintType(Constraint);
10030 }
10031
10032 /// Examine constraint type and operand type and determine a weight value.
10033 /// This object must already have been set up with the operand type
10034 /// and the current alternative constraint selected.
10035 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const10036 ARMTargetLowering::getSingleConstraintMatchWeight(
10037 AsmOperandInfo &info, const char *constraint) const {
10038 ConstraintWeight weight = CW_Invalid;
10039 Value *CallOperandVal = info.CallOperandVal;
10040 // If we don't have a value, we can't do a match,
10041 // but allow it at the lowest weight.
10042 if (CallOperandVal == NULL)
10043 return CW_Default;
10044 Type *type = CallOperandVal->getType();
10045 // Look at the constraint type.
10046 switch (*constraint) {
10047 default:
10048 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10049 break;
10050 case 'l':
10051 if (type->isIntegerTy()) {
10052 if (Subtarget->isThumb())
10053 weight = CW_SpecificReg;
10054 else
10055 weight = CW_Register;
10056 }
10057 break;
10058 case 'w':
10059 if (type->isFloatingPointTy())
10060 weight = CW_Register;
10061 break;
10062 }
10063 return weight;
10064 }
10065
10066 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10067 RCPair
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const10068 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10069 EVT VT) const {
10070 if (Constraint.size() == 1) {
10071 // GCC ARM Constraint Letters
10072 switch (Constraint[0]) {
10073 case 'l': // Low regs or general regs.
10074 if (Subtarget->isThumb())
10075 return RCPair(0U, &ARM::tGPRRegClass);
10076 return RCPair(0U, &ARM::GPRRegClass);
10077 case 'h': // High regs or no regs.
10078 if (Subtarget->isThumb())
10079 return RCPair(0U, &ARM::hGPRRegClass);
10080 break;
10081 case 'r':
10082 return RCPair(0U, &ARM::GPRRegClass);
10083 case 'w':
10084 if (VT == MVT::f32)
10085 return RCPair(0U, &ARM::SPRRegClass);
10086 if (VT.getSizeInBits() == 64)
10087 return RCPair(0U, &ARM::DPRRegClass);
10088 if (VT.getSizeInBits() == 128)
10089 return RCPair(0U, &ARM::QPRRegClass);
10090 break;
10091 case 'x':
10092 if (VT == MVT::f32)
10093 return RCPair(0U, &ARM::SPR_8RegClass);
10094 if (VT.getSizeInBits() == 64)
10095 return RCPair(0U, &ARM::DPR_8RegClass);
10096 if (VT.getSizeInBits() == 128)
10097 return RCPair(0U, &ARM::QPR_8RegClass);
10098 break;
10099 case 't':
10100 if (VT == MVT::f32)
10101 return RCPair(0U, &ARM::SPRRegClass);
10102 break;
10103 }
10104 }
10105 if (StringRef("{cc}").equals_lower(Constraint))
10106 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10107
10108 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10109 }
10110
10111 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10112 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const10113 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10114 std::string &Constraint,
10115 std::vector<SDValue>&Ops,
10116 SelectionDAG &DAG) const {
10117 SDValue Result(0, 0);
10118
10119 // Currently only support length 1 constraints.
10120 if (Constraint.length() != 1) return;
10121
10122 char ConstraintLetter = Constraint[0];
10123 switch (ConstraintLetter) {
10124 default: break;
10125 case 'j':
10126 case 'I': case 'J': case 'K': case 'L':
10127 case 'M': case 'N': case 'O':
10128 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10129 if (!C)
10130 return;
10131
10132 int64_t CVal64 = C->getSExtValue();
10133 int CVal = (int) CVal64;
10134 // None of these constraints allow values larger than 32 bits. Check
10135 // that the value fits in an int.
10136 if (CVal != CVal64)
10137 return;
10138
10139 switch (ConstraintLetter) {
10140 case 'j':
10141 // Constant suitable for movw, must be between 0 and
10142 // 65535.
10143 if (Subtarget->hasV6T2Ops())
10144 if (CVal >= 0 && CVal <= 65535)
10145 break;
10146 return;
10147 case 'I':
10148 if (Subtarget->isThumb1Only()) {
10149 // This must be a constant between 0 and 255, for ADD
10150 // immediates.
10151 if (CVal >= 0 && CVal <= 255)
10152 break;
10153 } else if (Subtarget->isThumb2()) {
10154 // A constant that can be used as an immediate value in a
10155 // data-processing instruction.
10156 if (ARM_AM::getT2SOImmVal(CVal) != -1)
10157 break;
10158 } else {
10159 // A constant that can be used as an immediate value in a
10160 // data-processing instruction.
10161 if (ARM_AM::getSOImmVal(CVal) != -1)
10162 break;
10163 }
10164 return;
10165
10166 case 'J':
10167 if (Subtarget->isThumb()) { // FIXME thumb2
10168 // This must be a constant between -255 and -1, for negated ADD
10169 // immediates. This can be used in GCC with an "n" modifier that
10170 // prints the negated value, for use with SUB instructions. It is
10171 // not useful otherwise but is implemented for compatibility.
10172 if (CVal >= -255 && CVal <= -1)
10173 break;
10174 } else {
10175 // This must be a constant between -4095 and 4095. It is not clear
10176 // what this constraint is intended for. Implemented for
10177 // compatibility with GCC.
10178 if (CVal >= -4095 && CVal <= 4095)
10179 break;
10180 }
10181 return;
10182
10183 case 'K':
10184 if (Subtarget->isThumb1Only()) {
10185 // A 32-bit value where only one byte has a nonzero value. Exclude
10186 // zero to match GCC. This constraint is used by GCC internally for
10187 // constants that can be loaded with a move/shift combination.
10188 // It is not useful otherwise but is implemented for compatibility.
10189 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10190 break;
10191 } else if (Subtarget->isThumb2()) {
10192 // A constant whose bitwise inverse can be used as an immediate
10193 // value in a data-processing instruction. This can be used in GCC
10194 // with a "B" modifier that prints the inverted value, for use with
10195 // BIC and MVN instructions. It is not useful otherwise but is
10196 // implemented for compatibility.
10197 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10198 break;
10199 } else {
10200 // A constant whose bitwise inverse can be used as an immediate
10201 // value in a data-processing instruction. This can be used in GCC
10202 // with a "B" modifier that prints the inverted value, for use with
10203 // BIC and MVN instructions. It is not useful otherwise but is
10204 // implemented for compatibility.
10205 if (ARM_AM::getSOImmVal(~CVal) != -1)
10206 break;
10207 }
10208 return;
10209
10210 case 'L':
10211 if (Subtarget->isThumb1Only()) {
10212 // This must be a constant between -7 and 7,
10213 // for 3-operand ADD/SUB immediate instructions.
10214 if (CVal >= -7 && CVal < 7)
10215 break;
10216 } else if (Subtarget->isThumb2()) {
10217 // A constant whose negation can be used as an immediate value in a
10218 // data-processing instruction. This can be used in GCC with an "n"
10219 // modifier that prints the negated value, for use with SUB
10220 // instructions. It is not useful otherwise but is implemented for
10221 // compatibility.
10222 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10223 break;
10224 } else {
10225 // A constant whose negation can be used as an immediate value in a
10226 // data-processing instruction. This can be used in GCC with an "n"
10227 // modifier that prints the negated value, for use with SUB
10228 // instructions. It is not useful otherwise but is implemented for
10229 // compatibility.
10230 if (ARM_AM::getSOImmVal(-CVal) != -1)
10231 break;
10232 }
10233 return;
10234
10235 case 'M':
10236 if (Subtarget->isThumb()) { // FIXME thumb2
10237 // This must be a multiple of 4 between 0 and 1020, for
10238 // ADD sp + immediate.
10239 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10240 break;
10241 } else {
10242 // A power of two or a constant between 0 and 32. This is used in
10243 // GCC for the shift amount on shifted register operands, but it is
10244 // useful in general for any shift amounts.
10245 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10246 break;
10247 }
10248 return;
10249
10250 case 'N':
10251 if (Subtarget->isThumb()) { // FIXME thumb2
10252 // This must be a constant between 0 and 31, for shift amounts.
10253 if (CVal >= 0 && CVal <= 31)
10254 break;
10255 }
10256 return;
10257
10258 case 'O':
10259 if (Subtarget->isThumb()) { // FIXME thumb2
10260 // This must be a multiple of 4 between -508 and 508, for
10261 // ADD/SUB sp = sp + immediate.
10262 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10263 break;
10264 }
10265 return;
10266 }
10267 Result = DAG.getTargetConstant(CVal, Op.getValueType());
10268 break;
10269 }
10270
10271 if (Result.getNode()) {
10272 Ops.push_back(Result);
10273 return;
10274 }
10275 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10276 }
10277
10278 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const10279 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10280 // The ARM target isn't yet aware of offsets.
10281 return false;
10282 }
10283
isBitFieldInvertedMask(unsigned v)10284 bool ARM::isBitFieldInvertedMask(unsigned v) {
10285 if (v == 0xffffffff)
10286 return 0;
10287 // there can be 1's on either or both "outsides", all the "inside"
10288 // bits must be 0's
10289 unsigned int lsb = 0, msb = 31;
10290 while (v & (1 << msb)) --msb;
10291 while (v & (1 << lsb)) ++lsb;
10292 for (unsigned int i = lsb; i <= msb; ++i) {
10293 if (v & (1 << i))
10294 return 0;
10295 }
10296 return 1;
10297 }
10298
10299 /// isFPImmLegal - Returns true if the target can instruction select the
10300 /// specified FP immediate natively. If false, the legalizer will
10301 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const10302 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10303 if (!Subtarget->hasVFP3())
10304 return false;
10305 if (VT == MVT::f32)
10306 return ARM_AM::getFP32Imm(Imm) != -1;
10307 if (VT == MVT::f64)
10308 return ARM_AM::getFP64Imm(Imm) != -1;
10309 return false;
10310 }
10311
10312 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10313 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
10314 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const10315 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10316 const CallInst &I,
10317 unsigned Intrinsic) const {
10318 switch (Intrinsic) {
10319 case Intrinsic::arm_neon_vld1:
10320 case Intrinsic::arm_neon_vld2:
10321 case Intrinsic::arm_neon_vld3:
10322 case Intrinsic::arm_neon_vld4:
10323 case Intrinsic::arm_neon_vld2lane:
10324 case Intrinsic::arm_neon_vld3lane:
10325 case Intrinsic::arm_neon_vld4lane: {
10326 Info.opc = ISD::INTRINSIC_W_CHAIN;
10327 // Conservatively set memVT to the entire set of vectors loaded.
10328 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10329 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10330 Info.ptrVal = I.getArgOperand(0);
10331 Info.offset = 0;
10332 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10333 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10334 Info.vol = false; // volatile loads with NEON intrinsics not supported
10335 Info.readMem = true;
10336 Info.writeMem = false;
10337 return true;
10338 }
10339 case Intrinsic::arm_neon_vst1:
10340 case Intrinsic::arm_neon_vst2:
10341 case Intrinsic::arm_neon_vst3:
10342 case Intrinsic::arm_neon_vst4:
10343 case Intrinsic::arm_neon_vst2lane:
10344 case Intrinsic::arm_neon_vst3lane:
10345 case Intrinsic::arm_neon_vst4lane: {
10346 Info.opc = ISD::INTRINSIC_VOID;
10347 // Conservatively set memVT to the entire set of vectors stored.
10348 unsigned NumElts = 0;
10349 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10350 Type *ArgTy = I.getArgOperand(ArgI)->getType();
10351 if (!ArgTy->isVectorTy())
10352 break;
10353 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10354 }
10355 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10356 Info.ptrVal = I.getArgOperand(0);
10357 Info.offset = 0;
10358 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10359 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10360 Info.vol = false; // volatile stores with NEON intrinsics not supported
10361 Info.readMem = false;
10362 Info.writeMem = true;
10363 return true;
10364 }
10365 case Intrinsic::arm_strexd: {
10366 Info.opc = ISD::INTRINSIC_W_CHAIN;
10367 Info.memVT = MVT::i64;
10368 Info.ptrVal = I.getArgOperand(2);
10369 Info.offset = 0;
10370 Info.align = 8;
10371 Info.vol = true;
10372 Info.readMem = false;
10373 Info.writeMem = true;
10374 return true;
10375 }
10376 case Intrinsic::arm_ldrexd: {
10377 Info.opc = ISD::INTRINSIC_W_CHAIN;
10378 Info.memVT = MVT::i64;
10379 Info.ptrVal = I.getArgOperand(0);
10380 Info.offset = 0;
10381 Info.align = 8;
10382 Info.vol = true;
10383 Info.readMem = true;
10384 Info.writeMem = false;
10385 return true;
10386 }
10387 default:
10388 break;
10389 }
10390
10391 return false;
10392 }
10393