1//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the ARM instructions in TableGen format. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// ARM specific DAG Nodes. 16// 17 18// Type profiles. 19def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; 20def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; 21def SDT_ARMStructByVal : SDTypeProfile<0, 4, 22 [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 23 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 24 25def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>; 26 27def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; 28 29def SDT_ARMCMov : SDTypeProfile<1, 3, 30 [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, 31 SDTCisVT<3, i32>]>; 32 33def SDT_ARMBrcond : SDTypeProfile<0, 2, 34 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 35 36def SDT_ARMBrJT : SDTypeProfile<0, 3, 37 [SDTCisPtrTy<0>, SDTCisVT<1, i32>, 38 SDTCisVT<2, i32>]>; 39 40def SDT_ARMBr2JT : SDTypeProfile<0, 4, 41 [SDTCisPtrTy<0>, SDTCisVT<1, i32>, 42 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 43 44def SDT_ARMBCC_i64 : SDTypeProfile<0, 6, 45 [SDTCisVT<0, i32>, 46 SDTCisVT<1, i32>, SDTCisVT<2, i32>, 47 SDTCisVT<3, i32>, SDTCisVT<4, i32>, 48 SDTCisVT<5, OtherVT>]>; 49 50def SDT_ARMAnd : SDTypeProfile<1, 2, 51 [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 52 SDTCisVT<2, i32>]>; 53 54def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; 55 56def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, 57 SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; 58 59def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 60def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>, 61 SDTCisInt<2>]>; 62def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>; 63 64def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 65 66def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, 67 SDTCisInt<1>]>; 68 69def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; 70 71def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 72 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 73 74def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, 75 [SDTCisSameAs<0, 2>, 76 SDTCisSameAs<0, 3>, 77 SDTCisInt<0>, SDTCisVT<1, i32>]>; 78 79// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR 80def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, 81 [SDTCisSameAs<0, 2>, 82 SDTCisSameAs<0, 3>, 83 SDTCisInt<0>, 84 SDTCisVT<1, i32>, 85 SDTCisVT<4, i32>]>; 86 87def SDT_ARM64bitmlal : SDTypeProfile<2,4, [ SDTCisVT<0, i32>, SDTCisVT<1, i32>, 88 SDTCisVT<2, i32>, SDTCisVT<3, i32>, 89 SDTCisVT<4, i32>, SDTCisVT<5, i32> ] >; 90def ARMUmlal : SDNode<"ARMISD::UMLAL", SDT_ARM64bitmlal>; 91def ARMSmlal : SDNode<"ARMISD::SMLAL", SDT_ARM64bitmlal>; 92 93// Node definitions. 94def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>; 95def ARMWrapperDYN : SDNode<"ARMISD::WrapperDYN", SDTIntUnaryOp>; 96def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>; 97def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>; 98 99def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart, 100 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; 101def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd, 102 [SDNPHasChain, SDNPSideEffect, 103 SDNPOptInGlue, SDNPOutGlue]>; 104def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" , 105 SDT_ARMStructByVal, 106 [SDNPHasChain, SDNPInGlue, SDNPOutGlue, 107 SDNPMayStore, SDNPMayLoad]>; 108 109def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall, 110 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 111 SDNPVariadic]>; 112def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall, 113 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 114 SDNPVariadic]>; 115def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall, 116 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 117 SDNPVariadic]>; 118 119def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone, 120 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 121 122def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov, 123 [SDNPInGlue]>; 124 125def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond, 126 [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; 127 128def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT, 129 [SDNPHasChain]>; 130def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT, 131 [SDNPHasChain]>; 132 133def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64, 134 [SDNPHasChain]>; 135 136def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp, 137 [SDNPOutGlue]>; 138 139def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp, 140 [SDNPOutGlue]>; 141 142def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp, 143 [SDNPOutGlue, SDNPCommutative]>; 144 145def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>; 146 147def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; 148def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; 149def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>; 150 151def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags, 152 [SDNPCommutative]>; 153def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>; 154def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>; 155def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>; 156 157def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>; 158def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP", 159 SDT_ARMEH_SJLJ_Setjmp, 160 [SDNPHasChain, SDNPSideEffect]>; 161def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP", 162 SDT_ARMEH_SJLJ_Longjmp, 163 [SDNPHasChain, SDNPSideEffect]>; 164 165def ARMMemBarrier : SDNode<"ARMISD::MEMBARRIER", SDT_ARMMEMBARRIER, 166 [SDNPHasChain, SDNPSideEffect]>; 167def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER, 168 [SDNPHasChain, SDNPSideEffect]>; 169def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH, 170 [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>; 171 172def ARMrbit : SDNode<"ARMISD::RBIT", SDTIntUnaryOp>; 173 174def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET, 175 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 176 177 178def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>; 179 180//===----------------------------------------------------------------------===// 181// ARM Instruction Predicate Definitions. 182// 183def HasV4T : Predicate<"Subtarget->hasV4TOps()">, 184 AssemblerPredicate<"HasV4TOps", "armv4t">; 185def NoV4T : Predicate<"!Subtarget->hasV4TOps()">; 186def HasV5T : Predicate<"Subtarget->hasV5TOps()">; 187def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">, 188 AssemblerPredicate<"HasV5TEOps", "armv5te">; 189def HasV6 : Predicate<"Subtarget->hasV6Ops()">, 190 AssemblerPredicate<"HasV6Ops", "armv6">; 191def NoV6 : Predicate<"!Subtarget->hasV6Ops()">; 192def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">, 193 AssemblerPredicate<"HasV6T2Ops", "armv6t2">; 194def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">; 195def HasV7 : Predicate<"Subtarget->hasV7Ops()">, 196 AssemblerPredicate<"HasV7Ops", "armv7">; 197def NoVFP : Predicate<"!Subtarget->hasVFP2()">; 198def HasVFP2 : Predicate<"Subtarget->hasVFP2()">, 199 AssemblerPredicate<"FeatureVFP2", "VFP2">; 200def HasVFP3 : Predicate<"Subtarget->hasVFP3()">, 201 AssemblerPredicate<"FeatureVFP3", "VFP3">; 202def HasVFP4 : Predicate<"Subtarget->hasVFP4()">, 203 AssemblerPredicate<"FeatureVFP4", "VFP4">; 204def HasNEON : Predicate<"Subtarget->hasNEON()">, 205 AssemblerPredicate<"FeatureNEON", "NEON">; 206def HasFP16 : Predicate<"Subtarget->hasFP16()">, 207 AssemblerPredicate<"FeatureFP16","half-float">; 208def HasDivide : Predicate<"Subtarget->hasDivide()">, 209 AssemblerPredicate<"FeatureHWDiv", "divide">; 210def HasDivideInARM : Predicate<"Subtarget->hasDivideInARMMode()">, 211 AssemblerPredicate<"FeatureHWDivARM">; 212def HasT2ExtractPack : Predicate<"Subtarget->hasT2ExtractPack()">, 213 AssemblerPredicate<"FeatureT2XtPk", 214 "pack/extract">; 215def HasThumb2DSP : Predicate<"Subtarget->hasThumb2DSP()">, 216 AssemblerPredicate<"FeatureDSPThumb2", 217 "thumb2-dsp">; 218def HasDB : Predicate<"Subtarget->hasDataBarrier()">, 219 AssemblerPredicate<"FeatureDB", 220 "data-barriers">; 221def HasMP : Predicate<"Subtarget->hasMPExtension()">, 222 AssemblerPredicate<"FeatureMP", 223 "mp-extensions">; 224def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">; 225def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">; 226def IsThumb : Predicate<"Subtarget->isThumb()">, 227 AssemblerPredicate<"ModeThumb", "thumb">; 228def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">; 229def IsThumb2 : Predicate<"Subtarget->isThumb2()">, 230 AssemblerPredicate<"ModeThumb,FeatureThumb2", 231 "thumb2">; 232def IsMClass : Predicate<"Subtarget->isMClass()">, 233 AssemblerPredicate<"FeatureMClass", "armv7m">; 234def IsARClass : Predicate<"!Subtarget->isMClass()">, 235 AssemblerPredicate<"!FeatureMClass", 236 "armv7a/r">; 237def IsARM : Predicate<"!Subtarget->isThumb()">, 238 AssemblerPredicate<"!ModeThumb", "arm-mode">; 239def IsIOS : Predicate<"Subtarget->isTargetIOS()">; 240def IsNotIOS : Predicate<"!Subtarget->isTargetIOS()">; 241def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">; 242def UseNaClTrap : Predicate<"Subtarget->useNaClTrap()">, 243 AssemblerPredicate<"FeatureNaClTrap", "NaCl">; 244def DontUseNaClTrap : Predicate<"!Subtarget->useNaClTrap()">; 245 246// FIXME: Eventually this will be just "hasV6T2Ops". 247def UseMovt : Predicate<"Subtarget->useMovt()">; 248def DontUseMovt : Predicate<"!Subtarget->useMovt()">; 249def UseFPVMLx : Predicate<"Subtarget->useFPVMLx()">; 250def UseMulOps : Predicate<"Subtarget->useMulOps()">; 251 252// Prefer fused MAC for fp mul + add over fp VMLA / VMLS if they are available. 253// But only select them if more precision in FP computation is allowed. 254// Do not use them for Darwin platforms. 255def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion ==" 256 " FPOpFusion::Fast) && " 257 "!Subtarget->isTargetDarwin()">; 258def DontUseFusedMAC : Predicate<"!Subtarget->hasVFP4() || " 259 "Subtarget->isTargetDarwin()">; 260 261// VGETLNi32 is microcoded on Swift - prefer VMOV. 262def HasFastVGETLNi32 : Predicate<"!Subtarget->isSwift()">; 263def HasSlowVGETLNi32 : Predicate<"Subtarget->isSwift()">; 264 265// VDUP.32 is microcoded on Swift - prefer VMOV. 266def HasFastVDUP32 : Predicate<"!Subtarget->isSwift()">; 267def HasSlowVDUP32 : Predicate<"Subtarget->isSwift()">; 268 269// Cortex-A9 prefers VMOVSR to VMOVDRR even when using NEON for scalar FP, as 270// this allows more effective execution domain optimization. See 271// setExecutionDomain(). 272def UseVMOVSR : Predicate<"Subtarget->isCortexA9() || !Subtarget->useNEONForSinglePrecisionFP()">; 273def DontUseVMOVSR : Predicate<"!Subtarget->isCortexA9() && Subtarget->useNEONForSinglePrecisionFP()">; 274 275def IsLE : Predicate<"TLI.isLittleEndian()">; 276def IsBE : Predicate<"TLI.isBigEndian()">; 277 278//===----------------------------------------------------------------------===// 279// ARM Flag Definitions. 280 281class RegConstraint<string C> { 282 string Constraints = C; 283} 284 285//===----------------------------------------------------------------------===// 286// ARM specific transformation functions and pattern fragments. 287// 288 289// imm_neg_XFORM - Return the negation of an i32 immediate value. 290def imm_neg_XFORM : SDNodeXForm<imm, [{ 291 return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32); 292}]>; 293 294// imm_not_XFORM - Return the complement of a i32 immediate value. 295def imm_not_XFORM : SDNodeXForm<imm, [{ 296 return CurDAG->getTargetConstant(~(int)N->getZExtValue(), MVT::i32); 297}]>; 298 299/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31]. 300def imm16_31 : ImmLeaf<i32, [{ 301 return (int32_t)Imm >= 16 && (int32_t)Imm < 32; 302}]>; 303 304def so_imm_neg_asmoperand : AsmOperandClass { let Name = "ARMSOImmNeg"; } 305def so_imm_neg : Operand<i32>, PatLeaf<(imm), [{ 306 unsigned Value = -(unsigned)N->getZExtValue(); 307 return Value && ARM_AM::getSOImmVal(Value) != -1; 308 }], imm_neg_XFORM> { 309 let ParserMatchClass = so_imm_neg_asmoperand; 310} 311 312// Note: this pattern doesn't require an encoder method and such, as it's 313// only used on aliases (Pat<> and InstAlias<>). The actual encoding 314// is handled by the destination instructions, which use so_imm. 315def so_imm_not_asmoperand : AsmOperandClass { let Name = "ARMSOImmNot"; } 316def so_imm_not : Operand<i32>, PatLeaf<(imm), [{ 317 return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1; 318 }], imm_not_XFORM> { 319 let ParserMatchClass = so_imm_not_asmoperand; 320} 321 322// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits. 323def sext_16_node : PatLeaf<(i32 GPR:$a), [{ 324 return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17; 325}]>; 326 327/// Split a 32-bit immediate into two 16 bit parts. 328def hi16 : SDNodeXForm<imm, [{ 329 return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32); 330}]>; 331 332def lo16AllZero : PatLeaf<(i32 imm), [{ 333 // Returns true if all low 16-bits are 0. 334 return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; 335}], hi16>; 336 337class BinOpWithFlagFrag<dag res> : 338 PatFrag<(ops node:$LHS, node:$RHS, node:$FLAG), res>; 339class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>; 340class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>; 341 342// An 'and' node with a single use. 343def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ 344 return N->hasOneUse(); 345}]>; 346 347// An 'xor' node with a single use. 348def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{ 349 return N->hasOneUse(); 350}]>; 351 352// An 'fmul' node with a single use. 353def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{ 354 return N->hasOneUse(); 355}]>; 356 357// An 'fadd' node which checks for single non-hazardous use. 358def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{ 359 return hasNoVMLxHazardUse(N); 360}]>; 361 362// An 'fsub' node which checks for single non-hazardous use. 363def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{ 364 return hasNoVMLxHazardUse(N); 365}]>; 366 367//===----------------------------------------------------------------------===// 368// Operand Definitions. 369// 370 371// Immediate operands with a shared generic asm render method. 372class ImmAsmOperand : AsmOperandClass { let RenderMethod = "addImmOperands"; } 373 374// Branch target. 375// FIXME: rename brtarget to t2_brtarget 376def brtarget : Operand<OtherVT> { 377 let EncoderMethod = "getBranchTargetOpValue"; 378 let OperandType = "OPERAND_PCREL"; 379 let DecoderMethod = "DecodeT2BROperand"; 380} 381 382// FIXME: get rid of this one? 383def uncondbrtarget : Operand<OtherVT> { 384 let EncoderMethod = "getUnconditionalBranchTargetOpValue"; 385 let OperandType = "OPERAND_PCREL"; 386} 387 388// Branch target for ARM. Handles conditional/unconditional 389def br_target : Operand<OtherVT> { 390 let EncoderMethod = "getARMBranchTargetOpValue"; 391 let OperandType = "OPERAND_PCREL"; 392} 393 394// Call target. 395// FIXME: rename bltarget to t2_bl_target? 396def bltarget : Operand<i32> { 397 // Encoded the same as branch targets. 398 let EncoderMethod = "getBranchTargetOpValue"; 399 let OperandType = "OPERAND_PCREL"; 400} 401 402// Call target for ARM. Handles conditional/unconditional 403// FIXME: rename bl_target to t2_bltarget? 404def bl_target : Operand<i32> { 405 let EncoderMethod = "getARMBLTargetOpValue"; 406 let OperandType = "OPERAND_PCREL"; 407} 408 409def blx_target : Operand<i32> { 410 let EncoderMethod = "getARMBLXTargetOpValue"; 411 let OperandType = "OPERAND_PCREL"; 412} 413 414// A list of registers separated by comma. Used by load/store multiple. 415def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; } 416def reglist : Operand<i32> { 417 let EncoderMethod = "getRegisterListOpValue"; 418 let ParserMatchClass = RegListAsmOperand; 419 let PrintMethod = "printRegisterList"; 420 let DecoderMethod = "DecodeRegListOperand"; 421} 422 423def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">; 424 425def DPRRegListAsmOperand : AsmOperandClass { let Name = "DPRRegList"; } 426def dpr_reglist : Operand<i32> { 427 let EncoderMethod = "getRegisterListOpValue"; 428 let ParserMatchClass = DPRRegListAsmOperand; 429 let PrintMethod = "printRegisterList"; 430 let DecoderMethod = "DecodeDPRRegListOperand"; 431} 432 433def SPRRegListAsmOperand : AsmOperandClass { let Name = "SPRRegList"; } 434def spr_reglist : Operand<i32> { 435 let EncoderMethod = "getRegisterListOpValue"; 436 let ParserMatchClass = SPRRegListAsmOperand; 437 let PrintMethod = "printRegisterList"; 438 let DecoderMethod = "DecodeSPRRegListOperand"; 439} 440 441// An operand for the CONSTPOOL_ENTRY pseudo-instruction. 442def cpinst_operand : Operand<i32> { 443 let PrintMethod = "printCPInstOperand"; 444} 445 446// Local PC labels. 447def pclabel : Operand<i32> { 448 let PrintMethod = "printPCLabel"; 449} 450 451// ADR instruction labels. 452def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; } 453def adrlabel : Operand<i32> { 454 let EncoderMethod = "getAdrLabelOpValue"; 455 let ParserMatchClass = AdrLabelAsmOperand; 456 let PrintMethod = "printAdrLabelOperand"; 457} 458 459def neon_vcvt_imm32 : Operand<i32> { 460 let EncoderMethod = "getNEONVcvtImm32OpValue"; 461 let DecoderMethod = "DecodeVCVTImmOperand"; 462} 463 464// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24. 465def rot_imm_XFORM: SDNodeXForm<imm, [{ 466 switch (N->getZExtValue()){ 467 default: assert(0); 468 case 0: return CurDAG->getTargetConstant(0, MVT::i32); 469 case 8: return CurDAG->getTargetConstant(1, MVT::i32); 470 case 16: return CurDAG->getTargetConstant(2, MVT::i32); 471 case 24: return CurDAG->getTargetConstant(3, MVT::i32); 472 } 473}]>; 474def RotImmAsmOperand : AsmOperandClass { 475 let Name = "RotImm"; 476 let ParserMethod = "parseRotImm"; 477} 478def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{ 479 int32_t v = N->getZExtValue(); 480 return v == 8 || v == 16 || v == 24; }], 481 rot_imm_XFORM> { 482 let PrintMethod = "printRotImmOperand"; 483 let ParserMatchClass = RotImmAsmOperand; 484} 485 486// shift_imm: An integer that encodes a shift amount and the type of shift 487// (asr or lsl). The 6-bit immediate encodes as: 488// {5} 0 ==> lsl 489// 1 asr 490// {4-0} imm5 shift amount. 491// asr #32 encoded as imm5 == 0. 492def ShifterImmAsmOperand : AsmOperandClass { 493 let Name = "ShifterImm"; 494 let ParserMethod = "parseShifterImm"; 495} 496def shift_imm : Operand<i32> { 497 let PrintMethod = "printShiftImmOperand"; 498 let ParserMatchClass = ShifterImmAsmOperand; 499} 500 501// shifter_operand operands: so_reg_reg, so_reg_imm, and so_imm. 502def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; } 503def so_reg_reg : Operand<i32>, // reg reg imm 504 ComplexPattern<i32, 3, "SelectRegShifterOperand", 505 [shl, srl, sra, rotr]> { 506 let EncoderMethod = "getSORegRegOpValue"; 507 let PrintMethod = "printSORegRegOperand"; 508 let DecoderMethod = "DecodeSORegRegOperand"; 509 let ParserMatchClass = ShiftedRegAsmOperand; 510 let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm); 511} 512 513def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; } 514def so_reg_imm : Operand<i32>, // reg imm 515 ComplexPattern<i32, 2, "SelectImmShifterOperand", 516 [shl, srl, sra, rotr]> { 517 let EncoderMethod = "getSORegImmOpValue"; 518 let PrintMethod = "printSORegImmOperand"; 519 let DecoderMethod = "DecodeSORegImmOperand"; 520 let ParserMatchClass = ShiftedImmAsmOperand; 521 let MIOperandInfo = (ops GPR, i32imm); 522} 523 524// FIXME: Does this need to be distinct from so_reg? 525def shift_so_reg_reg : Operand<i32>, // reg reg imm 526 ComplexPattern<i32, 3, "SelectShiftRegShifterOperand", 527 [shl,srl,sra,rotr]> { 528 let EncoderMethod = "getSORegRegOpValue"; 529 let PrintMethod = "printSORegRegOperand"; 530 let DecoderMethod = "DecodeSORegRegOperand"; 531 let ParserMatchClass = ShiftedRegAsmOperand; 532 let MIOperandInfo = (ops GPR, GPR, i32imm); 533} 534 535// FIXME: Does this need to be distinct from so_reg? 536def shift_so_reg_imm : Operand<i32>, // reg reg imm 537 ComplexPattern<i32, 2, "SelectShiftImmShifterOperand", 538 [shl,srl,sra,rotr]> { 539 let EncoderMethod = "getSORegImmOpValue"; 540 let PrintMethod = "printSORegImmOperand"; 541 let DecoderMethod = "DecodeSORegImmOperand"; 542 let ParserMatchClass = ShiftedImmAsmOperand; 543 let MIOperandInfo = (ops GPR, i32imm); 544} 545 546 547// so_imm - Match a 32-bit shifter_operand immediate operand, which is an 548// 8-bit immediate rotated by an arbitrary number of bits. 549def SOImmAsmOperand: ImmAsmOperand { let Name = "ARMSOImm"; } 550def so_imm : Operand<i32>, ImmLeaf<i32, [{ 551 return ARM_AM::getSOImmVal(Imm) != -1; 552 }]> { 553 let EncoderMethod = "getSOImmOpValue"; 554 let ParserMatchClass = SOImmAsmOperand; 555 let DecoderMethod = "DecodeSOImmOperand"; 556} 557 558// Break so_imm's up into two pieces. This handles immediates with up to 16 559// bits set in them. This uses so_imm2part to match and so_imm2part_[12] to 560// get the first/second pieces. 561def so_imm2part : PatLeaf<(imm), [{ 562 return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue()); 563}]>; 564 565/// arm_i32imm - True for +V6T2, or true only if so_imm2part is true. 566/// 567def arm_i32imm : PatLeaf<(imm), [{ 568 if (Subtarget->hasV6T2Ops()) 569 return true; 570 return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue()); 571}]>; 572 573/// imm0_1 predicate - Immediate in the range [0,1]. 574def Imm0_1AsmOperand: ImmAsmOperand { let Name = "Imm0_1"; } 575def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; } 576 577/// imm0_3 predicate - Immediate in the range [0,3]. 578def Imm0_3AsmOperand: ImmAsmOperand { let Name = "Imm0_3"; } 579def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; } 580 581/// imm0_7 predicate - Immediate in the range [0,7]. 582def Imm0_7AsmOperand: ImmAsmOperand { let Name = "Imm0_7"; } 583def imm0_7 : Operand<i32>, ImmLeaf<i32, [{ 584 return Imm >= 0 && Imm < 8; 585}]> { 586 let ParserMatchClass = Imm0_7AsmOperand; 587} 588 589/// imm8 predicate - Immediate is exactly 8. 590def Imm8AsmOperand: ImmAsmOperand { let Name = "Imm8"; } 591def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> { 592 let ParserMatchClass = Imm8AsmOperand; 593} 594 595/// imm16 predicate - Immediate is exactly 16. 596def Imm16AsmOperand: ImmAsmOperand { let Name = "Imm16"; } 597def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> { 598 let ParserMatchClass = Imm16AsmOperand; 599} 600 601/// imm32 predicate - Immediate is exactly 32. 602def Imm32AsmOperand: ImmAsmOperand { let Name = "Imm32"; } 603def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> { 604 let ParserMatchClass = Imm32AsmOperand; 605} 606 607/// imm1_7 predicate - Immediate in the range [1,7]. 608def Imm1_7AsmOperand: ImmAsmOperand { let Name = "Imm1_7"; } 609def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> { 610 let ParserMatchClass = Imm1_7AsmOperand; 611} 612 613/// imm1_15 predicate - Immediate in the range [1,15]. 614def Imm1_15AsmOperand: ImmAsmOperand { let Name = "Imm1_15"; } 615def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> { 616 let ParserMatchClass = Imm1_15AsmOperand; 617} 618 619/// imm1_31 predicate - Immediate in the range [1,31]. 620def Imm1_31AsmOperand: ImmAsmOperand { let Name = "Imm1_31"; } 621def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> { 622 let ParserMatchClass = Imm1_31AsmOperand; 623} 624 625/// imm0_15 predicate - Immediate in the range [0,15]. 626def Imm0_15AsmOperand: ImmAsmOperand { 627 let Name = "Imm0_15"; 628 let DiagnosticType = "ImmRange0_15"; 629} 630def imm0_15 : Operand<i32>, ImmLeaf<i32, [{ 631 return Imm >= 0 && Imm < 16; 632}]> { 633 let ParserMatchClass = Imm0_15AsmOperand; 634} 635 636/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31]. 637def Imm0_31AsmOperand: ImmAsmOperand { let Name = "Imm0_31"; } 638def imm0_31 : Operand<i32>, ImmLeaf<i32, [{ 639 return Imm >= 0 && Imm < 32; 640}]> { 641 let ParserMatchClass = Imm0_31AsmOperand; 642} 643 644/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32]. 645def Imm0_32AsmOperand: ImmAsmOperand { let Name = "Imm0_32"; } 646def imm0_32 : Operand<i32>, ImmLeaf<i32, [{ 647 return Imm >= 0 && Imm < 32; 648}]> { 649 let ParserMatchClass = Imm0_32AsmOperand; 650} 651 652/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63]. 653def Imm0_63AsmOperand: ImmAsmOperand { let Name = "Imm0_63"; } 654def imm0_63 : Operand<i32>, ImmLeaf<i32, [{ 655 return Imm >= 0 && Imm < 64; 656}]> { 657 let ParserMatchClass = Imm0_63AsmOperand; 658} 659 660/// imm0_255 predicate - Immediate in the range [0,255]. 661def Imm0_255AsmOperand : ImmAsmOperand { let Name = "Imm0_255"; } 662def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> { 663 let ParserMatchClass = Imm0_255AsmOperand; 664} 665 666/// imm0_65535 - An immediate is in the range [0.65535]. 667def Imm0_65535AsmOperand: ImmAsmOperand { let Name = "Imm0_65535"; } 668def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{ 669 return Imm >= 0 && Imm < 65536; 670}]> { 671 let ParserMatchClass = Imm0_65535AsmOperand; 672} 673 674// imm0_65535_neg - An immediate whose negative value is in the range [0.65535]. 675def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{ 676 return -Imm >= 0 && -Imm < 65536; 677}]>; 678 679// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference 680// a relocatable expression. 681// 682// FIXME: This really needs a Thumb version separate from the ARM version. 683// While the range is the same, and can thus use the same match class, 684// the encoding is different so it should have a different encoder method. 685def Imm0_65535ExprAsmOperand: ImmAsmOperand { let Name = "Imm0_65535Expr"; } 686def imm0_65535_expr : Operand<i32> { 687 let EncoderMethod = "getHiLo16ImmOpValue"; 688 let ParserMatchClass = Imm0_65535ExprAsmOperand; 689} 690 691/// imm24b - True if the 32-bit immediate is encodable in 24 bits. 692def Imm24bitAsmOperand: ImmAsmOperand { let Name = "Imm24bit"; } 693def imm24b : Operand<i32>, ImmLeaf<i32, [{ 694 return Imm >= 0 && Imm <= 0xffffff; 695}]> { 696 let ParserMatchClass = Imm24bitAsmOperand; 697} 698 699 700/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield 701/// e.g., 0xf000ffff 702def BitfieldAsmOperand : AsmOperandClass { 703 let Name = "Bitfield"; 704 let ParserMethod = "parseBitfield"; 705} 706 707def bf_inv_mask_imm : Operand<i32>, 708 PatLeaf<(imm), [{ 709 return ARM::isBitFieldInvertedMask(N->getZExtValue()); 710}] > { 711 let EncoderMethod = "getBitfieldInvertedMaskOpValue"; 712 let PrintMethod = "printBitfieldInvMaskImmOperand"; 713 let DecoderMethod = "DecodeBitfieldMaskOperand"; 714 let ParserMatchClass = BitfieldAsmOperand; 715} 716 717def imm1_32_XFORM: SDNodeXForm<imm, [{ 718 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, MVT::i32); 719}]>; 720def Imm1_32AsmOperand: AsmOperandClass { let Name = "Imm1_32"; } 721def imm1_32 : Operand<i32>, PatLeaf<(imm), [{ 722 uint64_t Imm = N->getZExtValue(); 723 return Imm > 0 && Imm <= 32; 724 }], 725 imm1_32_XFORM> { 726 let PrintMethod = "printImmPlusOneOperand"; 727 let ParserMatchClass = Imm1_32AsmOperand; 728} 729 730def imm1_16_XFORM: SDNodeXForm<imm, [{ 731 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, MVT::i32); 732}]>; 733def Imm1_16AsmOperand: AsmOperandClass { let Name = "Imm1_16"; } 734def imm1_16 : Operand<i32>, PatLeaf<(imm), [{ return Imm > 0 && Imm <= 16; }], 735 imm1_16_XFORM> { 736 let PrintMethod = "printImmPlusOneOperand"; 737 let ParserMatchClass = Imm1_16AsmOperand; 738} 739 740// Define ARM specific addressing modes. 741// addrmode_imm12 := reg +/- imm12 742// 743def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; } 744def addrmode_imm12 : Operand<i32>, 745 ComplexPattern<i32, 2, "SelectAddrModeImm12", []> { 746 // 12-bit immediate operand. Note that instructions using this encode 747 // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other 748 // immediate values are as normal. 749 750 let EncoderMethod = "getAddrModeImm12OpValue"; 751 let PrintMethod = "printAddrModeImm12Operand"; 752 let DecoderMethod = "DecodeAddrModeImm12Operand"; 753 let ParserMatchClass = MemImm12OffsetAsmOperand; 754 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); 755} 756// ldst_so_reg := reg +/- reg shop imm 757// 758def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; } 759def ldst_so_reg : Operand<i32>, 760 ComplexPattern<i32, 3, "SelectLdStSOReg", []> { 761 let EncoderMethod = "getLdStSORegOpValue"; 762 // FIXME: Simplify the printer 763 let PrintMethod = "printAddrMode2Operand"; 764 let DecoderMethod = "DecodeSORegMemOperand"; 765 let ParserMatchClass = MemRegOffsetAsmOperand; 766 let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift); 767} 768 769// postidx_imm8 := +/- [0,255] 770// 771// 9 bit value: 772// {8} 1 is imm8 is non-negative. 0 otherwise. 773// {7-0} [0,255] imm8 value. 774def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; } 775def postidx_imm8 : Operand<i32> { 776 let PrintMethod = "printPostIdxImm8Operand"; 777 let ParserMatchClass = PostIdxImm8AsmOperand; 778 let MIOperandInfo = (ops i32imm); 779} 780 781// postidx_imm8s4 := +/- [0,1020] 782// 783// 9 bit value: 784// {8} 1 is imm8 is non-negative. 0 otherwise. 785// {7-0} [0,255] imm8 value, scaled by 4. 786def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; } 787def postidx_imm8s4 : Operand<i32> { 788 let PrintMethod = "printPostIdxImm8s4Operand"; 789 let ParserMatchClass = PostIdxImm8s4AsmOperand; 790 let MIOperandInfo = (ops i32imm); 791} 792 793 794// postidx_reg := +/- reg 795// 796def PostIdxRegAsmOperand : AsmOperandClass { 797 let Name = "PostIdxReg"; 798 let ParserMethod = "parsePostIdxReg"; 799} 800def postidx_reg : Operand<i32> { 801 let EncoderMethod = "getPostIdxRegOpValue"; 802 let DecoderMethod = "DecodePostIdxReg"; 803 let PrintMethod = "printPostIdxRegOperand"; 804 let ParserMatchClass = PostIdxRegAsmOperand; 805 let MIOperandInfo = (ops GPRnopc, i32imm); 806} 807 808 809// addrmode2 := reg +/- imm12 810// := reg +/- reg shop imm 811// 812// FIXME: addrmode2 should be refactored the rest of the way to always 813// use explicit imm vs. reg versions above (addrmode_imm12 and ldst_so_reg). 814def AddrMode2AsmOperand : AsmOperandClass { let Name = "AddrMode2"; } 815def addrmode2 : Operand<i32>, 816 ComplexPattern<i32, 3, "SelectAddrMode2", []> { 817 let EncoderMethod = "getAddrMode2OpValue"; 818 let PrintMethod = "printAddrMode2Operand"; 819 let ParserMatchClass = AddrMode2AsmOperand; 820 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); 821} 822 823def PostIdxRegShiftedAsmOperand : AsmOperandClass { 824 let Name = "PostIdxRegShifted"; 825 let ParserMethod = "parsePostIdxReg"; 826} 827def am2offset_reg : Operand<i32>, 828 ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg", 829 [], [SDNPWantRoot]> { 830 let EncoderMethod = "getAddrMode2OffsetOpValue"; 831 let PrintMethod = "printAddrMode2OffsetOperand"; 832 // When using this for assembly, it's always as a post-index offset. 833 let ParserMatchClass = PostIdxRegShiftedAsmOperand; 834 let MIOperandInfo = (ops GPRnopc, i32imm); 835} 836 837// FIXME: am2offset_imm should only need the immediate, not the GPR. Having 838// the GPR is purely vestigal at this point. 839def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; } 840def am2offset_imm : Operand<i32>, 841 ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm", 842 [], [SDNPWantRoot]> { 843 let EncoderMethod = "getAddrMode2OffsetOpValue"; 844 let PrintMethod = "printAddrMode2OffsetOperand"; 845 let ParserMatchClass = AM2OffsetImmAsmOperand; 846 let MIOperandInfo = (ops GPRnopc, i32imm); 847} 848 849 850// addrmode3 := reg +/- reg 851// addrmode3 := reg +/- imm8 852// 853// FIXME: split into imm vs. reg versions. 854def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; } 855def addrmode3 : Operand<i32>, 856 ComplexPattern<i32, 3, "SelectAddrMode3", []> { 857 let EncoderMethod = "getAddrMode3OpValue"; 858 let PrintMethod = "printAddrMode3Operand"; 859 let ParserMatchClass = AddrMode3AsmOperand; 860 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); 861} 862 863// FIXME: split into imm vs. reg versions. 864// FIXME: parser method to handle +/- register. 865def AM3OffsetAsmOperand : AsmOperandClass { 866 let Name = "AM3Offset"; 867 let ParserMethod = "parseAM3Offset"; 868} 869def am3offset : Operand<i32>, 870 ComplexPattern<i32, 2, "SelectAddrMode3Offset", 871 [], [SDNPWantRoot]> { 872 let EncoderMethod = "getAddrMode3OffsetOpValue"; 873 let PrintMethod = "printAddrMode3OffsetOperand"; 874 let ParserMatchClass = AM3OffsetAsmOperand; 875 let MIOperandInfo = (ops GPR, i32imm); 876} 877 878// ldstm_mode := {ia, ib, da, db} 879// 880def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> { 881 let EncoderMethod = "getLdStmModeOpValue"; 882 let PrintMethod = "printLdStmModeOperand"; 883} 884 885// addrmode5 := reg +/- imm8*4 886// 887def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; } 888def addrmode5 : Operand<i32>, 889 ComplexPattern<i32, 2, "SelectAddrMode5", []> { 890 let PrintMethod = "printAddrMode5Operand"; 891 let EncoderMethod = "getAddrMode5OpValue"; 892 let DecoderMethod = "DecodeAddrMode5Operand"; 893 let ParserMatchClass = AddrMode5AsmOperand; 894 let MIOperandInfo = (ops GPR:$base, i32imm); 895} 896 897// addrmode6 := reg with optional alignment 898// 899def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; } 900def addrmode6 : Operand<i32>, 901 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 902 let PrintMethod = "printAddrMode6Operand"; 903 let MIOperandInfo = (ops GPR:$addr, i32imm:$align); 904 let EncoderMethod = "getAddrMode6AddressOpValue"; 905 let DecoderMethod = "DecodeAddrMode6Operand"; 906 let ParserMatchClass = AddrMode6AsmOperand; 907} 908 909def am6offset : Operand<i32>, 910 ComplexPattern<i32, 1, "SelectAddrMode6Offset", 911 [], [SDNPWantRoot]> { 912 let PrintMethod = "printAddrMode6OffsetOperand"; 913 let MIOperandInfo = (ops GPR); 914 let EncoderMethod = "getAddrMode6OffsetOpValue"; 915 let DecoderMethod = "DecodeGPRRegisterClass"; 916} 917 918// Special version of addrmode6 to handle alignment encoding for VST1/VLD1 919// (single element from one lane) for size 32. 920def addrmode6oneL32 : Operand<i32>, 921 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 922 let PrintMethod = "printAddrMode6Operand"; 923 let MIOperandInfo = (ops GPR:$addr, i32imm); 924 let EncoderMethod = "getAddrMode6OneLane32AddressOpValue"; 925} 926 927// Special version of addrmode6 to handle alignment encoding for VLD-dup 928// instructions, specifically VLD4-dup. 929def addrmode6dup : Operand<i32>, 930 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 931 let PrintMethod = "printAddrMode6Operand"; 932 let MIOperandInfo = (ops GPR:$addr, i32imm); 933 let EncoderMethod = "getAddrMode6DupAddressOpValue"; 934 // FIXME: This is close, but not quite right. The alignment specifier is 935 // different. 936 let ParserMatchClass = AddrMode6AsmOperand; 937} 938 939// addrmodepc := pc + reg 940// 941def addrmodepc : Operand<i32>, 942 ComplexPattern<i32, 2, "SelectAddrModePC", []> { 943 let PrintMethod = "printAddrModePCOperand"; 944 let MIOperandInfo = (ops GPR, i32imm); 945} 946 947// addr_offset_none := reg 948// 949def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; } 950def addr_offset_none : Operand<i32>, 951 ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> { 952 let PrintMethod = "printAddrMode7Operand"; 953 let DecoderMethod = "DecodeAddrMode7Operand"; 954 let ParserMatchClass = MemNoOffsetAsmOperand; 955 let MIOperandInfo = (ops GPR:$base); 956} 957 958def nohash_imm : Operand<i32> { 959 let PrintMethod = "printNoHashImmediate"; 960} 961 962def CoprocNumAsmOperand : AsmOperandClass { 963 let Name = "CoprocNum"; 964 let ParserMethod = "parseCoprocNumOperand"; 965} 966def p_imm : Operand<i32> { 967 let PrintMethod = "printPImmediate"; 968 let ParserMatchClass = CoprocNumAsmOperand; 969 let DecoderMethod = "DecodeCoprocessor"; 970} 971 972def pf_imm : Operand<i32> { 973 let PrintMethod = "printPImmediate"; 974 let ParserMatchClass = CoprocNumAsmOperand; 975} 976 977def CoprocRegAsmOperand : AsmOperandClass { 978 let Name = "CoprocReg"; 979 let ParserMethod = "parseCoprocRegOperand"; 980} 981def c_imm : Operand<i32> { 982 let PrintMethod = "printCImmediate"; 983 let ParserMatchClass = CoprocRegAsmOperand; 984} 985def CoprocOptionAsmOperand : AsmOperandClass { 986 let Name = "CoprocOption"; 987 let ParserMethod = "parseCoprocOptionOperand"; 988} 989def coproc_option_imm : Operand<i32> { 990 let PrintMethod = "printCoprocOptionImm"; 991 let ParserMatchClass = CoprocOptionAsmOperand; 992} 993 994//===----------------------------------------------------------------------===// 995 996include "ARMInstrFormats.td" 997 998//===----------------------------------------------------------------------===// 999// Multiclass helpers... 1000// 1001 1002/// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a 1003/// binop that produces a value. 1004let TwoOperandAliasConstraint = "$Rn = $Rd" in 1005multiclass AsI1_bin_irs<bits<4> opcod, string opc, 1006 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1007 PatFrag opnode, bit Commutable = 0> { 1008 // The register-immediate version is re-materializable. This is useful 1009 // in particular for taking the address of a local. 1010 let isReMaterializable = 1 in { 1011 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm, 1012 iii, opc, "\t$Rd, $Rn, $imm", 1013 [(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]> { 1014 bits<4> Rd; 1015 bits<4> Rn; 1016 bits<12> imm; 1017 let Inst{25} = 1; 1018 let Inst{19-16} = Rn; 1019 let Inst{15-12} = Rd; 1020 let Inst{11-0} = imm; 1021 } 1022 } 1023 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 1024 iir, opc, "\t$Rd, $Rn, $Rm", 1025 [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]> { 1026 bits<4> Rd; 1027 bits<4> Rn; 1028 bits<4> Rm; 1029 let Inst{25} = 0; 1030 let isCommutable = Commutable; 1031 let Inst{19-16} = Rn; 1032 let Inst{15-12} = Rd; 1033 let Inst{11-4} = 0b00000000; 1034 let Inst{3-0} = Rm; 1035 } 1036 1037 def rsi : AsI1<opcod, (outs GPR:$Rd), 1038 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 1039 iis, opc, "\t$Rd, $Rn, $shift", 1040 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]> { 1041 bits<4> Rd; 1042 bits<4> Rn; 1043 bits<12> shift; 1044 let Inst{25} = 0; 1045 let Inst{19-16} = Rn; 1046 let Inst{15-12} = Rd; 1047 let Inst{11-5} = shift{11-5}; 1048 let Inst{4} = 0; 1049 let Inst{3-0} = shift{3-0}; 1050 } 1051 1052 def rsr : AsI1<opcod, (outs GPR:$Rd), 1053 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1054 iis, opc, "\t$Rd, $Rn, $shift", 1055 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]> { 1056 bits<4> Rd; 1057 bits<4> Rn; 1058 bits<12> shift; 1059 let Inst{25} = 0; 1060 let Inst{19-16} = Rn; 1061 let Inst{15-12} = Rd; 1062 let Inst{11-8} = shift{11-8}; 1063 let Inst{7} = 0; 1064 let Inst{6-5} = shift{6-5}; 1065 let Inst{4} = 1; 1066 let Inst{3-0} = shift{3-0}; 1067 } 1068} 1069 1070/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are 1071/// reversed. The 'rr' form is only defined for the disassembler; for codegen 1072/// it is equivalent to the AsI1_bin_irs counterpart. 1073let TwoOperandAliasConstraint = "$Rn = $Rd" in 1074multiclass AsI1_rbin_irs<bits<4> opcod, string opc, 1075 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1076 PatFrag opnode, bit Commutable = 0> { 1077 // The register-immediate version is re-materializable. This is useful 1078 // in particular for taking the address of a local. 1079 let isReMaterializable = 1 in { 1080 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm, 1081 iii, opc, "\t$Rd, $Rn, $imm", 1082 [(set GPR:$Rd, (opnode so_imm:$imm, GPR:$Rn))]> { 1083 bits<4> Rd; 1084 bits<4> Rn; 1085 bits<12> imm; 1086 let Inst{25} = 1; 1087 let Inst{19-16} = Rn; 1088 let Inst{15-12} = Rd; 1089 let Inst{11-0} = imm; 1090 } 1091 } 1092 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 1093 iir, opc, "\t$Rd, $Rn, $Rm", 1094 [/* pattern left blank */]> { 1095 bits<4> Rd; 1096 bits<4> Rn; 1097 bits<4> Rm; 1098 let Inst{11-4} = 0b00000000; 1099 let Inst{25} = 0; 1100 let Inst{3-0} = Rm; 1101 let Inst{15-12} = Rd; 1102 let Inst{19-16} = Rn; 1103 } 1104 1105 def rsi : AsI1<opcod, (outs GPR:$Rd), 1106 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 1107 iis, opc, "\t$Rd, $Rn, $shift", 1108 [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]> { 1109 bits<4> Rd; 1110 bits<4> Rn; 1111 bits<12> shift; 1112 let Inst{25} = 0; 1113 let Inst{19-16} = Rn; 1114 let Inst{15-12} = Rd; 1115 let Inst{11-5} = shift{11-5}; 1116 let Inst{4} = 0; 1117 let Inst{3-0} = shift{3-0}; 1118 } 1119 1120 def rsr : AsI1<opcod, (outs GPR:$Rd), 1121 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1122 iis, opc, "\t$Rd, $Rn, $shift", 1123 [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]> { 1124 bits<4> Rd; 1125 bits<4> Rn; 1126 bits<12> shift; 1127 let Inst{25} = 0; 1128 let Inst{19-16} = Rn; 1129 let Inst{15-12} = Rd; 1130 let Inst{11-8} = shift{11-8}; 1131 let Inst{7} = 0; 1132 let Inst{6-5} = shift{6-5}; 1133 let Inst{4} = 1; 1134 let Inst{3-0} = shift{3-0}; 1135 } 1136} 1137 1138/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default. 1139/// 1140/// These opcodes will be converted to the real non-S opcodes by 1141/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand. 1142let hasPostISelHook = 1, Defs = [CPSR] in { 1143multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir, 1144 InstrItinClass iis, PatFrag opnode, 1145 bit Commutable = 0> { 1146 def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm, pred:$p), 1147 4, iii, 1148 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm))]>; 1149 1150 def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p), 1151 4, iir, 1152 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]> { 1153 let isCommutable = Commutable; 1154 } 1155 def rsi : ARMPseudoInst<(outs GPR:$Rd), 1156 (ins GPR:$Rn, so_reg_imm:$shift, pred:$p), 1157 4, iis, 1158 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, 1159 so_reg_imm:$shift))]>; 1160 1161 def rsr : ARMPseudoInst<(outs GPR:$Rd), 1162 (ins GPR:$Rn, so_reg_reg:$shift, pred:$p), 1163 4, iis, 1164 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, 1165 so_reg_reg:$shift))]>; 1166} 1167} 1168 1169/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG 1170/// operands are reversed. 1171let hasPostISelHook = 1, Defs = [CPSR] in { 1172multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir, 1173 InstrItinClass iis, PatFrag opnode, 1174 bit Commutable = 0> { 1175 def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm, pred:$p), 1176 4, iii, 1177 [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn))]>; 1178 1179 def rsi : ARMPseudoInst<(outs GPR:$Rd), 1180 (ins GPR:$Rn, so_reg_imm:$shift, pred:$p), 1181 4, iis, 1182 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, 1183 GPR:$Rn))]>; 1184 1185 def rsr : ARMPseudoInst<(outs GPR:$Rd), 1186 (ins GPR:$Rn, so_reg_reg:$shift, pred:$p), 1187 4, iis, 1188 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, 1189 GPR:$Rn))]>; 1190} 1191} 1192 1193/// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test 1194/// patterns. Similar to AsI1_bin_irs except the instruction does not produce 1195/// a explicit result, only implicitly set CPSR. 1196let isCompare = 1, Defs = [CPSR] in { 1197multiclass AI1_cmp_irs<bits<4> opcod, string opc, 1198 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1199 PatFrag opnode, bit Commutable = 0> { 1200 def ri : AI1<opcod, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, iii, 1201 opc, "\t$Rn, $imm", 1202 [(opnode GPR:$Rn, so_imm:$imm)]> { 1203 bits<4> Rn; 1204 bits<12> imm; 1205 let Inst{25} = 1; 1206 let Inst{20} = 1; 1207 let Inst{19-16} = Rn; 1208 let Inst{15-12} = 0b0000; 1209 let Inst{11-0} = imm; 1210 1211 let Unpredictable{15-12} = 0b1111; 1212 } 1213 def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir, 1214 opc, "\t$Rn, $Rm", 1215 [(opnode GPR:$Rn, GPR:$Rm)]> { 1216 bits<4> Rn; 1217 bits<4> Rm; 1218 let isCommutable = Commutable; 1219 let Inst{25} = 0; 1220 let Inst{20} = 1; 1221 let Inst{19-16} = Rn; 1222 let Inst{15-12} = 0b0000; 1223 let Inst{11-4} = 0b00000000; 1224 let Inst{3-0} = Rm; 1225 1226 let Unpredictable{15-12} = 0b1111; 1227 } 1228 def rsi : AI1<opcod, (outs), 1229 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis, 1230 opc, "\t$Rn, $shift", 1231 [(opnode GPR:$Rn, so_reg_imm:$shift)]> { 1232 bits<4> Rn; 1233 bits<12> shift; 1234 let Inst{25} = 0; 1235 let Inst{20} = 1; 1236 let Inst{19-16} = Rn; 1237 let Inst{15-12} = 0b0000; 1238 let Inst{11-5} = shift{11-5}; 1239 let Inst{4} = 0; 1240 let Inst{3-0} = shift{3-0}; 1241 1242 let Unpredictable{15-12} = 0b1111; 1243 } 1244 def rsr : AI1<opcod, (outs), 1245 (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis, 1246 opc, "\t$Rn, $shift", 1247 [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]> { 1248 bits<4> Rn; 1249 bits<12> shift; 1250 let Inst{25} = 0; 1251 let Inst{20} = 1; 1252 let Inst{19-16} = Rn; 1253 let Inst{15-12} = 0b0000; 1254 let Inst{11-8} = shift{11-8}; 1255 let Inst{7} = 0; 1256 let Inst{6-5} = shift{6-5}; 1257 let Inst{4} = 1; 1258 let Inst{3-0} = shift{3-0}; 1259 1260 let Unpredictable{15-12} = 0b1111; 1261 } 1262 1263} 1264} 1265 1266/// AI_ext_rrot - A unary operation with two forms: one whose operand is a 1267/// register and one whose operand is a register rotated by 8/16/24. 1268/// FIXME: Remove the 'r' variant. Its rot_imm is zero. 1269class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode> 1270 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot), 1271 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", 1272 [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>, 1273 Requires<[IsARM, HasV6]> { 1274 bits<4> Rd; 1275 bits<4> Rm; 1276 bits<2> rot; 1277 let Inst{19-16} = 0b1111; 1278 let Inst{15-12} = Rd; 1279 let Inst{11-10} = rot; 1280 let Inst{3-0} = Rm; 1281} 1282 1283class AI_ext_rrot_np<bits<8> opcod, string opc> 1284 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot), 1285 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>, 1286 Requires<[IsARM, HasV6]> { 1287 bits<2> rot; 1288 let Inst{19-16} = 0b1111; 1289 let Inst{11-10} = rot; 1290} 1291 1292/// AI_exta_rrot - A binary operation with two forms: one whose operand is a 1293/// register and one whose operand is a register rotated by 8/16/24. 1294class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode> 1295 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot), 1296 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", 1297 [(set GPRnopc:$Rd, (opnode GPR:$Rn, 1298 (rotr GPRnopc:$Rm, rot_imm:$rot)))]>, 1299 Requires<[IsARM, HasV6]> { 1300 bits<4> Rd; 1301 bits<4> Rm; 1302 bits<4> Rn; 1303 bits<2> rot; 1304 let Inst{19-16} = Rn; 1305 let Inst{15-12} = Rd; 1306 let Inst{11-10} = rot; 1307 let Inst{9-4} = 0b000111; 1308 let Inst{3-0} = Rm; 1309} 1310 1311class AI_exta_rrot_np<bits<8> opcod, string opc> 1312 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot), 1313 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>, 1314 Requires<[IsARM, HasV6]> { 1315 bits<4> Rn; 1316 bits<2> rot; 1317 let Inst{19-16} = Rn; 1318 let Inst{11-10} = rot; 1319} 1320 1321/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube. 1322let TwoOperandAliasConstraint = "$Rn = $Rd" in 1323multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode, 1324 bit Commutable = 0> { 1325 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { 1326 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), 1327 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm", 1328 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm, CPSR))]>, 1329 Requires<[IsARM]> { 1330 bits<4> Rd; 1331 bits<4> Rn; 1332 bits<12> imm; 1333 let Inst{25} = 1; 1334 let Inst{15-12} = Rd; 1335 let Inst{19-16} = Rn; 1336 let Inst{11-0} = imm; 1337 } 1338 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 1339 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm", 1340 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>, 1341 Requires<[IsARM]> { 1342 bits<4> Rd; 1343 bits<4> Rn; 1344 bits<4> Rm; 1345 let Inst{11-4} = 0b00000000; 1346 let Inst{25} = 0; 1347 let isCommutable = Commutable; 1348 let Inst{3-0} = Rm; 1349 let Inst{15-12} = Rd; 1350 let Inst{19-16} = Rn; 1351 } 1352 def rsi : AsI1<opcod, (outs GPR:$Rd), 1353 (ins GPR:$Rn, so_reg_imm:$shift), 1354 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1355 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>, 1356 Requires<[IsARM]> { 1357 bits<4> Rd; 1358 bits<4> Rn; 1359 bits<12> shift; 1360 let Inst{25} = 0; 1361 let Inst{19-16} = Rn; 1362 let Inst{15-12} = Rd; 1363 let Inst{11-5} = shift{11-5}; 1364 let Inst{4} = 0; 1365 let Inst{3-0} = shift{3-0}; 1366 } 1367 def rsr : AsI1<opcod, (outs GPRnopc:$Rd), 1368 (ins GPRnopc:$Rn, so_reg_reg:$shift), 1369 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1370 [(set GPRnopc:$Rd, CPSR, 1371 (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>, 1372 Requires<[IsARM]> { 1373 bits<4> Rd; 1374 bits<4> Rn; 1375 bits<12> shift; 1376 let Inst{25} = 0; 1377 let Inst{19-16} = Rn; 1378 let Inst{15-12} = Rd; 1379 let Inst{11-8} = shift{11-8}; 1380 let Inst{7} = 0; 1381 let Inst{6-5} = shift{6-5}; 1382 let Inst{4} = 1; 1383 let Inst{3-0} = shift{3-0}; 1384 } 1385 } 1386} 1387 1388/// AI1_rsc_irs - Define instructions and patterns for rsc 1389let TwoOperandAliasConstraint = "$Rn = $Rd" in 1390multiclass AI1_rsc_irs<bits<4> opcod, string opc, PatFrag opnode> { 1391 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { 1392 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), 1393 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm", 1394 [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn, CPSR))]>, 1395 Requires<[IsARM]> { 1396 bits<4> Rd; 1397 bits<4> Rn; 1398 bits<12> imm; 1399 let Inst{25} = 1; 1400 let Inst{15-12} = Rd; 1401 let Inst{19-16} = Rn; 1402 let Inst{11-0} = imm; 1403 } 1404 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 1405 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm", 1406 [/* pattern left blank */]> { 1407 bits<4> Rd; 1408 bits<4> Rn; 1409 bits<4> Rm; 1410 let Inst{11-4} = 0b00000000; 1411 let Inst{25} = 0; 1412 let Inst{3-0} = Rm; 1413 let Inst{15-12} = Rd; 1414 let Inst{19-16} = Rn; 1415 } 1416 def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift), 1417 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1418 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>, 1419 Requires<[IsARM]> { 1420 bits<4> Rd; 1421 bits<4> Rn; 1422 bits<12> shift; 1423 let Inst{25} = 0; 1424 let Inst{19-16} = Rn; 1425 let Inst{15-12} = Rd; 1426 let Inst{11-5} = shift{11-5}; 1427 let Inst{4} = 0; 1428 let Inst{3-0} = shift{3-0}; 1429 } 1430 def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift), 1431 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1432 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>, 1433 Requires<[IsARM]> { 1434 bits<4> Rd; 1435 bits<4> Rn; 1436 bits<12> shift; 1437 let Inst{25} = 0; 1438 let Inst{19-16} = Rn; 1439 let Inst{15-12} = Rd; 1440 let Inst{11-8} = shift{11-8}; 1441 let Inst{7} = 0; 1442 let Inst{6-5} = shift{6-5}; 1443 let Inst{4} = 1; 1444 let Inst{3-0} = shift{3-0}; 1445 } 1446 } 1447} 1448 1449let canFoldAsLoad = 1, isReMaterializable = 1 in { 1450multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii, 1451 InstrItinClass iir, PatFrag opnode> { 1452 // Note: We use the complex addrmode_imm12 rather than just an input 1453 // GPR and a constrained immediate so that we can use this to match 1454 // frame index references and avoid matching constant pool references. 1455 def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr), 1456 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", 1457 [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> { 1458 bits<4> Rt; 1459 bits<17> addr; 1460 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1461 let Inst{19-16} = addr{16-13}; // Rn 1462 let Inst{15-12} = Rt; 1463 let Inst{11-0} = addr{11-0}; // imm12 1464 } 1465 def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift), 1466 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", 1467 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> { 1468 bits<4> Rt; 1469 bits<17> shift; 1470 let shift{4} = 0; // Inst{4} = 0 1471 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1472 let Inst{19-16} = shift{16-13}; // Rn 1473 let Inst{15-12} = Rt; 1474 let Inst{11-0} = shift{11-0}; 1475 } 1476} 1477} 1478 1479let canFoldAsLoad = 1, isReMaterializable = 1 in { 1480multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii, 1481 InstrItinClass iir, PatFrag opnode> { 1482 // Note: We use the complex addrmode_imm12 rather than just an input 1483 // GPR and a constrained immediate so that we can use this to match 1484 // frame index references and avoid matching constant pool references. 1485 def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt), 1486 (ins addrmode_imm12:$addr), 1487 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", 1488 [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> { 1489 bits<4> Rt; 1490 bits<17> addr; 1491 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1492 let Inst{19-16} = addr{16-13}; // Rn 1493 let Inst{15-12} = Rt; 1494 let Inst{11-0} = addr{11-0}; // imm12 1495 } 1496 def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt), 1497 (ins ldst_so_reg:$shift), 1498 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", 1499 [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> { 1500 bits<4> Rt; 1501 bits<17> shift; 1502 let shift{4} = 0; // Inst{4} = 0 1503 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1504 let Inst{19-16} = shift{16-13}; // Rn 1505 let Inst{15-12} = Rt; 1506 let Inst{11-0} = shift{11-0}; 1507 } 1508} 1509} 1510 1511 1512multiclass AI_str1<bit isByte, string opc, InstrItinClass iii, 1513 InstrItinClass iir, PatFrag opnode> { 1514 // Note: We use the complex addrmode_imm12 rather than just an input 1515 // GPR and a constrained immediate so that we can use this to match 1516 // frame index references and avoid matching constant pool references. 1517 def i12 : AI2ldst<0b010, 0, isByte, (outs), 1518 (ins GPR:$Rt, addrmode_imm12:$addr), 1519 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", 1520 [(opnode GPR:$Rt, addrmode_imm12:$addr)]> { 1521 bits<4> Rt; 1522 bits<17> addr; 1523 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1524 let Inst{19-16} = addr{16-13}; // Rn 1525 let Inst{15-12} = Rt; 1526 let Inst{11-0} = addr{11-0}; // imm12 1527 } 1528 def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift), 1529 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", 1530 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> { 1531 bits<4> Rt; 1532 bits<17> shift; 1533 let shift{4} = 0; // Inst{4} = 0 1534 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1535 let Inst{19-16} = shift{16-13}; // Rn 1536 let Inst{15-12} = Rt; 1537 let Inst{11-0} = shift{11-0}; 1538 } 1539} 1540 1541multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii, 1542 InstrItinClass iir, PatFrag opnode> { 1543 // Note: We use the complex addrmode_imm12 rather than just an input 1544 // GPR and a constrained immediate so that we can use this to match 1545 // frame index references and avoid matching constant pool references. 1546 def i12 : AI2ldst<0b010, 0, isByte, (outs), 1547 (ins GPRnopc:$Rt, addrmode_imm12:$addr), 1548 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", 1549 [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> { 1550 bits<4> Rt; 1551 bits<17> addr; 1552 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1553 let Inst{19-16} = addr{16-13}; // Rn 1554 let Inst{15-12} = Rt; 1555 let Inst{11-0} = addr{11-0}; // imm12 1556 } 1557 def rs : AI2ldst<0b011, 0, isByte, (outs), 1558 (ins GPRnopc:$Rt, ldst_so_reg:$shift), 1559 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", 1560 [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> { 1561 bits<4> Rt; 1562 bits<17> shift; 1563 let shift{4} = 0; // Inst{4} = 0 1564 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1565 let Inst{19-16} = shift{16-13}; // Rn 1566 let Inst{15-12} = Rt; 1567 let Inst{11-0} = shift{11-0}; 1568 } 1569} 1570 1571 1572//===----------------------------------------------------------------------===// 1573// Instructions 1574//===----------------------------------------------------------------------===// 1575 1576//===----------------------------------------------------------------------===// 1577// Miscellaneous Instructions. 1578// 1579 1580/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1581/// the function. The first operand is the ID# for this instruction, the second 1582/// is the index into the MachineConstantPool that this is, the third is the 1583/// size in bytes of this constant pool entry. 1584let neverHasSideEffects = 1, isNotDuplicable = 1 in 1585def CONSTPOOL_ENTRY : 1586PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1587 i32imm:$size), NoItinerary, []>; 1588 1589// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE 1590// from removing one half of the matched pairs. That breaks PEI, which assumes 1591// these will always be in pairs, and asserts if it finds otherwise. Better way? 1592let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 1593def ADJCALLSTACKUP : 1594PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary, 1595 [(ARMcallseq_end timm:$amt1, timm:$amt2)]>; 1596 1597def ADJCALLSTACKDOWN : 1598PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary, 1599 [(ARMcallseq_start timm:$amt)]>; 1600} 1601 1602// Atomic pseudo-insts which will be lowered to ldrexd/strexd loops. 1603// (These pseudos use a hand-written selection code). 1604let usesCustomInserter = 1, Defs = [CPSR], mayLoad = 1, mayStore = 1 in { 1605def ATOMOR6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1606 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1607 NoItinerary, []>; 1608def ATOMXOR6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1609 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1610 NoItinerary, []>; 1611def ATOMADD6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1612 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1613 NoItinerary, []>; 1614def ATOMSUB6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1615 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1616 NoItinerary, []>; 1617def ATOMNAND6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1618 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1619 NoItinerary, []>; 1620def ATOMAND6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1621 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1622 NoItinerary, []>; 1623def ATOMSWAP6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1624 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1625 NoItinerary, []>; 1626def ATOMCMPXCHG6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1627 (ins GPR:$addr, GPR:$cmp1, GPR:$cmp2, 1628 GPR:$set1, GPR:$set2), 1629 NoItinerary, []>; 1630def ATOMMIN6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1631 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1632 NoItinerary, []>; 1633def ATOMUMIN6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1634 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1635 NoItinerary, []>; 1636def ATOMMAX6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1637 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1638 NoItinerary, []>; 1639def ATOMUMAX6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1640 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1641 NoItinerary, []>; 1642} 1643 1644def HINT : AI<(outs), (ins imm0_255:$imm), MiscFrm, NoItinerary, 1645 "hint", "\t$imm", []>, Requires<[IsARM, HasV6]> { 1646 bits<8> imm; 1647 let Inst{27-8} = 0b00110010000011110000; 1648 let Inst{7-0} = imm; 1649} 1650 1651def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6T2]>; 1652def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6T2]>; 1653def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6T2]>; 1654def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6T2]>; 1655def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6T2]>; 1656 1657def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel", 1658 "\t$Rd, $Rn, $Rm", []>, Requires<[IsARM, HasV6]> { 1659 bits<4> Rd; 1660 bits<4> Rn; 1661 bits<4> Rm; 1662 let Inst{3-0} = Rm; 1663 let Inst{15-12} = Rd; 1664 let Inst{19-16} = Rn; 1665 let Inst{27-20} = 0b01101000; 1666 let Inst{7-4} = 0b1011; 1667 let Inst{11-8} = 0b1111; 1668 let Unpredictable{11-8} = 0b1111; 1669} 1670 1671// The 16-bit operand $val can be used by a debugger to store more information 1672// about the breakpoint. 1673def BKPT : AI<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary, 1674 "bkpt", "\t$val", []>, Requires<[IsARM]> { 1675 bits<16> val; 1676 let Inst{3-0} = val{3-0}; 1677 let Inst{19-8} = val{15-4}; 1678 let Inst{27-20} = 0b00010010; 1679 let Inst{7-4} = 0b0111; 1680} 1681 1682// Change Processor State 1683// FIXME: We should use InstAlias to handle the optional operands. 1684class CPS<dag iops, string asm_ops> 1685 : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops), 1686 []>, Requires<[IsARM]> { 1687 bits<2> imod; 1688 bits<3> iflags; 1689 bits<5> mode; 1690 bit M; 1691 1692 let Inst{31-28} = 0b1111; 1693 let Inst{27-20} = 0b00010000; 1694 let Inst{19-18} = imod; 1695 let Inst{17} = M; // Enabled if mode is set; 1696 let Inst{16-9} = 0b00000000; 1697 let Inst{8-6} = iflags; 1698 let Inst{5} = 0; 1699 let Inst{4-0} = mode; 1700} 1701 1702let DecoderMethod = "DecodeCPSInstruction" in { 1703let M = 1 in 1704 def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode), 1705 "$imod\t$iflags, $mode">; 1706let mode = 0, M = 0 in 1707 def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">; 1708 1709let imod = 0, iflags = 0, M = 1 in 1710 def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">; 1711} 1712 1713// Preload signals the memory system of possible future data/instruction access. 1714multiclass APreLoad<bits<1> read, bits<1> data, string opc> { 1715 1716 def i12 : AXI<(outs), (ins addrmode_imm12:$addr), MiscFrm, IIC_Preload, 1717 !strconcat(opc, "\t$addr"), 1718 [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]> { 1719 bits<4> Rt; 1720 bits<17> addr; 1721 let Inst{31-26} = 0b111101; 1722 let Inst{25} = 0; // 0 for immediate form 1723 let Inst{24} = data; 1724 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1725 let Inst{22} = read; 1726 let Inst{21-20} = 0b01; 1727 let Inst{19-16} = addr{16-13}; // Rn 1728 let Inst{15-12} = 0b1111; 1729 let Inst{11-0} = addr{11-0}; // imm12 1730 } 1731 1732 def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload, 1733 !strconcat(opc, "\t$shift"), 1734 [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]> { 1735 bits<17> shift; 1736 let Inst{31-26} = 0b111101; 1737 let Inst{25} = 1; // 1 for register form 1738 let Inst{24} = data; 1739 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1740 let Inst{22} = read; 1741 let Inst{21-20} = 0b01; 1742 let Inst{19-16} = shift{16-13}; // Rn 1743 let Inst{15-12} = 0b1111; 1744 let Inst{11-0} = shift{11-0}; 1745 let Inst{4} = 0; 1746 } 1747} 1748 1749defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>; 1750defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>; 1751defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>; 1752 1753def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary, 1754 "setend\t$end", []>, Requires<[IsARM]> { 1755 bits<1> end; 1756 let Inst{31-10} = 0b1111000100000001000000; 1757 let Inst{9} = end; 1758 let Inst{8-0} = 0; 1759} 1760 1761def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt", 1762 []>, Requires<[IsARM, HasV7]> { 1763 bits<4> opt; 1764 let Inst{27-4} = 0b001100100000111100001111; 1765 let Inst{3-0} = opt; 1766} 1767 1768/* 1769 * A5.4 Permanently UNDEFINED instructions. 1770 * 1771 * For most targets use UDF #65006, for which the OS will generate SIGTRAP. 1772 * Other UDF encodings generate SIGILL. 1773 * 1774 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb. 1775 * Encoding A1: 1776 * 1110 0111 1111 iiii iiii iiii 1111 iiii 1777 * Encoding T1: 1778 * 1101 1110 iiii iiii 1779 * It uses the following encoding: 1780 * 1110 0111 1111 1110 1101 1110 1111 0000 1781 * - In ARM: UDF #60896; 1782 * - In Thumb: UDF #254 followed by a branch-to-self. 1783 */ 1784let isBarrier = 1, isTerminator = 1 in 1785def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary, 1786 "trap", [(trap)]>, 1787 Requires<[IsARM,UseNaClTrap]> { 1788 let Inst = 0xe7fedef0; 1789} 1790let isBarrier = 1, isTerminator = 1 in 1791def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary, 1792 "trap", [(trap)]>, 1793 Requires<[IsARM,DontUseNaClTrap]> { 1794 let Inst = 0xe7ffdefe; 1795} 1796 1797// Address computation and loads and stores in PIC mode. 1798let isNotDuplicable = 1 in { 1799def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p), 1800 4, IIC_iALUr, 1801 [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>; 1802 1803let AddedComplexity = 10 in { 1804def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), 1805 4, IIC_iLoad_r, 1806 [(set GPR:$dst, (load addrmodepc:$addr))]>; 1807 1808def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1809 4, IIC_iLoad_bh_r, 1810 [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>; 1811 1812def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1813 4, IIC_iLoad_bh_r, 1814 [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>; 1815 1816def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1817 4, IIC_iLoad_bh_r, 1818 [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>; 1819 1820def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1821 4, IIC_iLoad_bh_r, 1822 [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>; 1823} 1824let AddedComplexity = 10 in { 1825def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 1826 4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>; 1827 1828def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 1829 4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src, 1830 addrmodepc:$addr)]>; 1831 1832def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 1833 4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>; 1834} 1835} // isNotDuplicable = 1 1836 1837 1838// LEApcrel - Load a pc-relative address into a register without offending the 1839// assembler. 1840let neverHasSideEffects = 1, isReMaterializable = 1 in 1841// The 'adr' mnemonic encodes differently if the label is before or after 1842// the instruction. The {24-21} opcode bits are set by the fixup, as we don't 1843// know until then which form of the instruction will be used. 1844def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label), 1845 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []> { 1846 bits<4> Rd; 1847 bits<14> label; 1848 let Inst{27-25} = 0b001; 1849 let Inst{24} = 0; 1850 let Inst{23-22} = label{13-12}; 1851 let Inst{21} = 0; 1852 let Inst{20} = 0; 1853 let Inst{19-16} = 0b1111; 1854 let Inst{15-12} = Rd; 1855 let Inst{11-0} = label{11-0}; 1856} 1857 1858let hasSideEffects = 1 in { 1859def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p), 1860 4, IIC_iALUi, []>; 1861 1862def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd), 1863 (ins i32imm:$label, nohash_imm:$id, pred:$p), 1864 4, IIC_iALUi, []>; 1865} 1866 1867//===----------------------------------------------------------------------===// 1868// Control Flow Instructions. 1869// 1870 1871let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 1872 // ARMV4T and above 1873 def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br, 1874 "bx", "\tlr", [(ARMretflag)]>, 1875 Requires<[IsARM, HasV4T]> { 1876 let Inst{27-0} = 0b0001001011111111111100011110; 1877 } 1878 1879 // ARMV4 only 1880 def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br, 1881 "mov", "\tpc, lr", [(ARMretflag)]>, 1882 Requires<[IsARM, NoV4T]> { 1883 let Inst{27-0} = 0b0001101000001111000000001110; 1884 } 1885} 1886 1887// Indirect branches 1888let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1889 // ARMV4T and above 1890 def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst", 1891 [(brind GPR:$dst)]>, 1892 Requires<[IsARM, HasV4T]> { 1893 bits<4> dst; 1894 let Inst{31-4} = 0b1110000100101111111111110001; 1895 let Inst{3-0} = dst; 1896 } 1897 1898 def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, 1899 "bx", "\t$dst", [/* pattern left blank */]>, 1900 Requires<[IsARM, HasV4T]> { 1901 bits<4> dst; 1902 let Inst{27-4} = 0b000100101111111111110001; 1903 let Inst{3-0} = dst; 1904 } 1905} 1906 1907// SP is marked as a use to prevent stack-pointer assignments that appear 1908// immediately before calls from potentially appearing dead. 1909let isCall = 1, 1910 // FIXME: Do we really need a non-predicated version? If so, it should 1911 // at least be a pseudo instruction expanding to the predicated version 1912 // at MC lowering time. 1913 Defs = [LR], Uses = [SP] in { 1914 def BL : ABXI<0b1011, (outs), (ins bl_target:$func), 1915 IIC_Br, "bl\t$func", 1916 [(ARMcall tglobaladdr:$func)]>, 1917 Requires<[IsARM]> { 1918 let Inst{31-28} = 0b1110; 1919 bits<24> func; 1920 let Inst{23-0} = func; 1921 let DecoderMethod = "DecodeBranchImmInstruction"; 1922 } 1923 1924 def BL_pred : ABI<0b1011, (outs), (ins bl_target:$func), 1925 IIC_Br, "bl", "\t$func", 1926 [(ARMcall_pred tglobaladdr:$func)]>, 1927 Requires<[IsARM]> { 1928 bits<24> func; 1929 let Inst{23-0} = func; 1930 let DecoderMethod = "DecodeBranchImmInstruction"; 1931 } 1932 1933 // ARMv5T and above 1934 def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm, 1935 IIC_Br, "blx\t$func", 1936 [(ARMcall GPR:$func)]>, 1937 Requires<[IsARM, HasV5T]> { 1938 bits<4> func; 1939 let Inst{31-4} = 0b1110000100101111111111110011; 1940 let Inst{3-0} = func; 1941 } 1942 1943 def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm, 1944 IIC_Br, "blx", "\t$func", 1945 [(ARMcall_pred GPR:$func)]>, 1946 Requires<[IsARM, HasV5T]> { 1947 bits<4> func; 1948 let Inst{27-4} = 0b000100101111111111110011; 1949 let Inst{3-0} = func; 1950 } 1951 1952 // ARMv4T 1953 // Note: Restrict $func to the tGPR regclass to prevent it being in LR. 1954 def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func), 1955 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 1956 Requires<[IsARM, HasV4T]>; 1957 1958 // ARMv4 1959 def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func), 1960 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 1961 Requires<[IsARM, NoV4T]>; 1962 1963 // mov lr, pc; b if callee is marked noreturn to avoid confusing the 1964 // return stack predictor. 1965 def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins bl_target:$func), 1966 8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>, 1967 Requires<[IsARM]>; 1968} 1969 1970let isBranch = 1, isTerminator = 1 in { 1971 // FIXME: should be able to write a pattern for ARMBrcond, but can't use 1972 // a two-value operand where a dag node expects two operands. :( 1973 def Bcc : ABI<0b1010, (outs), (ins br_target:$target), 1974 IIC_Br, "b", "\t$target", 1975 [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]> { 1976 bits<24> target; 1977 let Inst{23-0} = target; 1978 let DecoderMethod = "DecodeBranchImmInstruction"; 1979 } 1980 1981 let isBarrier = 1 in { 1982 // B is "predicable" since it's just a Bcc with an 'always' condition. 1983 let isPredicable = 1 in 1984 // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly 1985 // should be sufficient. 1986 // FIXME: Is B really a Barrier? That doesn't seem right. 1987 def B : ARMPseudoExpand<(outs), (ins br_target:$target), 4, IIC_Br, 1988 [(br bb:$target)], (Bcc br_target:$target, (ops 14, zero_reg))>; 1989 1990 let isNotDuplicable = 1, isIndirectBranch = 1 in { 1991 def BR_JTr : ARMPseudoInst<(outs), 1992 (ins GPR:$target, i32imm:$jt, i32imm:$id), 1993 0, IIC_Br, 1994 [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>; 1995 // FIXME: This shouldn't use the generic "addrmode2," but rather be split 1996 // into i12 and rs suffixed versions. 1997 def BR_JTm : ARMPseudoInst<(outs), 1998 (ins addrmode2:$target, i32imm:$jt, i32imm:$id), 1999 0, IIC_Br, 2000 [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt, 2001 imm:$id)]>; 2002 def BR_JTadd : ARMPseudoInst<(outs), 2003 (ins GPR:$target, GPR:$idx, i32imm:$jt, i32imm:$id), 2004 0, IIC_Br, 2005 [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, 2006 imm:$id)]>; 2007 } // isNotDuplicable = 1, isIndirectBranch = 1 2008 } // isBarrier = 1 2009 2010} 2011 2012// BLX (immediate) 2013def BLXi : AXI<(outs), (ins blx_target:$target), BrMiscFrm, NoItinerary, 2014 "blx\t$target", []>, 2015 Requires<[IsARM, HasV5T]> { 2016 let Inst{31-25} = 0b1111101; 2017 bits<25> target; 2018 let Inst{23-0} = target{24-1}; 2019 let Inst{24} = target{0}; 2020} 2021 2022// Branch and Exchange Jazelle 2023def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func", 2024 [/* pattern left blank */]> { 2025 bits<4> func; 2026 let Inst{23-20} = 0b0010; 2027 let Inst{19-8} = 0xfff; 2028 let Inst{7-4} = 0b0010; 2029 let Inst{3-0} = func; 2030} 2031 2032// Tail calls. 2033 2034let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { 2035 def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>; 2036 2037 def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>; 2038 2039 def TAILJMPd : ARMPseudoExpand<(outs), (ins br_target:$dst), 2040 4, IIC_Br, [], 2041 (Bcc br_target:$dst, (ops 14, zero_reg))>, 2042 Requires<[IsARM]>; 2043 2044 def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst), 2045 4, IIC_Br, [], 2046 (BX GPR:$dst)>, 2047 Requires<[IsARM]>; 2048} 2049 2050// Secure Monitor Call is a system instruction. 2051def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt", 2052 []> { 2053 bits<4> opt; 2054 let Inst{23-4} = 0b01100000000000000111; 2055 let Inst{3-0} = opt; 2056} 2057 2058// Supervisor Call (Software Interrupt) 2059let isCall = 1, Uses = [SP] in { 2060def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []> { 2061 bits<24> svc; 2062 let Inst{23-0} = svc; 2063} 2064} 2065 2066// Store Return State 2067class SRSI<bit wb, string asm> 2068 : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm, 2069 NoItinerary, asm, "", []> { 2070 bits<5> mode; 2071 let Inst{31-28} = 0b1111; 2072 let Inst{27-25} = 0b100; 2073 let Inst{22} = 1; 2074 let Inst{21} = wb; 2075 let Inst{20} = 0; 2076 let Inst{19-16} = 0b1101; // SP 2077 let Inst{15-5} = 0b00000101000; 2078 let Inst{4-0} = mode; 2079} 2080 2081def SRSDA : SRSI<0, "srsda\tsp, $mode"> { 2082 let Inst{24-23} = 0; 2083} 2084def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> { 2085 let Inst{24-23} = 0; 2086} 2087def SRSDB : SRSI<0, "srsdb\tsp, $mode"> { 2088 let Inst{24-23} = 0b10; 2089} 2090def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> { 2091 let Inst{24-23} = 0b10; 2092} 2093def SRSIA : SRSI<0, "srsia\tsp, $mode"> { 2094 let Inst{24-23} = 0b01; 2095} 2096def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> { 2097 let Inst{24-23} = 0b01; 2098} 2099def SRSIB : SRSI<0, "srsib\tsp, $mode"> { 2100 let Inst{24-23} = 0b11; 2101} 2102def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> { 2103 let Inst{24-23} = 0b11; 2104} 2105 2106def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>; 2107def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>; 2108 2109def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>; 2110def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>; 2111 2112def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>; 2113def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>; 2114 2115def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>; 2116def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>; 2117 2118// Return From Exception 2119class RFEI<bit wb, string asm> 2120 : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm, 2121 NoItinerary, asm, "", []> { 2122 bits<4> Rn; 2123 let Inst{31-28} = 0b1111; 2124 let Inst{27-25} = 0b100; 2125 let Inst{22} = 0; 2126 let Inst{21} = wb; 2127 let Inst{20} = 1; 2128 let Inst{19-16} = Rn; 2129 let Inst{15-0} = 0xa00; 2130} 2131 2132def RFEDA : RFEI<0, "rfeda\t$Rn"> { 2133 let Inst{24-23} = 0; 2134} 2135def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> { 2136 let Inst{24-23} = 0; 2137} 2138def RFEDB : RFEI<0, "rfedb\t$Rn"> { 2139 let Inst{24-23} = 0b10; 2140} 2141def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> { 2142 let Inst{24-23} = 0b10; 2143} 2144def RFEIA : RFEI<0, "rfeia\t$Rn"> { 2145 let Inst{24-23} = 0b01; 2146} 2147def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> { 2148 let Inst{24-23} = 0b01; 2149} 2150def RFEIB : RFEI<0, "rfeib\t$Rn"> { 2151 let Inst{24-23} = 0b11; 2152} 2153def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> { 2154 let Inst{24-23} = 0b11; 2155} 2156 2157//===----------------------------------------------------------------------===// 2158// Load / Store Instructions. 2159// 2160 2161// Load 2162 2163 2164defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, 2165 UnOpFrag<(load node:$Src)>>; 2166defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si, 2167 UnOpFrag<(zextloadi8 node:$Src)>>; 2168defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, 2169 BinOpFrag<(store node:$LHS, node:$RHS)>>; 2170defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si, 2171 BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; 2172 2173// Special LDR for loads from non-pc-relative constpools. 2174let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1, 2175 isReMaterializable = 1, isCodeGenOnly = 1 in 2176def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr), 2177 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr", 2178 []> { 2179 bits<4> Rt; 2180 bits<17> addr; 2181 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2182 let Inst{19-16} = 0b1111; 2183 let Inst{15-12} = Rt; 2184 let Inst{11-0} = addr{11-0}; // imm12 2185} 2186 2187// Loads with zero extension 2188def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2189 IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr", 2190 [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>; 2191 2192// Loads with sign extension 2193def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2194 IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr", 2195 [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>; 2196 2197def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2198 IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr", 2199 [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>; 2200 2201let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in { 2202// Load doubleword 2203def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rd, GPR:$dst2), 2204 (ins addrmode3:$addr), LdMiscFrm, 2205 IIC_iLoad_d_r, "ldrd", "\t$Rd, $dst2, $addr", 2206 []>, Requires<[IsARM, HasV5TE]>; 2207} 2208 2209// Indexed loads 2210multiclass AI2_ldridx<bit isByte, string opc, 2211 InstrItinClass iii, InstrItinClass iir> { 2212 def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2213 (ins addrmode_imm12:$addr), IndexModePre, LdFrm, iii, 2214 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2215 bits<17> addr; 2216 let Inst{25} = 0; 2217 let Inst{23} = addr{12}; 2218 let Inst{19-16} = addr{16-13}; 2219 let Inst{11-0} = addr{11-0}; 2220 let DecoderMethod = "DecodeLDRPreImm"; 2221 let AsmMatchConverter = "cvtLdWriteBackRegAddrModeImm12"; 2222 } 2223 2224 def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2225 (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir, 2226 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2227 bits<17> addr; 2228 let Inst{25} = 1; 2229 let Inst{23} = addr{12}; 2230 let Inst{19-16} = addr{16-13}; 2231 let Inst{11-0} = addr{11-0}; 2232 let Inst{4} = 0; 2233 let DecoderMethod = "DecodeLDRPreReg"; 2234 let AsmMatchConverter = "cvtLdWriteBackRegAddrMode2"; 2235 } 2236 2237 def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2238 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2239 IndexModePost, LdFrm, iir, 2240 opc, "\t$Rt, $addr, $offset", 2241 "$addr.base = $Rn_wb", []> { 2242 // {12} isAdd 2243 // {11-0} imm12/Rm 2244 bits<14> offset; 2245 bits<4> addr; 2246 let Inst{25} = 1; 2247 let Inst{23} = offset{12}; 2248 let Inst{19-16} = addr; 2249 let Inst{11-0} = offset{11-0}; 2250 2251 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2252 } 2253 2254 def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2255 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2256 IndexModePost, LdFrm, iii, 2257 opc, "\t$Rt, $addr, $offset", 2258 "$addr.base = $Rn_wb", []> { 2259 // {12} isAdd 2260 // {11-0} imm12/Rm 2261 bits<14> offset; 2262 bits<4> addr; 2263 let Inst{25} = 0; 2264 let Inst{23} = offset{12}; 2265 let Inst{19-16} = addr; 2266 let Inst{11-0} = offset{11-0}; 2267 2268 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2269 } 2270 2271} 2272 2273let mayLoad = 1, neverHasSideEffects = 1 in { 2274// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or 2275// IIC_iLoad_siu depending on whether it the offset register is shifted. 2276defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>; 2277defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>; 2278} 2279 2280multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> { 2281 def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2282 (ins addrmode3:$addr), IndexModePre, 2283 LdMiscFrm, itin, 2284 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2285 bits<14> addr; 2286 let Inst{23} = addr{8}; // U bit 2287 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2288 let Inst{19-16} = addr{12-9}; // Rn 2289 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2290 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2291 let AsmMatchConverter = "cvtLdWriteBackRegAddrMode3"; 2292 let DecoderMethod = "DecodeAddrMode3Instruction"; 2293 } 2294 def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2295 (ins addr_offset_none:$addr, am3offset:$offset), 2296 IndexModePost, LdMiscFrm, itin, 2297 opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", 2298 []> { 2299 bits<10> offset; 2300 bits<4> addr; 2301 let Inst{23} = offset{8}; // U bit 2302 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2303 let Inst{19-16} = addr; 2304 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2305 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2306 let DecoderMethod = "DecodeAddrMode3Instruction"; 2307 } 2308} 2309 2310let mayLoad = 1, neverHasSideEffects = 1 in { 2311defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>; 2312defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>; 2313defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>; 2314let hasExtraDefRegAllocReq = 1 in { 2315def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), 2316 (ins addrmode3:$addr), IndexModePre, 2317 LdMiscFrm, IIC_iLoad_d_ru, 2318 "ldrd", "\t$Rt, $Rt2, $addr!", 2319 "$addr.base = $Rn_wb", []> { 2320 bits<14> addr; 2321 let Inst{23} = addr{8}; // U bit 2322 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2323 let Inst{19-16} = addr{12-9}; // Rn 2324 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2325 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2326 let DecoderMethod = "DecodeAddrMode3Instruction"; 2327 let AsmMatchConverter = "cvtLdrdPre"; 2328} 2329def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), 2330 (ins addr_offset_none:$addr, am3offset:$offset), 2331 IndexModePost, LdMiscFrm, IIC_iLoad_d_ru, 2332 "ldrd", "\t$Rt, $Rt2, $addr, $offset", 2333 "$addr.base = $Rn_wb", []> { 2334 bits<10> offset; 2335 bits<4> addr; 2336 let Inst{23} = offset{8}; // U bit 2337 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2338 let Inst{19-16} = addr; 2339 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2340 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2341 let DecoderMethod = "DecodeAddrMode3Instruction"; 2342} 2343} // hasExtraDefRegAllocReq = 1 2344} // mayLoad = 1, neverHasSideEffects = 1 2345 2346// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT. 2347let mayLoad = 1, neverHasSideEffects = 1 in { 2348def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2349 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2350 IndexModePost, LdFrm, IIC_iLoad_ru, 2351 "ldrt", "\t$Rt, $addr, $offset", 2352 "$addr.base = $Rn_wb", []> { 2353 // {12} isAdd 2354 // {11-0} imm12/Rm 2355 bits<14> offset; 2356 bits<4> addr; 2357 let Inst{25} = 1; 2358 let Inst{23} = offset{12}; 2359 let Inst{21} = 1; // overwrite 2360 let Inst{19-16} = addr; 2361 let Inst{11-5} = offset{11-5}; 2362 let Inst{4} = 0; 2363 let Inst{3-0} = offset{3-0}; 2364 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2365} 2366 2367def LDRT_POST_IMM : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2368 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2369 IndexModePost, LdFrm, IIC_iLoad_ru, 2370 "ldrt", "\t$Rt, $addr, $offset", 2371 "$addr.base = $Rn_wb", []> { 2372 // {12} isAdd 2373 // {11-0} imm12/Rm 2374 bits<14> offset; 2375 bits<4> addr; 2376 let Inst{25} = 0; 2377 let Inst{23} = offset{12}; 2378 let Inst{21} = 1; // overwrite 2379 let Inst{19-16} = addr; 2380 let Inst{11-0} = offset{11-0}; 2381 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2382} 2383 2384def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2385 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2386 IndexModePost, LdFrm, IIC_iLoad_bh_ru, 2387 "ldrbt", "\t$Rt, $addr, $offset", 2388 "$addr.base = $Rn_wb", []> { 2389 // {12} isAdd 2390 // {11-0} imm12/Rm 2391 bits<14> offset; 2392 bits<4> addr; 2393 let Inst{25} = 1; 2394 let Inst{23} = offset{12}; 2395 let Inst{21} = 1; // overwrite 2396 let Inst{19-16} = addr; 2397 let Inst{11-5} = offset{11-5}; 2398 let Inst{4} = 0; 2399 let Inst{3-0} = offset{3-0}; 2400 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2401} 2402 2403def LDRBT_POST_IMM : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2404 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2405 IndexModePost, LdFrm, IIC_iLoad_bh_ru, 2406 "ldrbt", "\t$Rt, $addr, $offset", 2407 "$addr.base = $Rn_wb", []> { 2408 // {12} isAdd 2409 // {11-0} imm12/Rm 2410 bits<14> offset; 2411 bits<4> addr; 2412 let Inst{25} = 0; 2413 let Inst{23} = offset{12}; 2414 let Inst{21} = 1; // overwrite 2415 let Inst{19-16} = addr; 2416 let Inst{11-0} = offset{11-0}; 2417 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2418} 2419 2420multiclass AI3ldrT<bits<4> op, string opc> { 2421 def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb), 2422 (ins addr_offset_none:$addr, postidx_imm8:$offset), 2423 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc, 2424 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> { 2425 bits<9> offset; 2426 let Inst{23} = offset{8}; 2427 let Inst{22} = 1; 2428 let Inst{11-8} = offset{7-4}; 2429 let Inst{3-0} = offset{3-0}; 2430 let AsmMatchConverter = "cvtLdExtTWriteBackImm"; 2431 } 2432 def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb), 2433 (ins addr_offset_none:$addr, postidx_reg:$Rm), 2434 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc, 2435 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> { 2436 bits<5> Rm; 2437 let Inst{23} = Rm{4}; 2438 let Inst{22} = 0; 2439 let Inst{11-8} = 0; 2440 let Unpredictable{11-8} = 0b1111; 2441 let Inst{3-0} = Rm{3-0}; 2442 let AsmMatchConverter = "cvtLdExtTWriteBackReg"; 2443 let DecoderMethod = "DecodeLDR"; 2444 } 2445} 2446 2447defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">; 2448defm LDRHT : AI3ldrT<0b1011, "ldrht">; 2449defm LDRSHT : AI3ldrT<0b1111, "ldrsht">; 2450} 2451 2452// Store 2453 2454// Stores with truncate 2455def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm, 2456 IIC_iStore_bh_r, "strh", "\t$Rt, $addr", 2457 [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>; 2458 2459// Store doubleword 2460let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in 2461def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$src2, addrmode3:$addr), 2462 StMiscFrm, IIC_iStore_d_r, 2463 "strd", "\t$Rt, $src2, $addr", []>, 2464 Requires<[IsARM, HasV5TE]> { 2465 let Inst{21} = 0; 2466} 2467 2468// Indexed stores 2469multiclass AI2_stridx<bit isByte, string opc, 2470 InstrItinClass iii, InstrItinClass iir> { 2471 def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), 2472 (ins GPR:$Rt, addrmode_imm12:$addr), IndexModePre, 2473 StFrm, iii, 2474 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2475 bits<17> addr; 2476 let Inst{25} = 0; 2477 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2478 let Inst{19-16} = addr{16-13}; // Rn 2479 let Inst{11-0} = addr{11-0}; // imm12 2480 let AsmMatchConverter = "cvtStWriteBackRegAddrModeImm12"; 2481 let DecoderMethod = "DecodeSTRPreImm"; 2482 } 2483 2484 def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), 2485 (ins GPR:$Rt, ldst_so_reg:$addr), 2486 IndexModePre, StFrm, iir, 2487 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2488 bits<17> addr; 2489 let Inst{25} = 1; 2490 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2491 let Inst{19-16} = addr{16-13}; // Rn 2492 let Inst{11-0} = addr{11-0}; 2493 let Inst{4} = 0; // Inst{4} = 0 2494 let AsmMatchConverter = "cvtStWriteBackRegAddrMode2"; 2495 let DecoderMethod = "DecodeSTRPreReg"; 2496 } 2497 def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), 2498 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2499 IndexModePost, StFrm, iir, 2500 opc, "\t$Rt, $addr, $offset", 2501 "$addr.base = $Rn_wb", []> { 2502 // {12} isAdd 2503 // {11-0} imm12/Rm 2504 bits<14> offset; 2505 bits<4> addr; 2506 let Inst{25} = 1; 2507 let Inst{23} = offset{12}; 2508 let Inst{19-16} = addr; 2509 let Inst{11-0} = offset{11-0}; 2510 let Inst{4} = 0; 2511 2512 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2513 } 2514 2515 def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), 2516 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2517 IndexModePost, StFrm, iii, 2518 opc, "\t$Rt, $addr, $offset", 2519 "$addr.base = $Rn_wb", []> { 2520 // {12} isAdd 2521 // {11-0} imm12/Rm 2522 bits<14> offset; 2523 bits<4> addr; 2524 let Inst{25} = 0; 2525 let Inst{23} = offset{12}; 2526 let Inst{19-16} = addr; 2527 let Inst{11-0} = offset{11-0}; 2528 2529 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2530 } 2531} 2532 2533let mayStore = 1, neverHasSideEffects = 1 in { 2534// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or 2535// IIC_iStore_siu depending on whether it the offset register is shifted. 2536defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>; 2537defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>; 2538} 2539 2540def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, 2541 am2offset_reg:$offset), 2542 (STR_POST_REG GPR:$Rt, addr_offset_none:$addr, 2543 am2offset_reg:$offset)>; 2544def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, 2545 am2offset_imm:$offset), 2546 (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr, 2547 am2offset_imm:$offset)>; 2548def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, 2549 am2offset_reg:$offset), 2550 (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr, 2551 am2offset_reg:$offset)>; 2552def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, 2553 am2offset_imm:$offset), 2554 (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr, 2555 am2offset_imm:$offset)>; 2556 2557// Pseudo-instructions for pattern matching the pre-indexed stores. We can't 2558// put the patterns on the instruction definitions directly as ISel wants 2559// the address base and offset to be separate operands, not a single 2560// complex operand like we represent the instructions themselves. The 2561// pseudos map between the two. 2562let usesCustomInserter = 1, 2563 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in { 2564def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2565 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 2566 4, IIC_iStore_ru, 2567 [(set GPR:$Rn_wb, 2568 (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; 2569def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2570 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 2571 4, IIC_iStore_ru, 2572 [(set GPR:$Rn_wb, 2573 (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; 2574def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2575 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 2576 4, IIC_iStore_ru, 2577 [(set GPR:$Rn_wb, 2578 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; 2579def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2580 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 2581 4, IIC_iStore_ru, 2582 [(set GPR:$Rn_wb, 2583 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; 2584def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2585 (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p), 2586 4, IIC_iStore_ru, 2587 [(set GPR:$Rn_wb, 2588 (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>; 2589} 2590 2591 2592 2593def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb), 2594 (ins GPR:$Rt, addrmode3:$addr), IndexModePre, 2595 StMiscFrm, IIC_iStore_bh_ru, 2596 "strh", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2597 bits<14> addr; 2598 let Inst{23} = addr{8}; // U bit 2599 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2600 let Inst{19-16} = addr{12-9}; // Rn 2601 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2602 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2603 let AsmMatchConverter = "cvtStWriteBackRegAddrMode3"; 2604 let DecoderMethod = "DecodeAddrMode3Instruction"; 2605} 2606 2607def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb), 2608 (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset), 2609 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, 2610 "strh", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", 2611 [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt, 2612 addr_offset_none:$addr, 2613 am3offset:$offset))]> { 2614 bits<10> offset; 2615 bits<4> addr; 2616 let Inst{23} = offset{8}; // U bit 2617 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2618 let Inst{19-16} = addr; 2619 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2620 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2621 let DecoderMethod = "DecodeAddrMode3Instruction"; 2622} 2623 2624let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in { 2625def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb), 2626 (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr), 2627 IndexModePre, StMiscFrm, IIC_iStore_d_ru, 2628 "strd", "\t$Rt, $Rt2, $addr!", 2629 "$addr.base = $Rn_wb", []> { 2630 bits<14> addr; 2631 let Inst{23} = addr{8}; // U bit 2632 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2633 let Inst{19-16} = addr{12-9}; // Rn 2634 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2635 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2636 let DecoderMethod = "DecodeAddrMode3Instruction"; 2637 let AsmMatchConverter = "cvtStrdPre"; 2638} 2639 2640def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb), 2641 (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr, 2642 am3offset:$offset), 2643 IndexModePost, StMiscFrm, IIC_iStore_d_ru, 2644 "strd", "\t$Rt, $Rt2, $addr, $offset", 2645 "$addr.base = $Rn_wb", []> { 2646 bits<10> offset; 2647 bits<4> addr; 2648 let Inst{23} = offset{8}; // U bit 2649 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2650 let Inst{19-16} = addr; 2651 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2652 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2653 let DecoderMethod = "DecodeAddrMode3Instruction"; 2654} 2655} // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 2656 2657// STRT, STRBT, and STRHT 2658 2659def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), 2660 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2661 IndexModePost, StFrm, IIC_iStore_bh_ru, 2662 "strbt", "\t$Rt, $addr, $offset", 2663 "$addr.base = $Rn_wb", []> { 2664 // {12} isAdd 2665 // {11-0} imm12/Rm 2666 bits<14> offset; 2667 bits<4> addr; 2668 let Inst{25} = 1; 2669 let Inst{23} = offset{12}; 2670 let Inst{21} = 1; // overwrite 2671 let Inst{19-16} = addr; 2672 let Inst{11-5} = offset{11-5}; 2673 let Inst{4} = 0; 2674 let Inst{3-0} = offset{3-0}; 2675 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2676} 2677 2678def STRBT_POST_IMM : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), 2679 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2680 IndexModePost, StFrm, IIC_iStore_bh_ru, 2681 "strbt", "\t$Rt, $addr, $offset", 2682 "$addr.base = $Rn_wb", []> { 2683 // {12} isAdd 2684 // {11-0} imm12/Rm 2685 bits<14> offset; 2686 bits<4> addr; 2687 let Inst{25} = 0; 2688 let Inst{23} = offset{12}; 2689 let Inst{21} = 1; // overwrite 2690 let Inst{19-16} = addr; 2691 let Inst{11-0} = offset{11-0}; 2692 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2693} 2694 2695let mayStore = 1, neverHasSideEffects = 1 in { 2696def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), 2697 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2698 IndexModePost, StFrm, IIC_iStore_ru, 2699 "strt", "\t$Rt, $addr, $offset", 2700 "$addr.base = $Rn_wb", []> { 2701 // {12} isAdd 2702 // {11-0} imm12/Rm 2703 bits<14> offset; 2704 bits<4> addr; 2705 let Inst{25} = 1; 2706 let Inst{23} = offset{12}; 2707 let Inst{21} = 1; // overwrite 2708 let Inst{19-16} = addr; 2709 let Inst{11-5} = offset{11-5}; 2710 let Inst{4} = 0; 2711 let Inst{3-0} = offset{3-0}; 2712 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2713} 2714 2715def STRT_POST_IMM : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), 2716 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2717 IndexModePost, StFrm, IIC_iStore_ru, 2718 "strt", "\t$Rt, $addr, $offset", 2719 "$addr.base = $Rn_wb", []> { 2720 // {12} isAdd 2721 // {11-0} imm12/Rm 2722 bits<14> offset; 2723 bits<4> addr; 2724 let Inst{25} = 0; 2725 let Inst{23} = offset{12}; 2726 let Inst{21} = 1; // overwrite 2727 let Inst{19-16} = addr; 2728 let Inst{11-0} = offset{11-0}; 2729 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2730} 2731} 2732 2733 2734multiclass AI3strT<bits<4> op, string opc> { 2735 def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb), 2736 (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset), 2737 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc, 2738 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> { 2739 bits<9> offset; 2740 let Inst{23} = offset{8}; 2741 let Inst{22} = 1; 2742 let Inst{11-8} = offset{7-4}; 2743 let Inst{3-0} = offset{3-0}; 2744 let AsmMatchConverter = "cvtStExtTWriteBackImm"; 2745 } 2746 def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb), 2747 (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm), 2748 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc, 2749 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> { 2750 bits<5> Rm; 2751 let Inst{23} = Rm{4}; 2752 let Inst{22} = 0; 2753 let Inst{11-8} = 0; 2754 let Inst{3-0} = Rm{3-0}; 2755 let AsmMatchConverter = "cvtStExtTWriteBackReg"; 2756 } 2757} 2758 2759 2760defm STRHT : AI3strT<0b1011, "strht">; 2761 2762 2763//===----------------------------------------------------------------------===// 2764// Load / store multiple Instructions. 2765// 2766 2767multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f, 2768 InstrItinClass itin, InstrItinClass itin_upd> { 2769 // IA is the default, so no need for an explicit suffix on the 2770 // mnemonic here. Without it is the canonical spelling. 2771 def IA : 2772 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2773 IndexModeNone, f, itin, 2774 !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> { 2775 let Inst{24-23} = 0b01; // Increment After 2776 let Inst{22} = P_bit; 2777 let Inst{21} = 0; // No writeback 2778 let Inst{20} = L_bit; 2779 } 2780 def IA_UPD : 2781 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2782 IndexModeUpd, f, itin_upd, 2783 !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 2784 let Inst{24-23} = 0b01; // Increment After 2785 let Inst{22} = P_bit; 2786 let Inst{21} = 1; // Writeback 2787 let Inst{20} = L_bit; 2788 2789 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2790 } 2791 def DA : 2792 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2793 IndexModeNone, f, itin, 2794 !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> { 2795 let Inst{24-23} = 0b00; // Decrement After 2796 let Inst{22} = P_bit; 2797 let Inst{21} = 0; // No writeback 2798 let Inst{20} = L_bit; 2799 } 2800 def DA_UPD : 2801 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2802 IndexModeUpd, f, itin_upd, 2803 !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 2804 let Inst{24-23} = 0b00; // Decrement After 2805 let Inst{22} = P_bit; 2806 let Inst{21} = 1; // Writeback 2807 let Inst{20} = L_bit; 2808 2809 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2810 } 2811 def DB : 2812 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2813 IndexModeNone, f, itin, 2814 !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> { 2815 let Inst{24-23} = 0b10; // Decrement Before 2816 let Inst{22} = P_bit; 2817 let Inst{21} = 0; // No writeback 2818 let Inst{20} = L_bit; 2819 } 2820 def DB_UPD : 2821 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2822 IndexModeUpd, f, itin_upd, 2823 !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 2824 let Inst{24-23} = 0b10; // Decrement Before 2825 let Inst{22} = P_bit; 2826 let Inst{21} = 1; // Writeback 2827 let Inst{20} = L_bit; 2828 2829 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2830 } 2831 def IB : 2832 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2833 IndexModeNone, f, itin, 2834 !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> { 2835 let Inst{24-23} = 0b11; // Increment Before 2836 let Inst{22} = P_bit; 2837 let Inst{21} = 0; // No writeback 2838 let Inst{20} = L_bit; 2839 } 2840 def IB_UPD : 2841 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2842 IndexModeUpd, f, itin_upd, 2843 !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> { 2844 let Inst{24-23} = 0b11; // Increment Before 2845 let Inst{22} = P_bit; 2846 let Inst{21} = 1; // Writeback 2847 let Inst{20} = L_bit; 2848 2849 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2850 } 2851} 2852 2853let neverHasSideEffects = 1 in { 2854 2855let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 2856defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m, 2857 IIC_iLoad_mu>; 2858 2859let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 2860defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m, 2861 IIC_iStore_mu>; 2862 2863} // neverHasSideEffects 2864 2865// FIXME: remove when we have a way to marking a MI with these properties. 2866// FIXME: Should pc be an implicit operand like PICADD, etc? 2867let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, 2868 hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in 2869def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, 2870 reglist:$regs, variable_ops), 2871 4, IIC_iLoad_mBr, [], 2872 (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>, 2873 RegConstraint<"$Rn = $wb">; 2874 2875let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 2876defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m, 2877 IIC_iLoad_mu>; 2878 2879let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 2880defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m, 2881 IIC_iStore_mu>; 2882 2883 2884 2885//===----------------------------------------------------------------------===// 2886// Move Instructions. 2887// 2888 2889let neverHasSideEffects = 1 in 2890def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr, 2891 "mov", "\t$Rd, $Rm", []>, UnaryDP { 2892 bits<4> Rd; 2893 bits<4> Rm; 2894 2895 let Inst{19-16} = 0b0000; 2896 let Inst{11-4} = 0b00000000; 2897 let Inst{25} = 0; 2898 let Inst{3-0} = Rm; 2899 let Inst{15-12} = Rd; 2900} 2901 2902// A version for the smaller set of tail call registers. 2903let neverHasSideEffects = 1 in 2904def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm, 2905 IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP { 2906 bits<4> Rd; 2907 bits<4> Rm; 2908 2909 let Inst{11-4} = 0b00000000; 2910 let Inst{25} = 0; 2911 let Inst{3-0} = Rm; 2912 let Inst{15-12} = Rd; 2913} 2914 2915def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src), 2916 DPSoRegRegFrm, IIC_iMOVsr, 2917 "mov", "\t$Rd, $src", 2918 [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP { 2919 bits<4> Rd; 2920 bits<12> src; 2921 let Inst{15-12} = Rd; 2922 let Inst{19-16} = 0b0000; 2923 let Inst{11-8} = src{11-8}; 2924 let Inst{7} = 0; 2925 let Inst{6-5} = src{6-5}; 2926 let Inst{4} = 1; 2927 let Inst{3-0} = src{3-0}; 2928 let Inst{25} = 0; 2929} 2930 2931def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src), 2932 DPSoRegImmFrm, IIC_iMOVsr, 2933 "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>, 2934 UnaryDP { 2935 bits<4> Rd; 2936 bits<12> src; 2937 let Inst{15-12} = Rd; 2938 let Inst{19-16} = 0b0000; 2939 let Inst{11-5} = src{11-5}; 2940 let Inst{4} = 0; 2941 let Inst{3-0} = src{3-0}; 2942 let Inst{25} = 0; 2943} 2944 2945let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 2946def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, IIC_iMOVi, 2947 "mov", "\t$Rd, $imm", [(set GPR:$Rd, so_imm:$imm)]>, UnaryDP { 2948 bits<4> Rd; 2949 bits<12> imm; 2950 let Inst{25} = 1; 2951 let Inst{15-12} = Rd; 2952 let Inst{19-16} = 0b0000; 2953 let Inst{11-0} = imm; 2954} 2955 2956let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 2957def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm), 2958 DPFrm, IIC_iMOVi, 2959 "movw", "\t$Rd, $imm", 2960 [(set GPR:$Rd, imm0_65535:$imm)]>, 2961 Requires<[IsARM, HasV6T2]>, UnaryDP { 2962 bits<4> Rd; 2963 bits<16> imm; 2964 let Inst{15-12} = Rd; 2965 let Inst{11-0} = imm{11-0}; 2966 let Inst{19-16} = imm{15-12}; 2967 let Inst{20} = 0; 2968 let Inst{25} = 1; 2969 let DecoderMethod = "DecodeArmMOVTWInstruction"; 2970} 2971 2972def : InstAlias<"mov${p} $Rd, $imm", 2973 (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p)>, 2974 Requires<[IsARM]>; 2975 2976def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), 2977 (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>; 2978 2979let Constraints = "$src = $Rd" in { 2980def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd), 2981 (ins GPR:$src, imm0_65535_expr:$imm), 2982 DPFrm, IIC_iMOVi, 2983 "movt", "\t$Rd, $imm", 2984 [(set GPRnopc:$Rd, 2985 (or (and GPR:$src, 0xffff), 2986 lo16AllZero:$imm))]>, UnaryDP, 2987 Requires<[IsARM, HasV6T2]> { 2988 bits<4> Rd; 2989 bits<16> imm; 2990 let Inst{15-12} = Rd; 2991 let Inst{11-0} = imm{11-0}; 2992 let Inst{19-16} = imm{15-12}; 2993 let Inst{20} = 0; 2994 let Inst{25} = 1; 2995 let DecoderMethod = "DecodeArmMOVTWInstruction"; 2996} 2997 2998def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), 2999 (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>; 3000 3001} // Constraints 3002 3003def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>, 3004 Requires<[IsARM, HasV6T2]>; 3005 3006let Uses = [CPSR] in 3007def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi, 3008 [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP, 3009 Requires<[IsARM]>; 3010 3011// These aren't really mov instructions, but we have to define them this way 3012// due to flag operands. 3013 3014let Defs = [CPSR] in { 3015def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, 3016 [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP, 3017 Requires<[IsARM]>; 3018def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, 3019 [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP, 3020 Requires<[IsARM]>; 3021} 3022 3023//===----------------------------------------------------------------------===// 3024// Extend Instructions. 3025// 3026 3027// Sign extenders 3028 3029def SXTB : AI_ext_rrot<0b01101010, 3030 "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; 3031def SXTH : AI_ext_rrot<0b01101011, 3032 "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; 3033 3034def SXTAB : AI_exta_rrot<0b01101010, 3035 "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; 3036def SXTAH : AI_exta_rrot<0b01101011, 3037 "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; 3038 3039def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">; 3040 3041def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">; 3042 3043// Zero extenders 3044 3045let AddedComplexity = 16 in { 3046def UXTB : AI_ext_rrot<0b01101110, 3047 "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; 3048def UXTH : AI_ext_rrot<0b01101111, 3049 "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; 3050def UXTB16 : AI_ext_rrot<0b01101100, 3051 "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; 3052 3053// FIXME: This pattern incorrectly assumes the shl operator is a rotate. 3054// The transformation should probably be done as a combiner action 3055// instead so we can include a check for masking back in the upper 3056// eight bits of the source into the lower eight bits of the result. 3057//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), 3058// (UXTB16r_rot GPR:$Src, 3)>; 3059def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), 3060 (UXTB16 GPR:$Src, 1)>; 3061 3062def UXTAB : AI_exta_rrot<0b01101110, "uxtab", 3063 BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; 3064def UXTAH : AI_exta_rrot<0b01101111, "uxtah", 3065 BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; 3066} 3067 3068// This isn't safe in general, the add is two 16-bit units, not a 32-bit add. 3069def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">; 3070 3071 3072def SBFX : I<(outs GPRnopc:$Rd), 3073 (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width), 3074 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3075 "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>, 3076 Requires<[IsARM, HasV6T2]> { 3077 bits<4> Rd; 3078 bits<4> Rn; 3079 bits<5> lsb; 3080 bits<5> width; 3081 let Inst{27-21} = 0b0111101; 3082 let Inst{6-4} = 0b101; 3083 let Inst{20-16} = width; 3084 let Inst{15-12} = Rd; 3085 let Inst{11-7} = lsb; 3086 let Inst{3-0} = Rn; 3087} 3088 3089def UBFX : I<(outs GPR:$Rd), 3090 (ins GPR:$Rn, imm0_31:$lsb, imm1_32:$width), 3091 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3092 "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>, 3093 Requires<[IsARM, HasV6T2]> { 3094 bits<4> Rd; 3095 bits<4> Rn; 3096 bits<5> lsb; 3097 bits<5> width; 3098 let Inst{27-21} = 0b0111111; 3099 let Inst{6-4} = 0b101; 3100 let Inst{20-16} = width; 3101 let Inst{15-12} = Rd; 3102 let Inst{11-7} = lsb; 3103 let Inst{3-0} = Rn; 3104} 3105 3106//===----------------------------------------------------------------------===// 3107// Arithmetic Instructions. 3108// 3109 3110defm ADD : AsI1_bin_irs<0b0100, "add", 3111 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3112 BinOpFrag<(add node:$LHS, node:$RHS)>, 1>; 3113defm SUB : AsI1_bin_irs<0b0010, "sub", 3114 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3115 BinOpFrag<(sub node:$LHS, node:$RHS)>>; 3116 3117// ADD and SUB with 's' bit set. 3118// 3119// Currently, ADDS/SUBS are pseudo opcodes that exist only in the 3120// selection DAG. They are "lowered" to real ADD/SUB opcodes by 3121// AdjustInstrPostInstrSelection where we determine whether or not to 3122// set the "s" bit based on CPSR liveness. 3123// 3124// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen 3125// support for an optional CPSR definition that corresponds to the DAG 3126// node's second value. We can then eliminate the implicit def of CPSR. 3127defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3128 BinOpFrag<(ARMaddc node:$LHS, node:$RHS)>, 1>; 3129defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3130 BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>; 3131 3132defm ADC : AI1_adde_sube_irs<0b0101, "adc", 3133 BinOpWithFlagFrag<(ARMadde node:$LHS, node:$RHS, node:$FLAG)>, 1>; 3134defm SBC : AI1_adde_sube_irs<0b0110, "sbc", 3135 BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>; 3136 3137defm RSB : AsI1_rbin_irs<0b0011, "rsb", 3138 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3139 BinOpFrag<(sub node:$LHS, node:$RHS)>>; 3140 3141// FIXME: Eliminate them if we can write def : Pat patterns which defines 3142// CPSR and the implicit def of CPSR is not needed. 3143defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3144 BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>; 3145 3146defm RSC : AI1_rsc_irs<0b0111, "rsc", 3147 BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>>; 3148 3149// (sub X, imm) gets canonicalized to (add X, -imm). Match this form. 3150// The assume-no-carry-in form uses the negation of the input since add/sub 3151// assume opposite meanings of the carry flag (i.e., carry == !borrow). 3152// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory 3153// details. 3154def : ARMPat<(add GPR:$src, so_imm_neg:$imm), 3155 (SUBri GPR:$src, so_imm_neg:$imm)>; 3156def : ARMPat<(ARMaddc GPR:$src, so_imm_neg:$imm), 3157 (SUBSri GPR:$src, so_imm_neg:$imm)>; 3158 3159def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm), 3160 (SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>, 3161 Requires<[IsARM, HasV6T2]>; 3162def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm), 3163 (SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>, 3164 Requires<[IsARM, HasV6T2]>; 3165 3166// The with-carry-in form matches bitwise not instead of the negation. 3167// Effectively, the inverse interpretation of the carry flag already accounts 3168// for part of the negation. 3169def : ARMPat<(ARMadde GPR:$src, so_imm_not:$imm, CPSR), 3170 (SBCri GPR:$src, so_imm_not:$imm)>; 3171def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR), 3172 (SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>; 3173 3174// Note: These are implemented in C++ code, because they have to generate 3175// ADD/SUBrs instructions, which use a complex pattern that a xform function 3176// cannot produce. 3177// (mul X, 2^n+1) -> (add (X << n), X) 3178// (mul X, 2^n-1) -> (rsb X, (X << n)) 3179 3180// ARM Arithmetic Instruction 3181// GPR:$dst = GPR:$a op GPR:$b 3182class AAI<bits<8> op27_20, bits<8> op11_4, string opc, 3183 list<dag> pattern = [], 3184 dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm), 3185 string asm = "\t$Rd, $Rn, $Rm"> 3186 : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern> { 3187 bits<4> Rn; 3188 bits<4> Rd; 3189 bits<4> Rm; 3190 let Inst{27-20} = op27_20; 3191 let Inst{11-4} = op11_4; 3192 let Inst{19-16} = Rn; 3193 let Inst{15-12} = Rd; 3194 let Inst{3-0} = Rm; 3195 3196 let Unpredictable{11-8} = 0b1111; 3197} 3198 3199// Saturating add/subtract 3200 3201def QADD : AAI<0b00010000, 0b00000101, "qadd", 3202 [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))], 3203 (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">; 3204def QSUB : AAI<0b00010010, 0b00000101, "qsub", 3205 [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))], 3206 (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">; 3207def QDADD : AAI<0b00010100, 0b00000101, "qdadd", [], 3208 (ins GPRnopc:$Rm, GPRnopc:$Rn), 3209 "\t$Rd, $Rm, $Rn">; 3210def QDSUB : AAI<0b00010110, 0b00000101, "qdsub", [], 3211 (ins GPRnopc:$Rm, GPRnopc:$Rn), 3212 "\t$Rd, $Rm, $Rn">; 3213 3214def QADD16 : AAI<0b01100010, 0b11110001, "qadd16">; 3215def QADD8 : AAI<0b01100010, 0b11111001, "qadd8">; 3216def QASX : AAI<0b01100010, 0b11110011, "qasx">; 3217def QSAX : AAI<0b01100010, 0b11110101, "qsax">; 3218def QSUB16 : AAI<0b01100010, 0b11110111, "qsub16">; 3219def QSUB8 : AAI<0b01100010, 0b11111111, "qsub8">; 3220def UQADD16 : AAI<0b01100110, 0b11110001, "uqadd16">; 3221def UQADD8 : AAI<0b01100110, 0b11111001, "uqadd8">; 3222def UQASX : AAI<0b01100110, 0b11110011, "uqasx">; 3223def UQSAX : AAI<0b01100110, 0b11110101, "uqsax">; 3224def UQSUB16 : AAI<0b01100110, 0b11110111, "uqsub16">; 3225def UQSUB8 : AAI<0b01100110, 0b11111111, "uqsub8">; 3226 3227// Signed/Unsigned add/subtract 3228 3229def SASX : AAI<0b01100001, 0b11110011, "sasx">; 3230def SADD16 : AAI<0b01100001, 0b11110001, "sadd16">; 3231def SADD8 : AAI<0b01100001, 0b11111001, "sadd8">; 3232def SSAX : AAI<0b01100001, 0b11110101, "ssax">; 3233def SSUB16 : AAI<0b01100001, 0b11110111, "ssub16">; 3234def SSUB8 : AAI<0b01100001, 0b11111111, "ssub8">; 3235def UASX : AAI<0b01100101, 0b11110011, "uasx">; 3236def UADD16 : AAI<0b01100101, 0b11110001, "uadd16">; 3237def UADD8 : AAI<0b01100101, 0b11111001, "uadd8">; 3238def USAX : AAI<0b01100101, 0b11110101, "usax">; 3239def USUB16 : AAI<0b01100101, 0b11110111, "usub16">; 3240def USUB8 : AAI<0b01100101, 0b11111111, "usub8">; 3241 3242// Signed/Unsigned halving add/subtract 3243 3244def SHASX : AAI<0b01100011, 0b11110011, "shasx">; 3245def SHADD16 : AAI<0b01100011, 0b11110001, "shadd16">; 3246def SHADD8 : AAI<0b01100011, 0b11111001, "shadd8">; 3247def SHSAX : AAI<0b01100011, 0b11110101, "shsax">; 3248def SHSUB16 : AAI<0b01100011, 0b11110111, "shsub16">; 3249def SHSUB8 : AAI<0b01100011, 0b11111111, "shsub8">; 3250def UHASX : AAI<0b01100111, 0b11110011, "uhasx">; 3251def UHADD16 : AAI<0b01100111, 0b11110001, "uhadd16">; 3252def UHADD8 : AAI<0b01100111, 0b11111001, "uhadd8">; 3253def UHSAX : AAI<0b01100111, 0b11110101, "uhsax">; 3254def UHSUB16 : AAI<0b01100111, 0b11110111, "uhsub16">; 3255def UHSUB8 : AAI<0b01100111, 0b11111111, "uhsub8">; 3256 3257// Unsigned Sum of Absolute Differences [and Accumulate]. 3258 3259def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3260 MulFrm /* for convenience */, NoItinerary, "usad8", 3261 "\t$Rd, $Rn, $Rm", []>, 3262 Requires<[IsARM, HasV6]> { 3263 bits<4> Rd; 3264 bits<4> Rn; 3265 bits<4> Rm; 3266 let Inst{27-20} = 0b01111000; 3267 let Inst{15-12} = 0b1111; 3268 let Inst{7-4} = 0b0001; 3269 let Inst{19-16} = Rd; 3270 let Inst{11-8} = Rm; 3271 let Inst{3-0} = Rn; 3272} 3273def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3274 MulFrm /* for convenience */, NoItinerary, "usada8", 3275 "\t$Rd, $Rn, $Rm, $Ra", []>, 3276 Requires<[IsARM, HasV6]> { 3277 bits<4> Rd; 3278 bits<4> Rn; 3279 bits<4> Rm; 3280 bits<4> Ra; 3281 let Inst{27-20} = 0b01111000; 3282 let Inst{7-4} = 0b0001; 3283 let Inst{19-16} = Rd; 3284 let Inst{15-12} = Ra; 3285 let Inst{11-8} = Rm; 3286 let Inst{3-0} = Rn; 3287} 3288 3289// Signed/Unsigned saturate 3290 3291def SSAT : AI<(outs GPRnopc:$Rd), 3292 (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), 3293 SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []> { 3294 bits<4> Rd; 3295 bits<5> sat_imm; 3296 bits<4> Rn; 3297 bits<8> sh; 3298 let Inst{27-21} = 0b0110101; 3299 let Inst{5-4} = 0b01; 3300 let Inst{20-16} = sat_imm; 3301 let Inst{15-12} = Rd; 3302 let Inst{11-7} = sh{4-0}; 3303 let Inst{6} = sh{5}; 3304 let Inst{3-0} = Rn; 3305} 3306 3307def SSAT16 : AI<(outs GPRnopc:$Rd), 3308 (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm, 3309 NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []> { 3310 bits<4> Rd; 3311 bits<4> sat_imm; 3312 bits<4> Rn; 3313 let Inst{27-20} = 0b01101010; 3314 let Inst{11-4} = 0b11110011; 3315 let Inst{15-12} = Rd; 3316 let Inst{19-16} = sat_imm; 3317 let Inst{3-0} = Rn; 3318} 3319 3320def USAT : AI<(outs GPRnopc:$Rd), 3321 (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), 3322 SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []> { 3323 bits<4> Rd; 3324 bits<5> sat_imm; 3325 bits<4> Rn; 3326 bits<8> sh; 3327 let Inst{27-21} = 0b0110111; 3328 let Inst{5-4} = 0b01; 3329 let Inst{15-12} = Rd; 3330 let Inst{11-7} = sh{4-0}; 3331 let Inst{6} = sh{5}; 3332 let Inst{20-16} = sat_imm; 3333 let Inst{3-0} = Rn; 3334} 3335 3336def USAT16 : AI<(outs GPRnopc:$Rd), 3337 (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm, 3338 NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []> { 3339 bits<4> Rd; 3340 bits<4> sat_imm; 3341 bits<4> Rn; 3342 let Inst{27-20} = 0b01101110; 3343 let Inst{11-4} = 0b11110011; 3344 let Inst{15-12} = Rd; 3345 let Inst{19-16} = sat_imm; 3346 let Inst{3-0} = Rn; 3347} 3348 3349def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm:$pos), 3350 (SSAT imm:$pos, GPRnopc:$a, 0)>; 3351def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm:$pos), 3352 (USAT imm:$pos, GPRnopc:$a, 0)>; 3353 3354//===----------------------------------------------------------------------===// 3355// Bitwise Instructions. 3356// 3357 3358defm AND : AsI1_bin_irs<0b0000, "and", 3359 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3360 BinOpFrag<(and node:$LHS, node:$RHS)>, 1>; 3361defm ORR : AsI1_bin_irs<0b1100, "orr", 3362 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3363 BinOpFrag<(or node:$LHS, node:$RHS)>, 1>; 3364defm EOR : AsI1_bin_irs<0b0001, "eor", 3365 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3366 BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>; 3367defm BIC : AsI1_bin_irs<0b1110, "bic", 3368 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3369 BinOpFrag<(and node:$LHS, (not node:$RHS))>>; 3370 3371// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just 3372// like in the actual instruction encoding. The complexity of mapping the mask 3373// to the lsb/msb pair should be handled by ISel, not encapsulated in the 3374// instruction description. 3375def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm), 3376 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3377 "bfc", "\t$Rd, $imm", "$src = $Rd", 3378 [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>, 3379 Requires<[IsARM, HasV6T2]> { 3380 bits<4> Rd; 3381 bits<10> imm; 3382 let Inst{27-21} = 0b0111110; 3383 let Inst{6-0} = 0b0011111; 3384 let Inst{15-12} = Rd; 3385 let Inst{11-7} = imm{4-0}; // lsb 3386 let Inst{20-16} = imm{9-5}; // msb 3387} 3388 3389// A8.6.18 BFI - Bitfield insert (Encoding A1) 3390def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm), 3391 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3392 "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd", 3393 [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn, 3394 bf_inv_mask_imm:$imm))]>, 3395 Requires<[IsARM, HasV6T2]> { 3396 bits<4> Rd; 3397 bits<4> Rn; 3398 bits<10> imm; 3399 let Inst{27-21} = 0b0111110; 3400 let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15 3401 let Inst{15-12} = Rd; 3402 let Inst{11-7} = imm{4-0}; // lsb 3403 let Inst{20-16} = imm{9-5}; // width 3404 let Inst{3-0} = Rn; 3405} 3406 3407def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr, 3408 "mvn", "\t$Rd, $Rm", 3409 [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP { 3410 bits<4> Rd; 3411 bits<4> Rm; 3412 let Inst{25} = 0; 3413 let Inst{19-16} = 0b0000; 3414 let Inst{11-4} = 0b00000000; 3415 let Inst{15-12} = Rd; 3416 let Inst{3-0} = Rm; 3417} 3418def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift), 3419 DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", 3420 [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP { 3421 bits<4> Rd; 3422 bits<12> shift; 3423 let Inst{25} = 0; 3424 let Inst{19-16} = 0b0000; 3425 let Inst{15-12} = Rd; 3426 let Inst{11-5} = shift{11-5}; 3427 let Inst{4} = 0; 3428 let Inst{3-0} = shift{3-0}; 3429} 3430def MVNsr : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_reg:$shift), 3431 DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", 3432 [(set GPR:$Rd, (not so_reg_reg:$shift))]>, UnaryDP { 3433 bits<4> Rd; 3434 bits<12> shift; 3435 let Inst{25} = 0; 3436 let Inst{19-16} = 0b0000; 3437 let Inst{15-12} = Rd; 3438 let Inst{11-8} = shift{11-8}; 3439 let Inst{7} = 0; 3440 let Inst{6-5} = shift{6-5}; 3441 let Inst{4} = 1; 3442 let Inst{3-0} = shift{3-0}; 3443} 3444let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 3445def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, 3446 IIC_iMVNi, "mvn", "\t$Rd, $imm", 3447 [(set GPR:$Rd, so_imm_not:$imm)]>,UnaryDP { 3448 bits<4> Rd; 3449 bits<12> imm; 3450 let Inst{25} = 1; 3451 let Inst{19-16} = 0b0000; 3452 let Inst{15-12} = Rd; 3453 let Inst{11-0} = imm; 3454} 3455 3456def : ARMPat<(and GPR:$src, so_imm_not:$imm), 3457 (BICri GPR:$src, so_imm_not:$imm)>; 3458 3459//===----------------------------------------------------------------------===// 3460// Multiply Instructions. 3461// 3462class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3463 string opc, string asm, list<dag> pattern> 3464 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3465 bits<4> Rd; 3466 bits<4> Rm; 3467 bits<4> Rn; 3468 let Inst{19-16} = Rd; 3469 let Inst{11-8} = Rm; 3470 let Inst{3-0} = Rn; 3471} 3472class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3473 string opc, string asm, list<dag> pattern> 3474 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3475 bits<4> RdLo; 3476 bits<4> RdHi; 3477 bits<4> Rm; 3478 bits<4> Rn; 3479 let Inst{19-16} = RdHi; 3480 let Inst{15-12} = RdLo; 3481 let Inst{11-8} = Rm; 3482 let Inst{3-0} = Rn; 3483} 3484class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3485 string opc, string asm, list<dag> pattern> 3486 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3487 bits<4> RdLo; 3488 bits<4> RdHi; 3489 bits<4> Rm; 3490 bits<4> Rn; 3491 let Inst{19-16} = RdHi; 3492 let Inst{15-12} = RdLo; 3493 let Inst{11-8} = Rm; 3494 let Inst{3-0} = Rn; 3495} 3496 3497// FIXME: The v5 pseudos are only necessary for the additional Constraint 3498// property. Remove them when it's possible to add those properties 3499// on an individual MachineInstr, not just an instruction description. 3500let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in { 3501def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd), 3502 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3503 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", 3504 [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>, 3505 Requires<[IsARM, HasV6]> { 3506 let Inst{15-12} = 0b0000; 3507 let Unpredictable{15-12} = 0b1111; 3508} 3509 3510let Constraints = "@earlyclobber $Rd" in 3511def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm, 3512 pred:$p, cc_out:$s), 3513 4, IIC_iMUL32, 3514 [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))], 3515 (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>, 3516 Requires<[IsARM, NoV6, UseMulOps]>; 3517} 3518 3519def MLA : AsMul1I32<0b0000001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3520 IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra", 3521 [(set GPR:$Rd, (add (mul GPR:$Rn, GPR:$Rm), GPR:$Ra))]>, 3522 Requires<[IsARM, HasV6, UseMulOps]> { 3523 bits<4> Ra; 3524 let Inst{15-12} = Ra; 3525} 3526 3527let Constraints = "@earlyclobber $Rd" in 3528def MLAv5: ARMPseudoExpand<(outs GPR:$Rd), 3529 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra, pred:$p, cc_out:$s), 3530 4, IIC_iMAC32, 3531 [(set GPR:$Rd, (add (mul GPR:$Rn, GPR:$Rm), GPR:$Ra))], 3532 (MLA GPR:$Rd, GPR:$Rn, GPR:$Rm, GPR:$Ra, pred:$p, cc_out:$s)>, 3533 Requires<[IsARM, NoV6]>; 3534 3535def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3536 IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra", 3537 [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>, 3538 Requires<[IsARM, HasV6T2, UseMulOps]> { 3539 bits<4> Rd; 3540 bits<4> Rm; 3541 bits<4> Rn; 3542 bits<4> Ra; 3543 let Inst{19-16} = Rd; 3544 let Inst{15-12} = Ra; 3545 let Inst{11-8} = Rm; 3546 let Inst{3-0} = Rn; 3547} 3548 3549// Extra precision multiplies with low / high results 3550let neverHasSideEffects = 1 in { 3551let isCommutable = 1 in { 3552def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi), 3553 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, 3554 "smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3555 Requires<[IsARM, HasV6]>; 3556 3557def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi), 3558 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, 3559 "umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3560 Requires<[IsARM, HasV6]>; 3561 3562let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in { 3563def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3564 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3565 4, IIC_iMUL64, [], 3566 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3567 Requires<[IsARM, NoV6]>; 3568 3569def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3570 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3571 4, IIC_iMUL64, [], 3572 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3573 Requires<[IsARM, NoV6]>; 3574} 3575} 3576 3577// Multiply + accumulate 3578def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi), 3579 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, 3580 "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3581 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>; 3582def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi), 3583 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64, 3584 "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3585 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>; 3586 3587def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi), 3588 (ins GPR:$Rn, GPR:$Rm), IIC_iMAC64, 3589 "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3590 Requires<[IsARM, HasV6]> { 3591 bits<4> RdLo; 3592 bits<4> RdHi; 3593 bits<4> Rm; 3594 bits<4> Rn; 3595 let Inst{19-16} = RdHi; 3596 let Inst{15-12} = RdLo; 3597 let Inst{11-8} = Rm; 3598 let Inst{3-0} = Rn; 3599} 3600 3601let Constraints = "$RLo = $RdLo,$RHi = $RdHi" in { 3602def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3603 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s), 3604 4, IIC_iMAC64, [], 3605 (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, 3606 pred:$p, cc_out:$s)>, 3607 Requires<[IsARM, NoV6]>; 3608def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3609 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s), 3610 4, IIC_iMAC64, [], 3611 (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, 3612 pred:$p, cc_out:$s)>, 3613 Requires<[IsARM, NoV6]>; 3614} 3615 3616let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in { 3617def UMAALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3618 (ins GPR:$Rn, GPR:$Rm, pred:$p), 3619 4, IIC_iMAC64, [], 3620 (UMAAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p)>, 3621 Requires<[IsARM, NoV6]>; 3622} 3623 3624} // neverHasSideEffects 3625 3626// Most significant word multiply 3627def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3628 IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm", 3629 [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>, 3630 Requires<[IsARM, HasV6]> { 3631 let Inst{15-12} = 0b1111; 3632} 3633 3634def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3635 IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm", []>, 3636 Requires<[IsARM, HasV6]> { 3637 let Inst{15-12} = 0b1111; 3638} 3639 3640def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd), 3641 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3642 IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra", 3643 [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>, 3644 Requires<[IsARM, HasV6, UseMulOps]>; 3645 3646def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd), 3647 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3648 IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra", []>, 3649 Requires<[IsARM, HasV6]>; 3650 3651def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd), 3652 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3653 IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>, 3654 Requires<[IsARM, HasV6, UseMulOps]>; 3655 3656def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd), 3657 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3658 IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", []>, 3659 Requires<[IsARM, HasV6]>; 3660 3661multiclass AI_smul<string opc, PatFrag opnode> { 3662 def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3663 IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm", 3664 [(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16), 3665 (sext_inreg GPR:$Rm, i16)))]>, 3666 Requires<[IsARM, HasV5TE]>; 3667 3668 def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3669 IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm", 3670 [(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16), 3671 (sra GPR:$Rm, (i32 16))))]>, 3672 Requires<[IsARM, HasV5TE]>; 3673 3674 def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3675 IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm", 3676 [(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)), 3677 (sext_inreg GPR:$Rm, i16)))]>, 3678 Requires<[IsARM, HasV5TE]>; 3679 3680 def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3681 IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm", 3682 [(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)), 3683 (sra GPR:$Rm, (i32 16))))]>, 3684 Requires<[IsARM, HasV5TE]>; 3685 3686 def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3687 IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm", 3688 [(set GPR:$Rd, (sra (opnode GPR:$Rn, 3689 (sext_inreg GPR:$Rm, i16)), (i32 16)))]>, 3690 Requires<[IsARM, HasV5TE]>; 3691 3692 def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3693 IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm", 3694 [(set GPR:$Rd, (sra (opnode GPR:$Rn, 3695 (sra GPR:$Rm, (i32 16))), (i32 16)))]>, 3696 Requires<[IsARM, HasV5TE]>; 3697} 3698 3699 3700multiclass AI_smla<string opc, PatFrag opnode> { 3701 let DecoderMethod = "DecodeSMLAInstruction" in { 3702 def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd), 3703 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3704 IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra", 3705 [(set GPRnopc:$Rd, (add GPR:$Ra, 3706 (opnode (sext_inreg GPRnopc:$Rn, i16), 3707 (sext_inreg GPRnopc:$Rm, i16))))]>, 3708 Requires<[IsARM, HasV5TE, UseMulOps]>; 3709 3710 def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd), 3711 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3712 IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra", 3713 [(set GPRnopc:$Rd, 3714 (add GPR:$Ra, (opnode (sext_inreg GPRnopc:$Rn, i16), 3715 (sra GPRnopc:$Rm, (i32 16)))))]>, 3716 Requires<[IsARM, HasV5TE, UseMulOps]>; 3717 3718 def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd), 3719 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3720 IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra", 3721 [(set GPRnopc:$Rd, 3722 (add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)), 3723 (sext_inreg GPRnopc:$Rm, i16))))]>, 3724 Requires<[IsARM, HasV5TE, UseMulOps]>; 3725 3726 def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd), 3727 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3728 IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra", 3729 [(set GPRnopc:$Rd, 3730 (add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)), 3731 (sra GPRnopc:$Rm, (i32 16)))))]>, 3732 Requires<[IsARM, HasV5TE, UseMulOps]>; 3733 3734 def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd), 3735 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3736 IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra", 3737 [(set GPRnopc:$Rd, 3738 (add GPR:$Ra, (sra (opnode GPRnopc:$Rn, 3739 (sext_inreg GPRnopc:$Rm, i16)), (i32 16))))]>, 3740 Requires<[IsARM, HasV5TE, UseMulOps]>; 3741 3742 def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd), 3743 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3744 IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra", 3745 [(set GPRnopc:$Rd, 3746 (add GPR:$Ra, (sra (opnode GPRnopc:$Rn, 3747 (sra GPRnopc:$Rm, (i32 16))), (i32 16))))]>, 3748 Requires<[IsARM, HasV5TE, UseMulOps]>; 3749 } 3750} 3751 3752defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>; 3753defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>; 3754 3755// Halfword multiply accumulate long: SMLAL<x><y>. 3756def SMLALBB : AMulxyI64<0b0001010, 0b00, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3757 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3758 IIC_iMAC64, "smlalbb", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3759 Requires<[IsARM, HasV5TE]>; 3760 3761def SMLALBT : AMulxyI64<0b0001010, 0b10, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3762 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3763 IIC_iMAC64, "smlalbt", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3764 Requires<[IsARM, HasV5TE]>; 3765 3766def SMLALTB : AMulxyI64<0b0001010, 0b01, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3767 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3768 IIC_iMAC64, "smlaltb", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3769 Requires<[IsARM, HasV5TE]>; 3770 3771def SMLALTT : AMulxyI64<0b0001010, 0b11, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3772 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3773 IIC_iMAC64, "smlaltt", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3774 Requires<[IsARM, HasV5TE]>; 3775 3776// Helper class for AI_smld. 3777class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops, 3778 InstrItinClass itin, string opc, string asm> 3779 : AI<oops, iops, MulFrm, itin, opc, asm, []>, Requires<[IsARM, HasV6]> { 3780 bits<4> Rn; 3781 bits<4> Rm; 3782 let Inst{27-23} = 0b01110; 3783 let Inst{22} = long; 3784 let Inst{21-20} = 0b00; 3785 let Inst{11-8} = Rm; 3786 let Inst{7} = 0; 3787 let Inst{6} = sub; 3788 let Inst{5} = swap; 3789 let Inst{4} = 1; 3790 let Inst{3-0} = Rn; 3791} 3792class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops, 3793 InstrItinClass itin, string opc, string asm> 3794 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 3795 bits<4> Rd; 3796 let Inst{15-12} = 0b1111; 3797 let Inst{19-16} = Rd; 3798} 3799class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops, 3800 InstrItinClass itin, string opc, string asm> 3801 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 3802 bits<4> Ra; 3803 bits<4> Rd; 3804 let Inst{19-16} = Rd; 3805 let Inst{15-12} = Ra; 3806} 3807class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops, 3808 InstrItinClass itin, string opc, string asm> 3809 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 3810 bits<4> RdLo; 3811 bits<4> RdHi; 3812 let Inst{19-16} = RdHi; 3813 let Inst{15-12} = RdLo; 3814} 3815 3816multiclass AI_smld<bit sub, string opc> { 3817 3818 def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd), 3819 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3820 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">; 3821 3822 def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd), 3823 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3824 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">; 3825 3826 def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3827 (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, 3828 !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">; 3829 3830 def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3831 (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, 3832 !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">; 3833 3834} 3835 3836defm SMLA : AI_smld<0, "smla">; 3837defm SMLS : AI_smld<1, "smls">; 3838 3839multiclass AI_sdml<bit sub, string opc> { 3840 3841 def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), 3842 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">; 3843 def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm), 3844 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">; 3845} 3846 3847defm SMUA : AI_sdml<0, "smua">; 3848defm SMUS : AI_sdml<1, "smus">; 3849 3850//===----------------------------------------------------------------------===// 3851// Division Instructions (ARMv7-A with virtualization extension) 3852// 3853def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV, 3854 "sdiv", "\t$Rd, $Rn, $Rm", 3855 [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>, 3856 Requires<[IsARM, HasDivideInARM]>; 3857 3858def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV, 3859 "udiv", "\t$Rd, $Rn, $Rm", 3860 [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>, 3861 Requires<[IsARM, HasDivideInARM]>; 3862 3863//===----------------------------------------------------------------------===// 3864// Misc. Arithmetic Instructions. 3865// 3866 3867def CLZ : AMiscA1I<0b000010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm), 3868 IIC_iUNAr, "clz", "\t$Rd, $Rm", 3869 [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>; 3870 3871def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), 3872 IIC_iUNAr, "rbit", "\t$Rd, $Rm", 3873 [(set GPR:$Rd, (ARMrbit GPR:$Rm))]>, 3874 Requires<[IsARM, HasV6T2]>; 3875 3876def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), 3877 IIC_iUNAr, "rev", "\t$Rd, $Rm", 3878 [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>; 3879 3880let AddedComplexity = 5 in 3881def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), 3882 IIC_iUNAr, "rev16", "\t$Rd, $Rm", 3883 [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>, 3884 Requires<[IsARM, HasV6]>; 3885 3886let AddedComplexity = 5 in 3887def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), 3888 IIC_iUNAr, "revsh", "\t$Rd, $Rm", 3889 [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>, 3890 Requires<[IsARM, HasV6]>; 3891 3892def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)), 3893 (and (srl GPR:$Rm, (i32 8)), 0xFF)), 3894 (REVSH GPR:$Rm)>; 3895 3896def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd), 3897 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh), 3898 IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh", 3899 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF), 3900 (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh), 3901 0xFFFF0000)))]>, 3902 Requires<[IsARM, HasV6]>; 3903 3904// Alternate cases for PKHBT where identities eliminate some nodes. 3905def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)), 3906 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>; 3907def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)), 3908 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>; 3909 3910// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and 3911// will match the pattern below. 3912def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd), 3913 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh), 3914 IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh", 3915 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000), 3916 (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh), 3917 0xFFFF)))]>, 3918 Requires<[IsARM, HasV6]>; 3919 3920// Alternate cases for PKHTB where identities eliminate some nodes. Note that 3921// a shift amount of 0 is *not legal* here, it is PKHBT instead. 3922def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 3923 (srl GPRnopc:$src2, imm16_31:$sh)), 3924 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>; 3925def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 3926 (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)), 3927 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>; 3928 3929//===----------------------------------------------------------------------===// 3930// Comparison Instructions... 3931// 3932 3933defm CMP : AI1_cmp_irs<0b1010, "cmp", 3934 IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, 3935 BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; 3936 3937// ARMcmpZ can re-use the above instruction definitions. 3938def : ARMPat<(ARMcmpZ GPR:$src, so_imm:$imm), 3939 (CMPri GPR:$src, so_imm:$imm)>; 3940def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs), 3941 (CMPrr GPR:$src, GPR:$rhs)>; 3942def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs), 3943 (CMPrsi GPR:$src, so_reg_imm:$rhs)>; 3944def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs), 3945 (CMPrsr GPR:$src, so_reg_reg:$rhs)>; 3946 3947// CMN register-integer 3948let isCompare = 1, Defs = [CPSR] in { 3949def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, IIC_iCMPi, 3950 "cmn", "\t$Rn, $imm", 3951 [(ARMcmn GPR:$Rn, so_imm:$imm)]> { 3952 bits<4> Rn; 3953 bits<12> imm; 3954 let Inst{25} = 1; 3955 let Inst{20} = 1; 3956 let Inst{19-16} = Rn; 3957 let Inst{15-12} = 0b0000; 3958 let Inst{11-0} = imm; 3959 3960 let Unpredictable{15-12} = 0b1111; 3961} 3962 3963// CMN register-register/shift 3964def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr, 3965 "cmn", "\t$Rn, $Rm", 3966 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> 3967 GPR:$Rn, GPR:$Rm)]> { 3968 bits<4> Rn; 3969 bits<4> Rm; 3970 let isCommutable = 1; 3971 let Inst{25} = 0; 3972 let Inst{20} = 1; 3973 let Inst{19-16} = Rn; 3974 let Inst{15-12} = 0b0000; 3975 let Inst{11-4} = 0b00000000; 3976 let Inst{3-0} = Rm; 3977 3978 let Unpredictable{15-12} = 0b1111; 3979} 3980 3981def CMNzrsi : AI1<0b1011, (outs), 3982 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr, 3983 "cmn", "\t$Rn, $shift", 3984 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> 3985 GPR:$Rn, so_reg_imm:$shift)]> { 3986 bits<4> Rn; 3987 bits<12> shift; 3988 let Inst{25} = 0; 3989 let Inst{20} = 1; 3990 let Inst{19-16} = Rn; 3991 let Inst{15-12} = 0b0000; 3992 let Inst{11-5} = shift{11-5}; 3993 let Inst{4} = 0; 3994 let Inst{3-0} = shift{3-0}; 3995 3996 let Unpredictable{15-12} = 0b1111; 3997} 3998 3999def CMNzrsr : AI1<0b1011, (outs), 4000 (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr, 4001 "cmn", "\t$Rn, $shift", 4002 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))> 4003 GPRnopc:$Rn, so_reg_reg:$shift)]> { 4004 bits<4> Rn; 4005 bits<12> shift; 4006 let Inst{25} = 0; 4007 let Inst{20} = 1; 4008 let Inst{19-16} = Rn; 4009 let Inst{15-12} = 0b0000; 4010 let Inst{11-8} = shift{11-8}; 4011 let Inst{7} = 0; 4012 let Inst{6-5} = shift{6-5}; 4013 let Inst{4} = 1; 4014 let Inst{3-0} = shift{3-0}; 4015 4016 let Unpredictable{15-12} = 0b1111; 4017} 4018 4019} 4020 4021def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm), 4022 (CMNri GPR:$src, so_imm_neg:$imm)>; 4023 4024def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm), 4025 (CMNri GPR:$src, so_imm_neg:$imm)>; 4026 4027// Note that TST/TEQ don't set all the same flags that CMP does! 4028defm TST : AI1_cmp_irs<0b1000, "tst", 4029 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, 4030 BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1>; 4031defm TEQ : AI1_cmp_irs<0b1001, "teq", 4032 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, 4033 BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>; 4034 4035// Pseudo i64 compares for some floating point compares. 4036let usesCustomInserter = 1, isBranch = 1, isTerminator = 1, 4037 Defs = [CPSR] in { 4038def BCCi64 : PseudoInst<(outs), 4039 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst), 4040 IIC_Br, 4041 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>; 4042 4043def BCCZi64 : PseudoInst<(outs), 4044 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br, 4045 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>; 4046} // usesCustomInserter 4047 4048 4049// Conditional moves 4050// FIXME: should be able to write a pattern for ARMcmov, but can't use 4051// a two-value operand where a dag node expects two operands. :( 4052let neverHasSideEffects = 1 in { 4053 4054let isCommutable = 1, isSelect = 1 in 4055def MOVCCr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, GPR:$Rm, pred:$p), 4056 4, IIC_iCMOVr, 4057 [/*(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm, imm:$cc, CCR:$ccr))*/]>, 4058 RegConstraint<"$false = $Rd">; 4059 4060def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd), 4061 (ins GPR:$false, so_reg_imm:$shift, pred:$p), 4062 4, IIC_iCMOVsr, 4063 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_imm:$shift, 4064 imm:$cc, CCR:$ccr))*/]>, 4065 RegConstraint<"$false = $Rd">; 4066def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd), 4067 (ins GPR:$false, so_reg_reg:$shift, pred:$p), 4068 4, IIC_iCMOVsr, 4069 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift, 4070 imm:$cc, CCR:$ccr))*/]>, 4071 RegConstraint<"$false = $Rd">; 4072 4073 4074let isMoveImm = 1 in 4075def MOVCCi16 : ARMPseudoInst<(outs GPR:$Rd), 4076 (ins GPR:$false, imm0_65535_expr:$imm, pred:$p), 4077 4, IIC_iMOVi, 4078 []>, 4079 RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>; 4080 4081let isMoveImm = 1 in 4082def MOVCCi : ARMPseudoInst<(outs GPR:$Rd), 4083 (ins GPR:$false, so_imm:$imm, pred:$p), 4084 4, IIC_iCMOVi, 4085 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_imm:$imm, imm:$cc, CCR:$ccr))*/]>, 4086 RegConstraint<"$false = $Rd">; 4087 4088// Two instruction predicate mov immediate. 4089let isMoveImm = 1 in 4090def MOVCCi32imm : ARMPseudoInst<(outs GPR:$Rd), 4091 (ins GPR:$false, i32imm:$src, pred:$p), 4092 8, IIC_iCMOVix2, []>, RegConstraint<"$false = $Rd">; 4093 4094let isMoveImm = 1 in 4095def MVNCCi : ARMPseudoInst<(outs GPR:$Rd), 4096 (ins GPR:$false, so_imm:$imm, pred:$p), 4097 4, IIC_iCMOVi, 4098 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_imm_not:$imm, imm:$cc, CCR:$ccr))*/]>, 4099 RegConstraint<"$false = $Rd">; 4100 4101} // neverHasSideEffects 4102 4103 4104//===----------------------------------------------------------------------===// 4105// Atomic operations intrinsics 4106// 4107 4108def MemBarrierOptOperand : AsmOperandClass { 4109 let Name = "MemBarrierOpt"; 4110 let ParserMethod = "parseMemBarrierOptOperand"; 4111} 4112def memb_opt : Operand<i32> { 4113 let PrintMethod = "printMemBOption"; 4114 let ParserMatchClass = MemBarrierOptOperand; 4115 let DecoderMethod = "DecodeMemBarrierOption"; 4116} 4117 4118// memory barriers protect the atomic sequences 4119let hasSideEffects = 1 in { 4120def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4121 "dmb", "\t$opt", [(ARMMemBarrier (i32 imm:$opt))]>, 4122 Requires<[IsARM, HasDB]> { 4123 bits<4> opt; 4124 let Inst{31-4} = 0xf57ff05; 4125 let Inst{3-0} = opt; 4126} 4127} 4128 4129def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4130 "dsb", "\t$opt", []>, 4131 Requires<[IsARM, HasDB]> { 4132 bits<4> opt; 4133 let Inst{31-4} = 0xf57ff04; 4134 let Inst{3-0} = opt; 4135} 4136 4137// ISB has only full system option 4138def ISB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4139 "isb", "\t$opt", []>, 4140 Requires<[IsARM, HasDB]> { 4141 bits<4> opt; 4142 let Inst{31-4} = 0xf57ff06; 4143 let Inst{3-0} = opt; 4144} 4145 4146// Pseudo instruction that combines movs + predicated rsbmi 4147// to implement integer ABS 4148let usesCustomInserter = 1, Defs = [CPSR] in 4149def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>; 4150 4151let usesCustomInserter = 1 in { 4152 let Defs = [CPSR] in { 4153 def ATOMIC_LOAD_ADD_I8 : PseudoInst< 4154 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4155 [(set GPR:$dst, (atomic_load_add_8 GPR:$ptr, GPR:$incr))]>; 4156 def ATOMIC_LOAD_SUB_I8 : PseudoInst< 4157 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4158 [(set GPR:$dst, (atomic_load_sub_8 GPR:$ptr, GPR:$incr))]>; 4159 def ATOMIC_LOAD_AND_I8 : PseudoInst< 4160 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4161 [(set GPR:$dst, (atomic_load_and_8 GPR:$ptr, GPR:$incr))]>; 4162 def ATOMIC_LOAD_OR_I8 : PseudoInst< 4163 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4164 [(set GPR:$dst, (atomic_load_or_8 GPR:$ptr, GPR:$incr))]>; 4165 def ATOMIC_LOAD_XOR_I8 : PseudoInst< 4166 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4167 [(set GPR:$dst, (atomic_load_xor_8 GPR:$ptr, GPR:$incr))]>; 4168 def ATOMIC_LOAD_NAND_I8 : PseudoInst< 4169 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4170 [(set GPR:$dst, (atomic_load_nand_8 GPR:$ptr, GPR:$incr))]>; 4171 def ATOMIC_LOAD_MIN_I8 : PseudoInst< 4172 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4173 [(set GPR:$dst, (atomic_load_min_8 GPR:$ptr, GPR:$val))]>; 4174 def ATOMIC_LOAD_MAX_I8 : PseudoInst< 4175 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4176 [(set GPR:$dst, (atomic_load_max_8 GPR:$ptr, GPR:$val))]>; 4177 def ATOMIC_LOAD_UMIN_I8 : PseudoInst< 4178 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4179 [(set GPR:$dst, (atomic_load_umin_8 GPR:$ptr, GPR:$val))]>; 4180 def ATOMIC_LOAD_UMAX_I8 : PseudoInst< 4181 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4182 [(set GPR:$dst, (atomic_load_umax_8 GPR:$ptr, GPR:$val))]>; 4183 def ATOMIC_LOAD_ADD_I16 : PseudoInst< 4184 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4185 [(set GPR:$dst, (atomic_load_add_16 GPR:$ptr, GPR:$incr))]>; 4186 def ATOMIC_LOAD_SUB_I16 : PseudoInst< 4187 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4188 [(set GPR:$dst, (atomic_load_sub_16 GPR:$ptr, GPR:$incr))]>; 4189 def ATOMIC_LOAD_AND_I16 : PseudoInst< 4190 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4191 [(set GPR:$dst, (atomic_load_and_16 GPR:$ptr, GPR:$incr))]>; 4192 def ATOMIC_LOAD_OR_I16 : PseudoInst< 4193 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4194 [(set GPR:$dst, (atomic_load_or_16 GPR:$ptr, GPR:$incr))]>; 4195 def ATOMIC_LOAD_XOR_I16 : PseudoInst< 4196 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4197 [(set GPR:$dst, (atomic_load_xor_16 GPR:$ptr, GPR:$incr))]>; 4198 def ATOMIC_LOAD_NAND_I16 : PseudoInst< 4199 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4200 [(set GPR:$dst, (atomic_load_nand_16 GPR:$ptr, GPR:$incr))]>; 4201 def ATOMIC_LOAD_MIN_I16 : PseudoInst< 4202 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4203 [(set GPR:$dst, (atomic_load_min_16 GPR:$ptr, GPR:$val))]>; 4204 def ATOMIC_LOAD_MAX_I16 : PseudoInst< 4205 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4206 [(set GPR:$dst, (atomic_load_max_16 GPR:$ptr, GPR:$val))]>; 4207 def ATOMIC_LOAD_UMIN_I16 : PseudoInst< 4208 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4209 [(set GPR:$dst, (atomic_load_umin_16 GPR:$ptr, GPR:$val))]>; 4210 def ATOMIC_LOAD_UMAX_I16 : PseudoInst< 4211 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4212 [(set GPR:$dst, (atomic_load_umax_16 GPR:$ptr, GPR:$val))]>; 4213 def ATOMIC_LOAD_ADD_I32 : PseudoInst< 4214 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4215 [(set GPR:$dst, (atomic_load_add_32 GPR:$ptr, GPR:$incr))]>; 4216 def ATOMIC_LOAD_SUB_I32 : PseudoInst< 4217 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4218 [(set GPR:$dst, (atomic_load_sub_32 GPR:$ptr, GPR:$incr))]>; 4219 def ATOMIC_LOAD_AND_I32 : PseudoInst< 4220 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4221 [(set GPR:$dst, (atomic_load_and_32 GPR:$ptr, GPR:$incr))]>; 4222 def ATOMIC_LOAD_OR_I32 : PseudoInst< 4223 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4224 [(set GPR:$dst, (atomic_load_or_32 GPR:$ptr, GPR:$incr))]>; 4225 def ATOMIC_LOAD_XOR_I32 : PseudoInst< 4226 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4227 [(set GPR:$dst, (atomic_load_xor_32 GPR:$ptr, GPR:$incr))]>; 4228 def ATOMIC_LOAD_NAND_I32 : PseudoInst< 4229 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4230 [(set GPR:$dst, (atomic_load_nand_32 GPR:$ptr, GPR:$incr))]>; 4231 def ATOMIC_LOAD_MIN_I32 : PseudoInst< 4232 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4233 [(set GPR:$dst, (atomic_load_min_32 GPR:$ptr, GPR:$val))]>; 4234 def ATOMIC_LOAD_MAX_I32 : PseudoInst< 4235 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4236 [(set GPR:$dst, (atomic_load_max_32 GPR:$ptr, GPR:$val))]>; 4237 def ATOMIC_LOAD_UMIN_I32 : PseudoInst< 4238 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4239 [(set GPR:$dst, (atomic_load_umin_32 GPR:$ptr, GPR:$val))]>; 4240 def ATOMIC_LOAD_UMAX_I32 : PseudoInst< 4241 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4242 [(set GPR:$dst, (atomic_load_umax_32 GPR:$ptr, GPR:$val))]>; 4243 4244 def ATOMIC_SWAP_I8 : PseudoInst< 4245 (outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary, 4246 [(set GPR:$dst, (atomic_swap_8 GPR:$ptr, GPR:$new))]>; 4247 def ATOMIC_SWAP_I16 : PseudoInst< 4248 (outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary, 4249 [(set GPR:$dst, (atomic_swap_16 GPR:$ptr, GPR:$new))]>; 4250 def ATOMIC_SWAP_I32 : PseudoInst< 4251 (outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary, 4252 [(set GPR:$dst, (atomic_swap_32 GPR:$ptr, GPR:$new))]>; 4253 4254 def ATOMIC_CMP_SWAP_I8 : PseudoInst< 4255 (outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary, 4256 [(set GPR:$dst, (atomic_cmp_swap_8 GPR:$ptr, GPR:$old, GPR:$new))]>; 4257 def ATOMIC_CMP_SWAP_I16 : PseudoInst< 4258 (outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary, 4259 [(set GPR:$dst, (atomic_cmp_swap_16 GPR:$ptr, GPR:$old, GPR:$new))]>; 4260 def ATOMIC_CMP_SWAP_I32 : PseudoInst< 4261 (outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary, 4262 [(set GPR:$dst, (atomic_cmp_swap_32 GPR:$ptr, GPR:$old, GPR:$new))]>; 4263} 4264} 4265 4266let usesCustomInserter = 1 in { 4267 def COPY_STRUCT_BYVAL_I32 : PseudoInst< 4268 (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment), 4269 NoItinerary, 4270 [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>; 4271} 4272 4273let mayLoad = 1 in { 4274def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4275 NoItinerary, 4276 "ldrexb", "\t$Rt, $addr", []>; 4277def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4278 NoItinerary, "ldrexh", "\t$Rt, $addr", []>; 4279def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4280 NoItinerary, "ldrex", "\t$Rt, $addr", []>; 4281let hasExtraDefRegAllocReq = 1 in 4282def LDREXD: AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr), 4283 NoItinerary, "ldrexd", "\t$Rt, $addr", []> { 4284 let DecoderMethod = "DecodeDoubleRegLoad"; 4285} 4286} 4287 4288let mayStore = 1, Constraints = "@earlyclobber $Rd" in { 4289def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4290 NoItinerary, "strexb", "\t$Rd, $Rt, $addr", []>; 4291def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4292 NoItinerary, "strexh", "\t$Rd, $Rt, $addr", []>; 4293def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4294 NoItinerary, "strex", "\t$Rd, $Rt, $addr", []>; 4295let hasExtraSrcRegAllocReq = 1 in 4296def STREXD : AIstrex<0b01, (outs GPR:$Rd), 4297 (ins GPRPairOp:$Rt, addr_offset_none:$addr), 4298 NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> { 4299 let DecoderMethod = "DecodeDoubleRegStore"; 4300} 4301} 4302 4303 4304def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex", []>, 4305 Requires<[IsARM, HasV7]> { 4306 let Inst{31-0} = 0b11110101011111111111000000011111; 4307} 4308 4309// SWP/SWPB are deprecated in V6/V7. 4310let mayLoad = 1, mayStore = 1 in { 4311def SWP : AIswp<0, (outs GPRnopc:$Rt), 4312 (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>; 4313def SWPB: AIswp<1, (outs GPRnopc:$Rt), 4314 (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>; 4315} 4316 4317//===----------------------------------------------------------------------===// 4318// Coprocessor Instructions. 4319// 4320 4321def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4322 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), 4323 NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", 4324 [(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn, 4325 imm:$CRm, imm:$opc2)]> { 4326 bits<4> opc1; 4327 bits<4> CRn; 4328 bits<4> CRd; 4329 bits<4> cop; 4330 bits<3> opc2; 4331 bits<4> CRm; 4332 4333 let Inst{3-0} = CRm; 4334 let Inst{4} = 0; 4335 let Inst{7-5} = opc2; 4336 let Inst{11-8} = cop; 4337 let Inst{15-12} = CRd; 4338 let Inst{19-16} = CRn; 4339 let Inst{23-20} = opc1; 4340} 4341 4342def CDP2 : ABXI<0b1110, (outs), (ins pf_imm:$cop, imm0_15:$opc1, 4343 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), 4344 NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", 4345 [(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn, 4346 imm:$CRm, imm:$opc2)]> { 4347 let Inst{31-28} = 0b1111; 4348 bits<4> opc1; 4349 bits<4> CRn; 4350 bits<4> CRd; 4351 bits<4> cop; 4352 bits<3> opc2; 4353 bits<4> CRm; 4354 4355 let Inst{3-0} = CRm; 4356 let Inst{4} = 0; 4357 let Inst{7-5} = opc2; 4358 let Inst{11-8} = cop; 4359 let Inst{15-12} = CRd; 4360 let Inst{19-16} = CRn; 4361 let Inst{23-20} = opc1; 4362} 4363 4364class ACI<dag oops, dag iops, string opc, string asm, 4365 IndexMode im = IndexModeNone> 4366 : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary, 4367 opc, asm, "", []> { 4368 let Inst{27-25} = 0b110; 4369} 4370class ACInoP<dag oops, dag iops, string opc, string asm, 4371 IndexMode im = IndexModeNone> 4372 : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary, 4373 opc, asm, "", []> { 4374 let Inst{31-28} = 0b1111; 4375 let Inst{27-25} = 0b110; 4376} 4377multiclass LdStCop<bit load, bit Dbit, string asm> { 4378 def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4379 asm, "\t$cop, $CRd, $addr"> { 4380 bits<13> addr; 4381 bits<4> cop; 4382 bits<4> CRd; 4383 let Inst{24} = 1; // P = 1 4384 let Inst{23} = addr{8}; 4385 let Inst{22} = Dbit; 4386 let Inst{21} = 0; // W = 0 4387 let Inst{20} = load; 4388 let Inst{19-16} = addr{12-9}; 4389 let Inst{15-12} = CRd; 4390 let Inst{11-8} = cop; 4391 let Inst{7-0} = addr{7-0}; 4392 let DecoderMethod = "DecodeCopMemInstruction"; 4393 } 4394 def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4395 asm, "\t$cop, $CRd, $addr!", IndexModePre> { 4396 bits<13> addr; 4397 bits<4> cop; 4398 bits<4> CRd; 4399 let Inst{24} = 1; // P = 1 4400 let Inst{23} = addr{8}; 4401 let Inst{22} = Dbit; 4402 let Inst{21} = 1; // W = 1 4403 let Inst{20} = load; 4404 let Inst{19-16} = addr{12-9}; 4405 let Inst{15-12} = CRd; 4406 let Inst{11-8} = cop; 4407 let Inst{7-0} = addr{7-0}; 4408 let DecoderMethod = "DecodeCopMemInstruction"; 4409 } 4410 def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4411 postidx_imm8s4:$offset), 4412 asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> { 4413 bits<9> offset; 4414 bits<4> addr; 4415 bits<4> cop; 4416 bits<4> CRd; 4417 let Inst{24} = 0; // P = 0 4418 let Inst{23} = offset{8}; 4419 let Inst{22} = Dbit; 4420 let Inst{21} = 1; // W = 1 4421 let Inst{20} = load; 4422 let Inst{19-16} = addr; 4423 let Inst{15-12} = CRd; 4424 let Inst{11-8} = cop; 4425 let Inst{7-0} = offset{7-0}; 4426 let DecoderMethod = "DecodeCopMemInstruction"; 4427 } 4428 def _OPTION : ACI<(outs), 4429 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4430 coproc_option_imm:$option), 4431 asm, "\t$cop, $CRd, $addr, $option"> { 4432 bits<8> option; 4433 bits<4> addr; 4434 bits<4> cop; 4435 bits<4> CRd; 4436 let Inst{24} = 0; // P = 0 4437 let Inst{23} = 1; // U = 1 4438 let Inst{22} = Dbit; 4439 let Inst{21} = 0; // W = 0 4440 let Inst{20} = load; 4441 let Inst{19-16} = addr; 4442 let Inst{15-12} = CRd; 4443 let Inst{11-8} = cop; 4444 let Inst{7-0} = option; 4445 let DecoderMethod = "DecodeCopMemInstruction"; 4446 } 4447} 4448multiclass LdSt2Cop<bit load, bit Dbit, string asm> { 4449 def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4450 asm, "\t$cop, $CRd, $addr"> { 4451 bits<13> addr; 4452 bits<4> cop; 4453 bits<4> CRd; 4454 let Inst{24} = 1; // P = 1 4455 let Inst{23} = addr{8}; 4456 let Inst{22} = Dbit; 4457 let Inst{21} = 0; // W = 0 4458 let Inst{20} = load; 4459 let Inst{19-16} = addr{12-9}; 4460 let Inst{15-12} = CRd; 4461 let Inst{11-8} = cop; 4462 let Inst{7-0} = addr{7-0}; 4463 let DecoderMethod = "DecodeCopMemInstruction"; 4464 } 4465 def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4466 asm, "\t$cop, $CRd, $addr!", IndexModePre> { 4467 bits<13> addr; 4468 bits<4> cop; 4469 bits<4> CRd; 4470 let Inst{24} = 1; // P = 1 4471 let Inst{23} = addr{8}; 4472 let Inst{22} = Dbit; 4473 let Inst{21} = 1; // W = 1 4474 let Inst{20} = load; 4475 let Inst{19-16} = addr{12-9}; 4476 let Inst{15-12} = CRd; 4477 let Inst{11-8} = cop; 4478 let Inst{7-0} = addr{7-0}; 4479 let DecoderMethod = "DecodeCopMemInstruction"; 4480 } 4481 def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4482 postidx_imm8s4:$offset), 4483 asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> { 4484 bits<9> offset; 4485 bits<4> addr; 4486 bits<4> cop; 4487 bits<4> CRd; 4488 let Inst{24} = 0; // P = 0 4489 let Inst{23} = offset{8}; 4490 let Inst{22} = Dbit; 4491 let Inst{21} = 1; // W = 1 4492 let Inst{20} = load; 4493 let Inst{19-16} = addr; 4494 let Inst{15-12} = CRd; 4495 let Inst{11-8} = cop; 4496 let Inst{7-0} = offset{7-0}; 4497 let DecoderMethod = "DecodeCopMemInstruction"; 4498 } 4499 def _OPTION : ACInoP<(outs), 4500 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4501 coproc_option_imm:$option), 4502 asm, "\t$cop, $CRd, $addr, $option"> { 4503 bits<8> option; 4504 bits<4> addr; 4505 bits<4> cop; 4506 bits<4> CRd; 4507 let Inst{24} = 0; // P = 0 4508 let Inst{23} = 1; // U = 1 4509 let Inst{22} = Dbit; 4510 let Inst{21} = 0; // W = 0 4511 let Inst{20} = load; 4512 let Inst{19-16} = addr; 4513 let Inst{15-12} = CRd; 4514 let Inst{11-8} = cop; 4515 let Inst{7-0} = option; 4516 let DecoderMethod = "DecodeCopMemInstruction"; 4517 } 4518} 4519 4520defm LDC : LdStCop <1, 0, "ldc">; 4521defm LDCL : LdStCop <1, 1, "ldcl">; 4522defm STC : LdStCop <0, 0, "stc">; 4523defm STCL : LdStCop <0, 1, "stcl">; 4524defm LDC2 : LdSt2Cop<1, 0, "ldc2">; 4525defm LDC2L : LdSt2Cop<1, 1, "ldc2l">; 4526defm STC2 : LdSt2Cop<0, 0, "stc2">; 4527defm STC2L : LdSt2Cop<0, 1, "stc2l">; 4528 4529//===----------------------------------------------------------------------===// 4530// Move between coprocessor and ARM core register. 4531// 4532 4533class MovRCopro<string opc, bit direction, dag oops, dag iops, 4534 list<dag> pattern> 4535 : ABI<0b1110, oops, iops, NoItinerary, opc, 4536 "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> { 4537 let Inst{20} = direction; 4538 let Inst{4} = 1; 4539 4540 bits<4> Rt; 4541 bits<4> cop; 4542 bits<3> opc1; 4543 bits<3> opc2; 4544 bits<4> CRm; 4545 bits<4> CRn; 4546 4547 let Inst{15-12} = Rt; 4548 let Inst{11-8} = cop; 4549 let Inst{23-21} = opc1; 4550 let Inst{7-5} = opc2; 4551 let Inst{3-0} = CRm; 4552 let Inst{19-16} = CRn; 4553} 4554 4555def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */, 4556 (outs), 4557 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 4558 c_imm:$CRm, imm0_7:$opc2), 4559 [(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn, 4560 imm:$CRm, imm:$opc2)]>; 4561def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm", 4562 (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 4563 c_imm:$CRm, 0, pred:$p)>; 4564def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */, 4565 (outs GPR:$Rt), 4566 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 4567 imm0_7:$opc2), []>; 4568def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm", 4569 (MRC GPR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, 4570 c_imm:$CRm, 0, pred:$p)>; 4571 4572def : ARMPat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2), 4573 (MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>; 4574 4575class MovRCopro2<string opc, bit direction, dag oops, dag iops, 4576 list<dag> pattern> 4577 : ABXI<0b1110, oops, iops, NoItinerary, 4578 !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> { 4579 let Inst{31-28} = 0b1111; 4580 let Inst{20} = direction; 4581 let Inst{4} = 1; 4582 4583 bits<4> Rt; 4584 bits<4> cop; 4585 bits<3> opc1; 4586 bits<3> opc2; 4587 bits<4> CRm; 4588 bits<4> CRn; 4589 4590 let Inst{15-12} = Rt; 4591 let Inst{11-8} = cop; 4592 let Inst{23-21} = opc1; 4593 let Inst{7-5} = opc2; 4594 let Inst{3-0} = CRm; 4595 let Inst{19-16} = CRn; 4596} 4597 4598def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */, 4599 (outs), 4600 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 4601 c_imm:$CRm, imm0_7:$opc2), 4602 [(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn, 4603 imm:$CRm, imm:$opc2)]>; 4604def : ARMInstAlias<"mcr2$ $cop, $opc1, $Rt, $CRn, $CRm", 4605 (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 4606 c_imm:$CRm, 0)>; 4607def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */, 4608 (outs GPR:$Rt), 4609 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 4610 imm0_7:$opc2), []>; 4611def : ARMInstAlias<"mrc2$ $cop, $opc1, $Rt, $CRn, $CRm", 4612 (MRC2 GPR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, 4613 c_imm:$CRm, 0)>; 4614 4615def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn, 4616 imm:$CRm, imm:$opc2), 4617 (MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>; 4618 4619class MovRRCopro<string opc, bit direction, list<dag> pattern = []> 4620 : ABI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4621 GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm), 4622 NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> { 4623 let Inst{23-21} = 0b010; 4624 let Inst{20} = direction; 4625 4626 bits<4> Rt; 4627 bits<4> Rt2; 4628 bits<4> cop; 4629 bits<4> opc1; 4630 bits<4> CRm; 4631 4632 let Inst{15-12} = Rt; 4633 let Inst{19-16} = Rt2; 4634 let Inst{11-8} = cop; 4635 let Inst{7-4} = opc1; 4636 let Inst{3-0} = CRm; 4637} 4638 4639def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */, 4640 [(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt, 4641 GPRnopc:$Rt2, imm:$CRm)]>; 4642def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */>; 4643 4644class MovRRCopro2<string opc, bit direction, list<dag> pattern = []> 4645 : ABXI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4646 GPRnopc:$Rt, GPRnopc:$Rt2, c_imm:$CRm), NoItinerary, 4647 !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern> { 4648 let Inst{31-28} = 0b1111; 4649 let Inst{23-21} = 0b010; 4650 let Inst{20} = direction; 4651 4652 bits<4> Rt; 4653 bits<4> Rt2; 4654 bits<4> cop; 4655 bits<4> opc1; 4656 bits<4> CRm; 4657 4658 let Inst{15-12} = Rt; 4659 let Inst{19-16} = Rt2; 4660 let Inst{11-8} = cop; 4661 let Inst{7-4} = opc1; 4662 let Inst{3-0} = CRm; 4663 4664 let DecoderMethod = "DecodeMRRC2"; 4665} 4666 4667def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */, 4668 [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPRnopc:$Rt, 4669 GPRnopc:$Rt2, imm:$CRm)]>; 4670def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */>; 4671 4672//===----------------------------------------------------------------------===// 4673// Move between special register and ARM core register 4674// 4675 4676// Move to ARM core register from Special Register 4677def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary, 4678 "mrs", "\t$Rd, apsr", []> { 4679 bits<4> Rd; 4680 let Inst{23-16} = 0b00001111; 4681 let Unpredictable{19-17} = 0b111; 4682 4683 let Inst{15-12} = Rd; 4684 4685 let Inst{11-0} = 0b000000000000; 4686 let Unpredictable{11-0} = 0b110100001111; 4687} 4688 4689def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p)>, 4690 Requires<[IsARM]>; 4691 4692// The MRSsys instruction is the MRS instruction from the ARM ARM, 4693// section B9.3.9, with the R bit set to 1. 4694def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary, 4695 "mrs", "\t$Rd, spsr", []> { 4696 bits<4> Rd; 4697 let Inst{23-16} = 0b01001111; 4698 let Unpredictable{19-16} = 0b1111; 4699 4700 let Inst{15-12} = Rd; 4701 4702 let Inst{11-0} = 0b000000000000; 4703 let Unpredictable{11-0} = 0b110100001111; 4704} 4705 4706// Move from ARM core register to Special Register 4707// 4708// No need to have both system and application versions, the encodings are the 4709// same and the assembly parser has no way to distinguish between them. The mask 4710// operand contains the special register (R Bit) in bit 4 and bits 3-0 contains 4711// the mask with the fields to be accessed in the special register. 4712def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary, 4713 "msr", "\t$mask, $Rn", []> { 4714 bits<5> mask; 4715 bits<4> Rn; 4716 4717 let Inst{23} = 0; 4718 let Inst{22} = mask{4}; // R bit 4719 let Inst{21-20} = 0b10; 4720 let Inst{19-16} = mask{3-0}; 4721 let Inst{15-12} = 0b1111; 4722 let Inst{11-4} = 0b00000000; 4723 let Inst{3-0} = Rn; 4724} 4725 4726def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, so_imm:$a), NoItinerary, 4727 "msr", "\t$mask, $a", []> { 4728 bits<5> mask; 4729 bits<12> a; 4730 4731 let Inst{23} = 0; 4732 let Inst{22} = mask{4}; // R bit 4733 let Inst{21-20} = 0b10; 4734 let Inst{19-16} = mask{3-0}; 4735 let Inst{15-12} = 0b1111; 4736 let Inst{11-0} = a; 4737} 4738 4739//===----------------------------------------------------------------------===// 4740// TLS Instructions 4741// 4742 4743// __aeabi_read_tp preserves the registers r1-r3. 4744// This is a pseudo inst so that we can get the encoding right, 4745// complete with fixup for the aeabi_read_tp function. 4746let isCall = 1, 4747 Defs = [R0, R12, LR, CPSR], Uses = [SP] in { 4748 def TPsoft : PseudoInst<(outs), (ins), IIC_Br, 4749 [(set R0, ARMthread_pointer)]>; 4750} 4751 4752//===----------------------------------------------------------------------===// 4753// SJLJ Exception handling intrinsics 4754// eh_sjlj_setjmp() is an instruction sequence to store the return 4755// address and save #0 in R0 for the non-longjmp case. 4756// Since by its nature we may be coming from some other function to get 4757// here, and we're using the stack frame for the containing function to 4758// save/restore registers, we can't keep anything live in regs across 4759// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon 4760// when we get here from a longjmp(). We force everything out of registers 4761// except for our own input by listing the relevant registers in Defs. By 4762// doing so, we also cause the prologue/epilogue code to actively preserve 4763// all of the callee-saved resgisters, which is exactly what we want. 4764// A constant value is passed in $val, and we use the location as a scratch. 4765// 4766// These are pseudo-instructions and are lowered to individual MC-insts, so 4767// no encoding information is necessary. 4768let Defs = 4769 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR, 4770 Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ], 4771 hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in { 4772 def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), 4773 NoItinerary, 4774 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, 4775 Requires<[IsARM, HasVFP2]>; 4776} 4777 4778let Defs = 4779 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ], 4780 hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in { 4781 def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), 4782 NoItinerary, 4783 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, 4784 Requires<[IsARM, NoVFP]>; 4785} 4786 4787// FIXME: Non-IOS version(s) 4788let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, 4789 Defs = [ R7, LR, SP ] in { 4790def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch), 4791 NoItinerary, 4792 [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, 4793 Requires<[IsARM, IsIOS]>; 4794} 4795 4796// eh.sjlj.dispatchsetup pseudo-instruction. 4797// This pseudo is used for both ARM and Thumb. Any differences are handled when 4798// the pseudo is expanded (which happens before any passes that need the 4799// instruction size). 4800let isBarrier = 1 in 4801def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>; 4802 4803 4804//===----------------------------------------------------------------------===// 4805// Non-Instruction Patterns 4806// 4807 4808// ARMv4 indirect branch using (MOVr PC, dst) 4809let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in 4810 def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst), 4811 4, IIC_Br, [(brind GPR:$dst)], 4812 (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>, 4813 Requires<[IsARM, NoV4T]>; 4814 4815// Large immediate handling. 4816 4817// 32-bit immediate using two piece so_imms or movw + movt. 4818// This is a single pseudo instruction, the benefit is that it can be remat'd 4819// as a single unit instead of having to handle reg inputs. 4820// FIXME: Remove this when we can do generalized remat. 4821let isReMaterializable = 1, isMoveImm = 1 in 4822def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2, 4823 [(set GPR:$dst, (arm_i32imm:$src))]>, 4824 Requires<[IsARM]>; 4825 4826// Pseudo instruction that combines movw + movt + add pc (if PIC). 4827// It also makes it possible to rematerialize the instructions. 4828// FIXME: Remove this when we can do generalized remat and when machine licm 4829// can properly the instructions. 4830let isReMaterializable = 1 in { 4831def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 4832 IIC_iMOVix2addpc, 4833 [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>, 4834 Requires<[IsARM, UseMovt]>; 4835 4836def MOV_ga_dyn : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 4837 IIC_iMOVix2, 4838 [(set GPR:$dst, (ARMWrapperDYN tglobaladdr:$addr))]>, 4839 Requires<[IsARM, UseMovt]>; 4840 4841let AddedComplexity = 10 in 4842def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 4843 IIC_iMOVix2ld, 4844 [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>, 4845 Requires<[IsARM, UseMovt]>; 4846} // isReMaterializable 4847 4848// ConstantPool, GlobalAddress, and JumpTable 4849def : ARMPat<(ARMWrapper tglobaladdr :$dst), (LEApcrel tglobaladdr :$dst)>, 4850 Requires<[IsARM, DontUseMovt]>; 4851def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>; 4852def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>, 4853 Requires<[IsARM, UseMovt]>; 4854def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id), 4855 (LEApcrelJT tjumptable:$dst, imm:$id)>; 4856 4857// TODO: add,sub,and, 3-instr forms? 4858 4859// Tail calls. These patterns also apply to Thumb mode. 4860def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>; 4861def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>; 4862def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>; 4863 4864// Direct calls 4865def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>; 4866def : ARMPat<(ARMcall_nolink texternalsym:$func), 4867 (BMOVPCB_CALL texternalsym:$func)>; 4868 4869// zextload i1 -> zextload i8 4870def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 4871def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 4872 4873// extload -> zextload 4874def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 4875def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 4876def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 4877def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 4878 4879def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>; 4880 4881def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>; 4882def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>; 4883 4884// smul* and smla* 4885def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4886 (sra (shl GPR:$b, (i32 16)), (i32 16))), 4887 (SMULBB GPR:$a, GPR:$b)>; 4888def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b), 4889 (SMULBB GPR:$a, GPR:$b)>; 4890def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4891 (sra GPR:$b, (i32 16))), 4892 (SMULBT GPR:$a, GPR:$b)>; 4893def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))), 4894 (SMULBT GPR:$a, GPR:$b)>; 4895def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), 4896 (sra (shl GPR:$b, (i32 16)), (i32 16))), 4897 (SMULTB GPR:$a, GPR:$b)>; 4898def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b), 4899 (SMULTB GPR:$a, GPR:$b)>; 4900def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))), 4901 (i32 16)), 4902 (SMULWB GPR:$a, GPR:$b)>; 4903def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), (i32 16)), 4904 (SMULWB GPR:$a, GPR:$b)>; 4905 4906def : ARMV5MOPat<(add GPR:$acc, 4907 (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4908 (sra (shl GPR:$b, (i32 16)), (i32 16)))), 4909 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; 4910def : ARMV5MOPat<(add GPR:$acc, 4911 (mul sext_16_node:$a, sext_16_node:$b)), 4912 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; 4913def : ARMV5MOPat<(add GPR:$acc, 4914 (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4915 (sra GPR:$b, (i32 16)))), 4916 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; 4917def : ARMV5MOPat<(add GPR:$acc, 4918 (mul sext_16_node:$a, (sra GPR:$b, (i32 16)))), 4919 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; 4920def : ARMV5MOPat<(add GPR:$acc, 4921 (mul (sra GPR:$a, (i32 16)), 4922 (sra (shl GPR:$b, (i32 16)), (i32 16)))), 4923 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; 4924def : ARMV5MOPat<(add GPR:$acc, 4925 (mul (sra GPR:$a, (i32 16)), sext_16_node:$b)), 4926 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; 4927def : ARMV5MOPat<(add GPR:$acc, 4928 (sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))), 4929 (i32 16))), 4930 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; 4931def : ARMV5MOPat<(add GPR:$acc, 4932 (sra (mul GPR:$a, sext_16_node:$b), (i32 16))), 4933 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; 4934 4935 4936// Pre-v7 uses MCR for synchronization barriers. 4937def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>, 4938 Requires<[IsARM, HasV6]>; 4939 4940// SXT/UXT with no rotate 4941let AddedComplexity = 16 in { 4942def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>; 4943def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>; 4944def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>; 4945def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)), 4946 (UXTAB GPR:$Rn, GPR:$Rm, 0)>; 4947def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)), 4948 (UXTAH GPR:$Rn, GPR:$Rm, 0)>; 4949} 4950 4951def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>; 4952def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>; 4953 4954def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)), 4955 (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>; 4956def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)), 4957 (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>; 4958 4959// Atomic load/store patterns 4960def : ARMPat<(atomic_load_8 ldst_so_reg:$src), 4961 (LDRBrs ldst_so_reg:$src)>; 4962def : ARMPat<(atomic_load_8 addrmode_imm12:$src), 4963 (LDRBi12 addrmode_imm12:$src)>; 4964def : ARMPat<(atomic_load_16 addrmode3:$src), 4965 (LDRH addrmode3:$src)>; 4966def : ARMPat<(atomic_load_32 ldst_so_reg:$src), 4967 (LDRrs ldst_so_reg:$src)>; 4968def : ARMPat<(atomic_load_32 addrmode_imm12:$src), 4969 (LDRi12 addrmode_imm12:$src)>; 4970def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val), 4971 (STRBrs GPR:$val, ldst_so_reg:$ptr)>; 4972def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val), 4973 (STRBi12 GPR:$val, addrmode_imm12:$ptr)>; 4974def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val), 4975 (STRH GPR:$val, addrmode3:$ptr)>; 4976def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val), 4977 (STRrs GPR:$val, ldst_so_reg:$ptr)>; 4978def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val), 4979 (STRi12 GPR:$val, addrmode_imm12:$ptr)>; 4980 4981 4982//===----------------------------------------------------------------------===// 4983// Thumb Support 4984// 4985 4986include "ARMInstrThumb.td" 4987 4988//===----------------------------------------------------------------------===// 4989// Thumb2 Support 4990// 4991 4992include "ARMInstrThumb2.td" 4993 4994//===----------------------------------------------------------------------===// 4995// Floating Point Support 4996// 4997 4998include "ARMInstrVFP.td" 4999 5000//===----------------------------------------------------------------------===// 5001// Advanced SIMD (NEON) Support 5002// 5003 5004include "ARMInstrNEON.td" 5005 5006//===----------------------------------------------------------------------===// 5007// Assembler aliases 5008// 5009 5010// Memory barriers 5011def : InstAlias<"dmb", (DMB 0xf)>, Requires<[IsARM, HasDB]>; 5012def : InstAlias<"dsb", (DSB 0xf)>, Requires<[IsARM, HasDB]>; 5013def : InstAlias<"isb", (ISB 0xf)>, Requires<[IsARM, HasDB]>; 5014 5015// System instructions 5016def : MnemonicAlias<"swi", "svc">; 5017 5018// Load / Store Multiple 5019def : MnemonicAlias<"ldmfd", "ldm">; 5020def : MnemonicAlias<"ldmia", "ldm">; 5021def : MnemonicAlias<"ldmea", "ldmdb">; 5022def : MnemonicAlias<"stmfd", "stmdb">; 5023def : MnemonicAlias<"stmia", "stm">; 5024def : MnemonicAlias<"stmea", "stm">; 5025 5026// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT when the 5027// shift amount is zero (i.e., unspecified). 5028def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm", 5029 (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>, 5030 Requires<[IsARM, HasV6]>; 5031def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm", 5032 (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>, 5033 Requires<[IsARM, HasV6]>; 5034 5035// PUSH/POP aliases for STM/LDM 5036def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>; 5037def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>; 5038 5039// SSAT/USAT optional shift operand. 5040def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn", 5041 (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; 5042def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn", 5043 (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; 5044 5045 5046// Extend instruction optional rotate operand. 5047def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm", 5048 (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5049def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm", 5050 (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5051def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm", 5052 (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5053def : ARMInstAlias<"sxtb${p} $Rd, $Rm", 5054 (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5055def : ARMInstAlias<"sxtb16${p} $Rd, $Rm", 5056 (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5057def : ARMInstAlias<"sxth${p} $Rd, $Rm", 5058 (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5059 5060def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm", 5061 (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5062def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm", 5063 (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5064def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm", 5065 (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 5066def : ARMInstAlias<"uxtb${p} $Rd, $Rm", 5067 (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5068def : ARMInstAlias<"uxtb16${p} $Rd, $Rm", 5069 (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5070def : ARMInstAlias<"uxth${p} $Rd, $Rm", 5071 (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 5072 5073 5074// RFE aliases 5075def : MnemonicAlias<"rfefa", "rfeda">; 5076def : MnemonicAlias<"rfeea", "rfedb">; 5077def : MnemonicAlias<"rfefd", "rfeia">; 5078def : MnemonicAlias<"rfeed", "rfeib">; 5079def : MnemonicAlias<"rfe", "rfeia">; 5080 5081// SRS aliases 5082def : MnemonicAlias<"srsfa", "srsda">; 5083def : MnemonicAlias<"srsea", "srsdb">; 5084def : MnemonicAlias<"srsfd", "srsia">; 5085def : MnemonicAlias<"srsed", "srsib">; 5086def : MnemonicAlias<"srs", "srsia">; 5087 5088// QSAX == QSUBADDX 5089def : MnemonicAlias<"qsubaddx", "qsax">; 5090// SASX == SADDSUBX 5091def : MnemonicAlias<"saddsubx", "sasx">; 5092// SHASX == SHADDSUBX 5093def : MnemonicAlias<"shaddsubx", "shasx">; 5094// SHSAX == SHSUBADDX 5095def : MnemonicAlias<"shsubaddx", "shsax">; 5096// SSAX == SSUBADDX 5097def : MnemonicAlias<"ssubaddx", "ssax">; 5098// UASX == UADDSUBX 5099def : MnemonicAlias<"uaddsubx", "uasx">; 5100// UHASX == UHADDSUBX 5101def : MnemonicAlias<"uhaddsubx", "uhasx">; 5102// UHSAX == UHSUBADDX 5103def : MnemonicAlias<"uhsubaddx", "uhsax">; 5104// UQASX == UQADDSUBX 5105def : MnemonicAlias<"uqaddsubx", "uqasx">; 5106// UQSAX == UQSUBADDX 5107def : MnemonicAlias<"uqsubaddx", "uqsax">; 5108// USAX == USUBADDX 5109def : MnemonicAlias<"usubaddx", "usax">; 5110 5111// "mov Rd, so_imm_not" can be handled via "mvn" in assembly, just like 5112// for isel. 5113def : ARMInstAlias<"mov${s}${p} $Rd, $imm", 5114 (MVNi rGPR:$Rd, so_imm_not:$imm, pred:$p, cc_out:$s)>; 5115def : ARMInstAlias<"mvn${s}${p} $Rd, $imm", 5116 (MOVi rGPR:$Rd, so_imm_not:$imm, pred:$p, cc_out:$s)>; 5117// Same for AND <--> BIC 5118def : ARMInstAlias<"bic${s}${p} $Rd, $Rn, $imm", 5119 (ANDri rGPR:$Rd, rGPR:$Rn, so_imm_not:$imm, 5120 pred:$p, cc_out:$s)>; 5121def : ARMInstAlias<"bic${s}${p} $Rdn, $imm", 5122 (ANDri rGPR:$Rdn, rGPR:$Rdn, so_imm_not:$imm, 5123 pred:$p, cc_out:$s)>; 5124def : ARMInstAlias<"and${s}${p} $Rd, $Rn, $imm", 5125 (BICri rGPR:$Rd, rGPR:$Rn, so_imm_not:$imm, 5126 pred:$p, cc_out:$s)>; 5127def : ARMInstAlias<"and${s}${p} $Rdn, $imm", 5128 (BICri rGPR:$Rdn, rGPR:$Rdn, so_imm_not:$imm, 5129 pred:$p, cc_out:$s)>; 5130 5131// Likewise, "add Rd, so_imm_neg" -> sub 5132def : ARMInstAlias<"add${s}${p} $Rd, $Rn, $imm", 5133 (SUBri GPR:$Rd, GPR:$Rn, so_imm_neg:$imm, pred:$p, cc_out:$s)>; 5134def : ARMInstAlias<"add${s}${p} $Rd, $imm", 5135 (SUBri GPR:$Rd, GPR:$Rd, so_imm_neg:$imm, pred:$p, cc_out:$s)>; 5136// Same for CMP <--> CMN via so_imm_neg 5137def : ARMInstAlias<"cmp${p} $Rd, $imm", 5138 (CMNri rGPR:$Rd, so_imm_neg:$imm, pred:$p)>; 5139def : ARMInstAlias<"cmn${p} $Rd, $imm", 5140 (CMPri rGPR:$Rd, so_imm_neg:$imm, pred:$p)>; 5141 5142// The shifter forms of the MOV instruction are aliased to the ASR, LSL, 5143// LSR, ROR, and RRX instructions. 5144// FIXME: We need C++ parser hooks to map the alias to the MOV 5145// encoding. It seems we should be able to do that sort of thing 5146// in tblgen, but it could get ugly. 5147let TwoOperandAliasConstraint = "$Rm = $Rd" in { 5148def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm", 5149 (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p, 5150 cc_out:$s)>; 5151def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm", 5152 (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p, 5153 cc_out:$s)>; 5154def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm", 5155 (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p, 5156 cc_out:$s)>; 5157def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm", 5158 (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p, 5159 cc_out:$s)>; 5160} 5161def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm", 5162 (ins GPRnopc:$Rd, GPRnopc:$Rm, pred:$p, cc_out:$s)>; 5163let TwoOperandAliasConstraint = "$Rn = $Rd" in { 5164def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm", 5165 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5166 cc_out:$s)>; 5167def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm", 5168 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5169 cc_out:$s)>; 5170def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm", 5171 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5172 cc_out:$s)>; 5173def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm", 5174 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, 5175 cc_out:$s)>; 5176} 5177 5178// "neg" is and alias for "rsb rd, rn, #0" 5179def : ARMInstAlias<"neg${s}${p} $Rd, $Rm", 5180 (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>; 5181 5182// Pre-v6, 'mov r0, r0' was used as a NOP encoding. 5183def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>, 5184 Requires<[IsARM, NoV6]>; 5185 5186// UMULL/SMULL are available on all arches, but the instruction definitions 5187// need difference constraints pre-v6. Use these aliases for the assembly 5188// parsing on pre-v6. 5189def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm", 5190 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 5191 Requires<[IsARM, NoV6]>; 5192def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm", 5193 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 5194 Requires<[IsARM, NoV6]>; 5195 5196// 'it' blocks in ARM mode just validate the predicates. The IT itself 5197// is discarded. 5198def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>; 5199