• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips16 instructions.
11//
12//===----------------------------------------------------------------------===//
13//
14//
15// Mips Address
16//
17def addr16 :
18  ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
19
20//
21// Address operand
22def mem16 : Operand<i32> {
23  let PrintMethod = "printMemOperand";
24  let MIOperandInfo = (ops CPU16Regs, simm16, CPU16Regs);
25  let EncoderMethod = "getMemEncoding";
26}
27
28def mem16_ea : Operand<i32> {
29  let PrintMethod = "printMemOperandEA";
30  let MIOperandInfo = (ops CPU16Regs, simm16);
31  let EncoderMethod = "getMemEncoding";
32}
33
34//
35//
36// I8 instruction format
37//
38
39class FI816_ins_base<bits<3> _func, string asmstr,
40                     string asmstr2, InstrItinClass itin>:
41  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
42        [], itin>;
43
44
45class FI816_SP_ins<bits<3> _func, string asmstr,
46                   InstrItinClass itin>:
47  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
48
49//
50// RI instruction format
51//
52
53
54class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
55                     InstrItinClass itin>:
56  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
57        !strconcat(asmstr, asmstr2), [], itin>;
58
59class FRI16_ins<bits<5> op, string asmstr,
60                InstrItinClass itin>:
61  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
62
63class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
64                     InstrItinClass itin>:
65  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
66        !strconcat(asmstr, asmstr2), [], itin>;
67
68class FRI16R_ins<bits<5> op, string asmstr,
69                InstrItinClass itin>:
70  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
71
72class F2RI16_ins<bits<5> _op, string asmstr,
73                     InstrItinClass itin>:
74  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
75        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
76  let Constraints = "$rx_ = $rx";
77}
78
79class FRI16_B_ins<bits<5> _op, string asmstr,
80                  InstrItinClass itin>:
81  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
82        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
83//
84// Compare a register and immediate and place result in CC
85// Implicit use of T8
86//
87// EXT-CCRR Instruction format
88//
89class FEXT_CCRXI16_ins<string asmstr>:
90  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
91               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
92  let isCodeGenOnly=1;
93  let usesCustomInserter = 1;
94}
95
96// JAL and JALX instruction format
97//
98class FJAL16_ins<bits<1> _X, string asmstr,
99                 InstrItinClass itin>:
100  FJAL16<_X, (outs), (ins simm20:$imm),
101         !strconcat(asmstr, "\t$imm\n\tnop"),[],
102         itin>  {
103  let isCodeGenOnly=1;
104}
105//
106// EXT-I instruction format
107//
108class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
109  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
110           !strconcat(asmstr, "\t$imm16"),[], itin>;
111
112//
113// EXT-I8 instruction format
114//
115
116class FEXT_I816_ins_base<bits<3> _func, string asmstr,
117                         string asmstr2, InstrItinClass itin>:
118  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
119            [], itin>;
120
121class FEXT_I816_ins<bits<3> _func, string asmstr,
122                    InstrItinClass itin>:
123  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
124
125class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
126                       InstrItinClass itin>:
127      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
128
129//
130// Assembler formats in alphabetical order.
131// Natural and pseudos are mixed together.
132//
133// Compare two registers and place result in CC
134// Implicit use of T8
135//
136// CC-RR Instruction format
137//
138class FCCRR16_ins<string asmstr> :
139  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
140               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
141  let isCodeGenOnly=1;
142  let usesCustomInserter = 1;
143}
144
145//
146// EXT-RI instruction format
147//
148
149class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
150                         InstrItinClass itin>:
151  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
152                  !strconcat(asmstr, asmstr2), [], itin>;
153
154class FEXT_RI16_ins<bits<5> _op, string asmstr,
155                    InstrItinClass itin>:
156  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
157
158class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
159                         InstrItinClass itin>:
160  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
161                  !strconcat(asmstr, asmstr2), [], itin>;
162
163class FEXT_RI16R_ins<bits<5> _op, string asmstr,
164                    InstrItinClass itin>:
165  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
166
167class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
168  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
169
170class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
171                      InstrItinClass itin>:
172  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
173            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
174
175class FEXT_2RI16_ins<bits<5> _op, string asmstr,
176                     InstrItinClass itin>:
177  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
178            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
179  let Constraints = "$rx_ = $rx";
180}
181
182
183// this has an explicit sp argument that we ignore to work around a problem
184// in the compiler
185class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
186                                InstrItinClass itin>:
187  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
188            !strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
189
190//
191// EXT-RRI instruction format
192//
193
194class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
195                         InstrItinClass itin>:
196  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
197             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
198
199class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
200                          InstrItinClass itin>:
201  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
202             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
203
204//
205//
206// EXT-RRI-A instruction format
207//
208
209class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
210                           InstrItinClass itin>:
211  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
212               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
213
214//
215// EXT-SHIFT instruction format
216//
217class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
218  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
219               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
220
221//
222// EXT-T8I8
223//
224class FEXT_T8I816_ins<string asmstr, string asmstr2>:
225  MipsPseudo16<(outs),
226               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
227               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
228               !strconcat(asmstr, "\t$imm"))),[]> {
229  let isCodeGenOnly=1;
230  let usesCustomInserter = 1;
231}
232
233//
234// EXT-T8I8I
235//
236class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
237  MipsPseudo16<(outs),
238               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
239               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
240               !strconcat(asmstr, "\t$targ"))), []> {
241  let isCodeGenOnly=1;
242  let usesCustomInserter = 1;
243}
244//
245
246
247//
248// I8_MOVR32 instruction format (used only by the MOVR32 instructio
249//
250class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
251       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32),
252       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
253
254//
255// I8_MOV32R instruction format (used only by MOV32R instruction)
256//
257
258class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
259  FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz),
260               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
261
262//
263// This are pseudo formats for multiply
264// This first one can be changed to non pseudo now.
265//
266// MULT
267//
268class FMULT16_ins<string asmstr, InstrItinClass itin> :
269  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
270               !strconcat(asmstr, "\t$rx, $ry"), []>;
271
272//
273// MULT-LO
274//
275class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
276  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
277               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
278  let isCodeGenOnly=1;
279}
280
281//
282// RR-type instruction format
283//
284
285class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
286  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
287        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
288}
289
290class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
291  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
292        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
293}
294
295class FRRTR16_ins<string asmstr> :
296  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
297               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
298
299//
300// maybe refactor but need a $zero as a dummy first parameter
301//
302class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
303  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
304        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
305
306class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
307  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
308        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
309
310
311class FRR16_M_ins<bits<5> f, string asmstr,
312                  InstrItinClass itin> :
313  FRR16<f, (outs CPU16Regs:$rx), (ins),
314        !strconcat(asmstr, "\t$rx"), [], itin>;
315
316class FRxRxRy16_ins<bits<5> f, string asmstr,
317                    InstrItinClass itin> :
318  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
319            !strconcat(asmstr, "\t$rz, $ry"),
320            [], itin> {
321  let Constraints = "$rx = $rz";
322}
323
324let rx=0 in
325class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
326                              string asmstr, InstrItinClass itin>:
327  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
328              [], itin> ;
329
330
331class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
332                      string asmstr, InstrItinClass itin>:
333  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
334              !strconcat(asmstr, "\t $rx"), [], itin> ;
335
336//
337// RRR-type instruction format
338//
339
340class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
341  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
342         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
343
344//
345// These Sel patterns support the generation of conditional move
346// pseudo instructions.
347//
348// The nomenclature uses the components making up the pseudo and may
349// be a bit counter intuitive when compared with the end result we seek.
350// For example using a bqez in the example directly below results in the
351// conditional move being done if the tested register is not zero.
352// I considered in easier to check by keeping the pseudo consistent with
353// it's components but it could have been done differently.
354//
355// The simplest case is when can test and operand directly and do the
356// conditional move based on a simple mips16 conditional
357//  branch instruction.
358// for example:
359// if $op == beqz or bnez:
360//
361// $op1 $rt, .+4
362// move $rd, $rs
363//
364// if $op == beqz, then if $rt != 0, then the conditional assignment
365// $rd = $rs is done.
366
367// if $op == bnez, then if $rt == 0, then the conditional assignment
368// $rd = $rs is done.
369//
370// So this pseudo class only has one operand, i.e. op
371//
372class Sel<string op>:
373  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
374               CPU16Regs:$rt),
375               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
376  //let isCodeGenOnly=1;
377  let Constraints = "$rd = $rd_";
378  let usesCustomInserter = 1;
379}
380
381//
382// The next two instruction classes allow for an operand which tests
383// two operands and returns a value in register T8 and
384//then does a conditional branch based on the value of T8
385//
386
387// op2 can be cmpi or slti/sltiu
388// op1 can bteqz or btnez
389// the operands for op2 are a register and a signed constant
390//
391// $op2 $t, $imm  ;test register t and branch conditionally
392// $op1 .+4       ;op1 is a conditional branch
393// move $rd, $rs
394//
395//
396class SeliT<string op1, string op2>:
397  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
398                                       CPU16Regs:$rl, simm16:$imm),
399               !strconcat(op2,
400               !strconcat("\t$rl, $imm\n\t",
401               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
402  let isCodeGenOnly=1;
403  let Constraints = "$rd = $rd_";
404  let usesCustomInserter = 1;
405}
406
407//
408// op2 can be cmp or slt/sltu
409// op1 can be bteqz or btnez
410// the operands for op2 are two registers
411// op1 is a conditional branch
412//
413//
414// $op2 $rl, $rr  ;test registers rl,rr
415// $op1 .+4       ;op2 is a conditional branch
416// move $rd, $rs
417//
418//
419class SelT<string op1, string op2>:
420  MipsPseudo16<(outs CPU16Regs:$rd_),
421               (ins CPU16Regs:$rd, CPU16Regs:$rs,
422                CPU16Regs:$rl, CPU16Regs:$rr),
423               !strconcat(op2,
424               !strconcat("\t$rl, $rr\n\t",
425               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
426  let isCodeGenOnly=1;
427  let Constraints = "$rd = $rd_";
428  let usesCustomInserter = 1;
429}
430
431//
432// 32 bit constant
433//
434def imm32: Operand<i32>;
435
436def Constant32:
437  MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
438
439def LwConstant32:
440  MipsPseudo16<(outs), (ins CPU16Regs:$rx, imm32:$imm),
441    "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
442
443
444//
445// Some general instruction class info
446//
447//
448
449class ArithLogic16Defs<bit isCom=0> {
450  bits<5> shamt = 0;
451  bit isCommutable = isCom;
452  bit isReMaterializable = 1;
453  bit neverHasSideEffects = 1;
454}
455
456class branch16 {
457  bit isBranch = 1;
458  bit isTerminator = 1;
459  bit isBarrier = 1;
460}
461
462class cbranch16 {
463  bit isBranch = 1;
464  bit isTerminator = 1;
465}
466
467class MayLoad {
468  bit mayLoad = 1;
469}
470
471class MayStore {
472  bit mayStore = 1;
473}
474//
475
476
477// Format: ADDIU rx, immediate MIPS16e
478// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
479// To add a constant to a 32-bit integer.
480//
481def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
482
483def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
484  ArithLogic16Defs<0> {
485  let AddedComplexity = 5;
486}
487def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
488  ArithLogic16Defs<0> {
489  let isCodeGenOnly = 1;
490}
491
492def AddiuRxRyOffMemX16:
493  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
494
495//
496
497// Format: ADDIU rx, pc, immediate MIPS16e
498// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
499// To add a constant to the program counter.
500//
501def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
502
503//
504// Format: ADDIU sp, immediate MIPS16e
505// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
506// To add a constant to the stack pointer.
507//
508def AddiuSpImm16
509  : FI816_SP_ins<0b011, "addiu", IIAlu> {
510  let Defs = [SP];
511  let Uses = [SP];
512  let AddedComplexity = 5;
513}
514
515def AddiuSpImmX16
516  : FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
517  let Defs = [SP];
518  let Uses = [SP];
519}
520
521//
522// Format: ADDU rz, rx, ry MIPS16e
523// Purpose: Add Unsigned Word (3-Operand)
524// To add 32-bit integers.
525//
526
527def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
528
529//
530// Format: AND rx, ry MIPS16e
531// Purpose: AND
532// To do a bitwise logical AND.
533
534def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
535
536
537//
538// Format: BEQZ rx, offset MIPS16e
539// Purpose: Branch on Equal to Zero
540// To test a GPR then do a PC-relative conditional branch.
541//
542def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
543
544
545//
546// Format: BEQZ rx, offset MIPS16e
547// Purpose: Branch on Equal to Zero (Extended)
548// To test a GPR then do a PC-relative conditional branch.
549//
550def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
551
552// Format: B offset MIPS16e
553// Purpose: Unconditional Branch
554// To do an unconditional PC-relative branch.
555//
556def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
557
558//
559// Format: BNEZ rx, offset MIPS16e
560// Purpose: Branch on Not Equal to Zero
561// To test a GPR then do a PC-relative conditional branch.
562//
563def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
564
565//
566// Format: BNEZ rx, offset MIPS16e
567// Purpose: Branch on Not Equal to Zero (Extended)
568// To test a GPR then do a PC-relative conditional branch.
569//
570def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
571
572//
573// Format: BTEQZ offset MIPS16e
574// Purpose: Branch on T Equal to Zero (Extended)
575// To test special register T then do a PC-relative conditional branch.
576//
577def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
578  let Uses = [T8];
579}
580
581def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
582
583def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
584  cbranch16;
585
586def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
587
588def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
589
590def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
591
592def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
593  cbranch16;
594
595//
596// Format: BTNEZ offset MIPS16e
597// Purpose: Branch on T Not Equal to Zero (Extended)
598// To test special register T then do a PC-relative conditional branch.
599//
600def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
601  let Uses = [T8];
602}
603
604def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
605
606def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
607
608def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
609
610def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
611
612def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
613
614def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
615  cbranch16;
616
617//
618// Format: CMP rx, ry MIPS16e
619// Purpose: Compare
620// To compare the contents of two GPRs.
621//
622def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
623  let Defs = [T8];
624}
625
626//
627// Format: CMPI rx, immediate MIPS16e
628// Purpose: Compare Immediate
629// To compare a constant with the contents of a GPR.
630//
631def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
632  let Defs = [T8];
633}
634
635//
636// Format: CMPI rx, immediate MIPS16e
637// Purpose: Compare Immediate (Extended)
638// To compare a constant with the contents of a GPR.
639//
640def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
641  let Defs = [T8];
642}
643
644
645//
646// Format: DIV rx, ry MIPS16e
647// Purpose: Divide Word
648// To divide 32-bit signed integers.
649//
650def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
651  let Defs = [HI, LO];
652}
653
654//
655// Format: DIVU rx, ry MIPS16e
656// Purpose: Divide Unsigned Word
657// To divide 32-bit unsigned integers.
658//
659def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
660  let Defs = [HI, LO];
661}
662//
663// Format: JAL target MIPS16e
664// Purpose: Jump and Link
665// To execute a procedure call within the current 256 MB-aligned
666// region and preserve the current ISA.
667//
668
669def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
670  let isBranch = 1;
671  let hasDelaySlot = 0;  // not true, but we add the nop for now
672  let isTerminator=1;
673  let isBarrier=1;
674}
675
676//
677// Format: JR ra MIPS16e
678// Purpose: Jump Register Through Register ra
679// To execute a branch to the instruction address in the return
680// address register.
681//
682
683def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
684  let isBranch = 1;
685  let isIndirectBranch = 1;
686  let hasDelaySlot = 1;
687  let isTerminator=1;
688  let isBarrier=1;
689}
690
691def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
692  let isBranch = 1;
693  let isIndirectBranch = 1;
694  let isTerminator=1;
695  let isBarrier=1;
696}
697
698def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
699  let isBranch = 1;
700  let isIndirectBranch = 1;
701  let isTerminator=1;
702  let isBarrier=1;
703}
704//
705// Format: LB ry, offset(rx) MIPS16e
706// Purpose: Load Byte (Extended)
707// To load a byte from memory as a signed value.
708//
709def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
710  let isCodeGenOnly = 1;
711}
712
713//
714// Format: LBU ry, offset(rx) MIPS16e
715// Purpose: Load Byte Unsigned (Extended)
716// To load a byte from memory as a unsigned value.
717//
718def LbuRxRyOffMemX16:
719  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
720  let isCodeGenOnly = 1;
721}
722
723//
724// Format: LH ry, offset(rx) MIPS16e
725// Purpose: Load Halfword signed (Extended)
726// To load a halfword from memory as a signed value.
727//
728def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
729  let isCodeGenOnly = 1;
730}
731
732//
733// Format: LHU ry, offset(rx) MIPS16e
734// Purpose: Load Halfword unsigned (Extended)
735// To load a halfword from memory as an unsigned value.
736//
737def LhuRxRyOffMemX16:
738  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
739  let isCodeGenOnly = 1;
740}
741
742//
743// Format: LI rx, immediate MIPS16e
744// Purpose: Load Immediate
745// To load a constant into a GPR.
746//
747def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
748
749//
750// Format: LI rx, immediate MIPS16e
751// Purpose: Load Immediate (Extended)
752// To load a constant into a GPR.
753//
754def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
755
756//
757// Format: LW ry, offset(rx) MIPS16e
758// Purpose: Load Word (Extended)
759// To load a word from memory as a signed value.
760//
761def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
762  let isCodeGenOnly = 1;
763}
764
765// Format: LW rx, offset(sp) MIPS16e
766// Purpose: Load Word (SP-Relative, Extended)
767// To load an SP-relative word from memory as a signed value.
768//
769def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
770  let Uses = [SP];
771}
772
773//
774// Format: MOVE r32, rz MIPS16e
775// Purpose: Move
776// To move the contents of a GPR to a GPR.
777//
778def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
779
780//
781// Format: MOVE ry, r32 MIPS16e
782//Purpose: Move
783// To move the contents of a GPR to a GPR.
784//
785def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
786
787//
788// Format: MFHI rx MIPS16e
789// Purpose: Move From HI Register
790// To copy the special purpose HI register to a GPR.
791//
792def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
793  let Uses = [HI];
794  let neverHasSideEffects = 1;
795}
796
797//
798// Format: MFLO rx MIPS16e
799// Purpose: Move From LO Register
800// To copy the special purpose LO register to a GPR.
801//
802def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
803  let Uses = [LO];
804  let neverHasSideEffects = 1;
805}
806
807//
808// Pseudo Instruction for mult
809//
810def MultRxRy16:  FMULT16_ins<"mult",  IIAlu> {
811  let isCommutable = 1;
812  let neverHasSideEffects = 1;
813  let Defs = [HI, LO];
814}
815
816def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
817  let isCommutable = 1;
818  let neverHasSideEffects = 1;
819  let Defs = [HI, LO];
820}
821
822//
823// Format: MULT rx, ry MIPS16e
824// Purpose: Multiply Word
825// To multiply 32-bit signed integers.
826//
827def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
828  let isCommutable = 1;
829  let neverHasSideEffects = 1;
830  let Defs = [HI, LO];
831}
832
833//
834// Format: MULTU rx, ry MIPS16e
835// Purpose: Multiply Unsigned Word
836// To multiply 32-bit unsigned integers.
837//
838def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
839  let isCommutable = 1;
840  let neverHasSideEffects = 1;
841  let Defs = [HI, LO];
842}
843
844//
845// Format: NEG rx, ry MIPS16e
846// Purpose: Negate
847// To negate an integer value.
848//
849def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
850
851//
852// Format: NOT rx, ry MIPS16e
853// Purpose: Not
854// To complement an integer value
855//
856def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
857
858//
859// Format: OR rx, ry MIPS16e
860// Purpose: Or
861// To do a bitwise logical OR.
862//
863def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
864
865//
866// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
867// (All args are optional) MIPS16e
868// Purpose: Restore Registers and Deallocate Stack Frame
869// To deallocate a stack frame before exit from a subroutine,
870// restoring return address and static registers, and adjusting
871// stack
872//
873
874// fixed form for restoring RA and the frame
875// for direct object emitter, encoding needs to be adjusted for the
876// frame size
877//
878let ra=1, s=0,s0=1,s1=1 in
879def RestoreRaF16:
880  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
881             "restore\t$$ra,  $$s0, $$s1, $frame_size", [], IILoad >, MayLoad {
882  let isCodeGenOnly = 1;
883  let Defs = [S0, S1, RA, SP];
884  let Uses = [SP];
885}
886
887// Use Restore to increment SP since SP is not a Mip 16 register, this
888// is an easy way to do that which does not require a register.
889//
890let ra=0, s=0,s0=0,s1=0 in
891def RestoreIncSpF16:
892  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
893             "restore\t$frame_size", [], IILoad >, MayLoad {
894  let isCodeGenOnly = 1;
895  let Defs = [SP];
896  let Uses = [SP];
897}
898
899//
900// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
901// MIPS16e
902// Purpose: Save Registers and Set Up Stack Frame
903// To set up a stack frame on entry to a subroutine,
904// saving return address and static registers, and adjusting stack
905//
906let ra=1, s=1,s0=1,s1=1 in
907def SaveRaF16:
908  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
909             "save\t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore {
910  let isCodeGenOnly = 1;
911  let Uses = [RA, SP, S0, S1];
912  let Defs = [SP];
913}
914
915//
916// Use Save to decrement the SP by a constant since SP is not
917// a Mips16 register.
918//
919let ra=0, s=0,s0=0,s1=0 in
920def SaveDecSpF16:
921  FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
922             "save\t$frame_size", [], IIStore >, MayStore {
923  let isCodeGenOnly = 1;
924  let Uses = [SP];
925  let Defs = [SP];
926}
927//
928// Format: SB ry, offset(rx) MIPS16e
929// Purpose: Store Byte (Extended)
930// To store a byte to memory.
931//
932def SbRxRyOffMemX16:
933  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
934
935//
936// The Sel(T) instructions are pseudos
937// T means that they use T8 implicitly.
938//
939//
940// Format: SelBeqZ rd, rs, rt
941// Purpose: if rt==0, do nothing
942//          else rs = rt
943//
944def SelBeqZ: Sel<"beqz">;
945
946//
947// Format:  SelTBteqZCmp rd, rs, rl, rr
948// Purpose: b = Cmp rl, rr.
949//          If b==0 then do nothing.
950//          if b!=0 then rd = rs
951//
952def SelTBteqZCmp: SelT<"bteqz", "cmp">;
953
954//
955// Format:  SelTBteqZCmpi rd, rs, rl, rr
956// Purpose: b = Cmpi rl, imm.
957//          If b==0 then do nothing.
958//          if b!=0 then rd = rs
959//
960def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
961
962//
963// Format:  SelTBteqZSlt rd, rs, rl, rr
964// Purpose: b = Slt rl, rr.
965//          If b==0 then do nothing.
966//          if b!=0 then rd = rs
967//
968def SelTBteqZSlt: SelT<"bteqz", "slt">;
969
970//
971// Format:  SelTBteqZSlti rd, rs, rl, rr
972// Purpose: b = Slti rl, imm.
973//          If b==0 then do nothing.
974//          if b!=0 then rd = rs
975//
976def SelTBteqZSlti: SeliT<"bteqz", "slti">;
977
978//
979// Format:  SelTBteqZSltu rd, rs, rl, rr
980// Purpose: b = Sltu rl, rr.
981//          If b==0 then do nothing.
982//          if b!=0 then rd = rs
983//
984def SelTBteqZSltu: SelT<"bteqz", "sltu">;
985
986//
987// Format:  SelTBteqZSltiu rd, rs, rl, rr
988// Purpose: b = Sltiu rl, imm.
989//          If b==0 then do nothing.
990//          if b!=0 then rd = rs
991//
992def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
993
994//
995// Format: SelBnez rd, rs, rt
996// Purpose: if rt!=0, do nothing
997//          else rs = rt
998//
999def SelBneZ: Sel<"bnez">;
1000
1001//
1002// Format:  SelTBtneZCmp rd, rs, rl, rr
1003// Purpose: b = Cmp rl, rr.
1004//          If b!=0 then do nothing.
1005//          if b0=0 then rd = rs
1006//
1007def SelTBtneZCmp: SelT<"btnez", "cmp">;
1008
1009//
1010// Format:  SelTBtnezCmpi rd, rs, rl, rr
1011// Purpose: b = Cmpi rl, imm.
1012//          If b!=0 then do nothing.
1013//          if b==0 then rd = rs
1014//
1015def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
1016
1017//
1018// Format:  SelTBtneZSlt rd, rs, rl, rr
1019// Purpose: b = Slt rl, rr.
1020//          If b!=0 then do nothing.
1021//          if b==0 then rd = rs
1022//
1023def SelTBtneZSlt: SelT<"btnez", "slt">;
1024
1025//
1026// Format:  SelTBtneZSlti rd, rs, rl, rr
1027// Purpose: b = Slti rl, imm.
1028//          If b!=0 then do nothing.
1029//          if b==0 then rd = rs
1030//
1031def SelTBtneZSlti: SeliT<"btnez", "slti">;
1032
1033//
1034// Format:  SelTBtneZSltu rd, rs, rl, rr
1035// Purpose: b = Sltu rl, rr.
1036//          If b!=0 then do nothing.
1037//          if b==0 then rd = rs
1038//
1039def SelTBtneZSltu: SelT<"btnez", "sltu">;
1040
1041//
1042// Format:  SelTBtneZSltiu rd, rs, rl, rr
1043// Purpose: b = Slti rl, imm.
1044//          If b!=0 then do nothing.
1045//          if b==0 then rd = rs
1046//
1047def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
1048//
1049//
1050// Format: SH ry, offset(rx) MIPS16e
1051// Purpose: Store Halfword (Extended)
1052// To store a halfword to memory.
1053//
1054def ShRxRyOffMemX16:
1055  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
1056
1057//
1058// Format: SLL rx, ry, sa MIPS16e
1059// Purpose: Shift Word Left Logical (Extended)
1060// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
1061//
1062def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
1063
1064//
1065// Format: SLLV ry, rx MIPS16e
1066// Purpose: Shift Word Left Logical Variable
1067// To execute a left-shift of a word by a variable number of bits.
1068//
1069def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
1070
1071// Format: SLTI rx, immediate MIPS16e
1072// Purpose: Set on Less Than Immediate
1073// To record the result of a less-than comparison with a constant.
1074//
1075//
1076def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
1077  let Defs = [T8];
1078}
1079
1080//
1081// Format: SLTI rx, immediate MIPS16e
1082// Purpose: Set on Less Than Immediate (Extended)
1083// To record the result of a less-than comparison with a constant.
1084//
1085//
1086def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
1087  let Defs = [T8];
1088}
1089
1090def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
1091
1092// Format: SLTIU rx, immediate MIPS16e
1093// Purpose: Set on Less Than Immediate Unsigned
1094// To record the result of a less-than comparison with a constant.
1095//
1096//
1097def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
1098  let Defs = [T8];
1099}
1100
1101//
1102// Format: SLTI rx, immediate MIPS16e
1103// Purpose: Set on Less Than Immediate Unsigned (Extended)
1104// To record the result of a less-than comparison with a constant.
1105//
1106//
1107def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
1108  let Defs = [T8];
1109}
1110//
1111// Format: SLTIU rx, immediate MIPS16e
1112// Purpose: Set on Less Than Immediate Unsigned (Extended)
1113// To record the result of a less-than comparison with a constant.
1114//
1115def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
1116
1117//
1118// Format: SLT rx, ry MIPS16e
1119// Purpose: Set on Less Than
1120// To record the result of a less-than comparison.
1121//
1122def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
1123  let Defs = [T8];
1124}
1125
1126def SltCCRxRy16: FCCRR16_ins<"slt">;
1127
1128// Format: SLTU rx, ry MIPS16e
1129// Purpose: Set on Less Than Unsigned
1130// To record the result of an unsigned less-than comparison.
1131//
1132def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
1133  let Defs = [T8];
1134}
1135
1136def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
1137  let isCodeGenOnly=1;
1138  let Defs = [T8];
1139}
1140
1141
1142def SltuCCRxRy16: FCCRR16_ins<"sltu">;
1143//
1144// Format: SRAV ry, rx MIPS16e
1145// Purpose: Shift Word Right Arithmetic Variable
1146// To execute an arithmetic right-shift of a word by a variable
1147// number of bits.
1148//
1149def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
1150
1151
1152//
1153// Format: SRA rx, ry, sa MIPS16e
1154// Purpose: Shift Word Right Arithmetic (Extended)
1155// To execute an arithmetic right-shift of a word by a fixed
1156// number of bits—1 to 8 bits.
1157//
1158def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
1159
1160
1161//
1162// Format: SRLV ry, rx MIPS16e
1163// Purpose: Shift Word Right Logical Variable
1164// To execute a logical right-shift of a word by a variable
1165// number of bits.
1166//
1167def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
1168
1169
1170//
1171// Format: SRL rx, ry, sa MIPS16e
1172// Purpose: Shift Word Right Logical (Extended)
1173// To execute a logical right-shift of a word by a fixed
1174// number of bits—1 to 31 bits.
1175//
1176def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
1177
1178//
1179// Format: SUBU rz, rx, ry MIPS16e
1180// Purpose: Subtract Unsigned Word
1181// To subtract 32-bit integers
1182//
1183def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
1184
1185//
1186// Format: SW ry, offset(rx) MIPS16e
1187// Purpose: Store Word (Extended)
1188// To store a word to memory.
1189//
1190def SwRxRyOffMemX16:
1191  FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
1192
1193//
1194// Format: SW rx, offset(sp) MIPS16e
1195// Purpose: Store Word rx (SP-Relative)
1196// To store an SP-relative word to memory.
1197//
1198def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore;
1199
1200//
1201//
1202// Format: XOR rx, ry MIPS16e
1203// Purpose: Xor
1204// To do a bitwise logical XOR.
1205//
1206def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
1207
1208class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
1209  let Predicates = [InMips16Mode];
1210}
1211
1212// Unary Arith/Logic
1213//
1214class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
1215  Mips16Pat<(OpNode CPU16Regs:$r),
1216            (I CPU16Regs:$r)>;
1217
1218def: ArithLogicU_pat<not, NotRxRy16>;
1219def: ArithLogicU_pat<ineg, NegRxRy16>;
1220
1221class ArithLogic16_pat<SDNode OpNode, Instruction I> :
1222  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
1223            (I CPU16Regs:$l, CPU16Regs:$r)>;
1224
1225def: ArithLogic16_pat<add, AdduRxRyRz16>;
1226def: ArithLogic16_pat<and, AndRxRxRy16>;
1227def: ArithLogic16_pat<mul, MultRxRyRz16>;
1228def: ArithLogic16_pat<or, OrRxRxRy16>;
1229def: ArithLogic16_pat<sub, SubuRxRyRz16>;
1230def: ArithLogic16_pat<xor, XorRxRxRy16>;
1231
1232// Arithmetic and logical instructions with 2 register operands.
1233
1234class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
1235  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
1236            (I CPU16Regs:$in, imm_type:$imm)>;
1237
1238def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
1239def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
1240def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
1241def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
1242def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
1243
1244class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
1245  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
1246            (I CPU16Regs:$r, CPU16Regs:$ra)>;
1247
1248def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
1249def: shift_rotate_reg16_pat<sra, SravRxRy16>;
1250def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
1251
1252class LoadM16_pat<PatFrag OpNode, Instruction I> :
1253  Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
1254
1255def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
1256def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
1257def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
1258def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
1259def: LoadM16_pat<load, LwRxRyOffMemX16>;
1260
1261class StoreM16_pat<PatFrag OpNode, Instruction I> :
1262  Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
1263            (I CPU16Regs:$r, addr16:$addr)>;
1264
1265def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
1266def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
1267def: StoreM16_pat<store, SwRxRyOffMemX16>;
1268
1269// Unconditional branch
1270class UncondBranch16_pat<SDNode OpNode, Instruction I>:
1271  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
1272    let Predicates = [InMips16Mode];
1273  }
1274
1275def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1276                (Jal16 tglobaladdr:$dst)>;
1277
1278def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
1279                (Jal16 texternalsym:$dst)>;
1280
1281// Indirect branch
1282def: Mips16Pat<
1283  (brind CPU16Regs:$rs),
1284  (JrcRx16 CPU16Regs:$rs)>;
1285
1286// Jump and Link (Call)
1287let isCall=1, hasDelaySlot=0 in
1288def JumpLinkReg16:
1289  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
1290              "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
1291
1292// Mips16 pseudos
1293let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
1294  hasExtraSrcRegAllocReq = 1 in
1295def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
1296
1297
1298// setcc patterns
1299
1300class SetCC_R16<PatFrag cond_op, Instruction I>:
1301  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
1302            (I CPU16Regs:$rx, CPU16Regs:$ry)>;
1303
1304class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
1305  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
1306            (I CPU16Regs:$rx, imm_type:$imm16)>;
1307
1308
1309def: Mips16Pat<(i32  addr16:$addr),
1310               (AddiuRxRyOffMemX16  addr16:$addr)>;
1311
1312
1313// Large (>16 bit) immediate loads
1314def : Mips16Pat<(i32 imm:$imm),
1315                (OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
1316                (LiRxImmX16 (LO16 imm:$imm)))>;
1317
1318// Carry MipsPatterns
1319def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
1320                (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1321def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
1322                (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
1323def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
1324                (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
1325
1326//
1327// Some branch conditional patterns are not generated by llvm at this time.
1328// Some are for seemingly arbitrary reasons not used: i.e. with signed number
1329// comparison they are used and for unsigned a different pattern is used.
1330// I am pushing upstream from the full mips16 port and it seemed that I needed
1331// these earlier and the mips32 port has these but now I cannot create test
1332// cases that use these patterns. While I sort this all out I will leave these
1333// extra patterns commented out and if I can be sure they are really not used,
1334// I will delete the code. I don't want to check the code in uncommented without
1335// a valid test case. In some cases, the compiler is generating patterns with
1336// setcc instead and earlier I had implemented setcc first so may have masked
1337// the problem. The setcc variants are suboptimal for mips16 so I may wantto
1338// figure out how to enable the brcond patterns or else possibly new
1339// combinations of of brcond and setcc.
1340//
1341//
1342// bcond-seteq
1343//
1344def: Mips16Pat
1345  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1346   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1347  >;
1348
1349
1350def: Mips16Pat
1351  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1352   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1353  >;
1354
1355def: Mips16Pat
1356  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
1357   (BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
1358  >;
1359
1360//
1361// bcond-setgt (do we need to have this pair of setlt, setgt??)
1362//
1363def: Mips16Pat
1364  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1365   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1366  >;
1367
1368//
1369// bcond-setge
1370//
1371def: Mips16Pat
1372  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1373   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1374  >;
1375
1376//
1377// never called because compiler transforms a >= k to a > (k-1)
1378def: Mips16Pat
1379  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1380   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1381  >;
1382
1383//
1384// bcond-setlt
1385//
1386def: Mips16Pat
1387  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1388   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1389  >;
1390
1391def: Mips16Pat
1392  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
1393   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
1394  >;
1395
1396//
1397// bcond-setle
1398//
1399def: Mips16Pat
1400  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1401   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1402  >;
1403
1404//
1405// bcond-setne
1406//
1407def: Mips16Pat
1408  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1409   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1410  >;
1411
1412def: Mips16Pat
1413  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
1414   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
1415  >;
1416
1417def: Mips16Pat
1418  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
1419   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1420  >;
1421
1422//
1423// This needs to be there but I forget which code will generate it
1424//
1425def: Mips16Pat
1426  <(brcond CPU16Regs:$rx, bb:$targ16),
1427   (BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
1428  >;
1429
1430//
1431
1432//
1433// bcond-setugt
1434//
1435//def: Mips16Pat
1436//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1437//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
1438//  >;
1439
1440//
1441// bcond-setuge
1442//
1443//def: Mips16Pat
1444//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1445//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1446//  >;
1447
1448
1449//
1450// bcond-setult
1451//
1452//def: Mips16Pat
1453//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
1454//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
1455//  >;
1456
1457def: UncondBranch16_pat<br, BimmX16>;
1458
1459// Small immediates
1460def: Mips16Pat<(i32 immSExt16:$in),
1461               (AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
1462
1463def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
1464
1465//
1466// MipsDivRem
1467//
1468def: Mips16Pat
1469  <(MipsDivRem CPU16Regs:$rx, CPU16Regs:$ry),
1470   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1471
1472//
1473// MipsDivRemU
1474//
1475def: Mips16Pat
1476  <(MipsDivRemU CPU16Regs:$rx, CPU16Regs:$ry),
1477   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
1478
1479//  signed a,b
1480//  x = (a>=b)?x:y
1481//
1482//  if !(a < b) x = y
1483//
1484def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
1485                 CPU16Regs:$x, CPU16Regs:$y),
1486                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1487                 CPU16Regs:$a, CPU16Regs:$b)>;
1488
1489//  signed a,b
1490//  x = (a>b)?x:y
1491//
1492//  if  (b < a) x = y
1493//
1494def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
1495                 CPU16Regs:$x, CPU16Regs:$y),
1496                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
1497                 CPU16Regs:$b, CPU16Regs:$a)>;
1498
1499// unsigned a,b
1500// x = (a>=b)?x:y
1501//
1502// if !(a < b) x = y;
1503//
1504def : Mips16Pat<
1505  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
1506   CPU16Regs:$x, CPU16Regs:$y),
1507  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1508   CPU16Regs:$a, CPU16Regs:$b)>;
1509
1510//  unsigned a,b
1511//  x = (a>b)?x:y
1512//
1513//  if (b < a) x = y
1514//
1515def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
1516                 CPU16Regs:$x, CPU16Regs:$y),
1517                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
1518                 CPU16Regs:$b, CPU16Regs:$a)>;
1519
1520// signed
1521// x = (a >= k)?x:y
1522// due to an llvm optimization, i don't think that this will ever
1523// be used. This is transformed into x = (a > k-1)?x:y
1524//
1525//
1526
1527//def : Mips16Pat<
1528//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
1529//   CPU16Regs:$T, CPU16Regs:$F),
1530//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
1531//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1532
1533//def : Mips16Pat<
1534//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
1535//   CPU16Regs:$T, CPU16Regs:$F),
1536//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
1537//   CPU16Regs:$lhs, immSExt16:$rhs)>;
1538
1539// signed
1540// x = (a < k)?x:y
1541//
1542// if !(a < k) x = y;
1543//
1544def : Mips16Pat<
1545  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
1546   CPU16Regs:$x, CPU16Regs:$y),
1547  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
1548   CPU16Regs:$a, immSExt16:$b)>;
1549
1550
1551//
1552//
1553// signed
1554// x = (a <= b)? x : y
1555//
1556// if  (b < a) x = y
1557//
1558def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
1559                 CPU16Regs:$x, CPU16Regs:$y),
1560                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
1561                 CPU16Regs:$b, CPU16Regs:$a)>;
1562
1563//
1564// unnsigned
1565// x = (a <= b)? x : y
1566//
1567// if  (b < a) x = y
1568//
1569def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
1570                 CPU16Regs:$x, CPU16Regs:$y),
1571                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
1572                 CPU16Regs:$b, CPU16Regs:$a)>;
1573
1574//
1575// signed/unsigned
1576// x = (a == b)? x : y
1577//
1578// if (a != b) x = y
1579//
1580def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
1581                 CPU16Regs:$x, CPU16Regs:$y),
1582                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
1583                 CPU16Regs:$b, CPU16Regs:$a)>;
1584
1585//
1586// signed/unsigned
1587// x = (a == 0)? x : y
1588//
1589// if (a != 0) x = y
1590//
1591def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
1592                 CPU16Regs:$x, CPU16Regs:$y),
1593                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
1594                 CPU16Regs:$a)>;
1595
1596
1597//
1598// signed/unsigned
1599// x = (a == k)? x : y
1600//
1601// if (a != k) x = y
1602//
1603def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
1604                 CPU16Regs:$x, CPU16Regs:$y),
1605                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
1606                 CPU16Regs:$a, immZExt16:$k)>;
1607
1608
1609//
1610// signed/unsigned
1611// x = (a != b)? x : y
1612//
1613// if (a == b) x = y
1614//
1615//
1616def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
1617                 CPU16Regs:$x, CPU16Regs:$y),
1618                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
1619                 CPU16Regs:$b, CPU16Regs:$a)>;
1620
1621//
1622// signed/unsigned
1623// x = (a != 0)? x : y
1624//
1625// if (a == 0) x = y
1626//
1627def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
1628                 CPU16Regs:$x, CPU16Regs:$y),
1629                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1630                 CPU16Regs:$a)>;
1631
1632// signed/unsigned
1633// x = (a)? x : y
1634//
1635// if (!a) x = y
1636//
1637def : Mips16Pat<(select  CPU16Regs:$a,
1638                 CPU16Regs:$x, CPU16Regs:$y),
1639      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
1640       CPU16Regs:$a)>;
1641
1642
1643//
1644// signed/unsigned
1645// x = (a != k)? x : y
1646//
1647// if (a == k) x = y
1648//
1649def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
1650                 CPU16Regs:$x, CPU16Regs:$y),
1651                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
1652                 CPU16Regs:$a, immZExt16:$k)>;
1653
1654//
1655// When writing C code to test setxx these patterns,
1656// some will be transformed into
1657// other things. So we test using C code but using -O3 and -O0
1658//
1659// seteq
1660//
1661def : Mips16Pat
1662  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
1663   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
1664
1665def : Mips16Pat
1666  <(seteq CPU16Regs:$lhs, 0),
1667   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
1668
1669
1670//
1671// setge
1672//
1673
1674def: Mips16Pat
1675  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
1676   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1677   (LiRxImmX16 1))>;
1678
1679//
1680// For constants, llvm transforms this to:
1681// x > (k -1) and then reverses the operands to use setlt. So this pattern
1682// is not used now by the compiler. (Presumably checking that k-1 does not
1683// overflow). The compiler never uses this at a the current time, due to
1684// other optimizations.
1685//
1686//def: Mips16Pat
1687//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
1688//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
1689//   (LiRxImmX16 1))>;
1690
1691// This catches the x >= -32768 case by transforming it to  x > -32769
1692//
1693def: Mips16Pat
1694  <(setgt CPU16Regs:$lhs, -32769),
1695   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
1696   (LiRxImmX16 1))>;
1697
1698//
1699// setgt
1700//
1701//
1702
1703def: Mips16Pat
1704  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
1705   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1706
1707//
1708// setle
1709//
1710def: Mips16Pat
1711  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
1712   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
1713
1714//
1715// setlt
1716//
1717def: SetCC_R16<setlt, SltCCRxRy16>;
1718
1719def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
1720
1721//
1722// setne
1723//
1724def : Mips16Pat
1725  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
1726   (SltuCCRxRy16 (LiRxImmX16 0),
1727   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
1728
1729
1730//
1731// setuge
1732//
1733def: Mips16Pat
1734  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
1735   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
1736   (LiRxImmX16 1))>;
1737
1738// this pattern will never be used because the compiler will transform
1739// x >= k to x > (k - 1) and then use SLT
1740//
1741//def: Mips16Pat
1742//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
1743//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
1744//   (LiRxImmX16 1))>;
1745
1746//
1747// setugt
1748//
1749def: Mips16Pat
1750  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
1751   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
1752
1753//
1754// setule
1755//
1756def: Mips16Pat
1757  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
1758   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
1759
1760//
1761// setult
1762//
1763def: SetCC_R16<setult, SltuCCRxRy16>;
1764
1765def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
1766
1767def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
1768               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
1769
1770// hi/lo relocs
1771
1772def : Mips16Pat<(MipsHi tglobaladdr:$in),
1773                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
1774def : Mips16Pat<(MipsHi tjumptable:$in),
1775                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
1776def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
1777                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
1778
1779// wrapper_pic
1780class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1781  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
1782            (ADDiuOp RC:$gp, node:$in)>;
1783
1784
1785def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
1786def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
1787
1788def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
1789                (LbuRxRyOffMemX16  addr16:$src)>;
1790def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
1791                (LhuRxRyOffMemX16  addr16:$src)>;
1792