• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<11> inst, dag outs, dag ins, string asm, list<dag> pattern,
17                InstrItinClass itin>
18    : AMDGPUInst <outs, ins, asm, pattern> {
19
20  field bits<64> Inst;
21  bit Trig = 0;
22  bit Op3 = 0;
23  bit isVector = 0;
24  bits<2> FlagOperandIdx = 0;
25  bit Op1 = 0;
26  bit Op2 = 0;
27  bit HasNativeOperands = 0;
28
29  bits<11> op_code = inst;
30  //let Inst = inst;
31  let Namespace = "AMDGPU";
32  let OutOperandList = outs;
33  let InOperandList = ins;
34  let AsmString = asm;
35  let Pattern = pattern;
36  let Itinerary = itin;
37
38  let TSFlags{4} = Trig;
39  let TSFlags{5} = Op3;
40
41  // Vector instructions are instructions that must fill all slots in an
42  // instruction group
43  let TSFlags{6} = isVector;
44  let TSFlags{8-7} = FlagOperandIdx;
45  let TSFlags{9} = HasNativeOperands;
46  let TSFlags{10} = Op1;
47  let TSFlags{11} = Op2;
48}
49
50class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
51    AMDGPUInst <outs, ins, asm, pattern> {
52  field bits<64> Inst;
53
54  let Namespace = "AMDGPU";
55}
56
57def MEMxi : Operand<iPTR> {
58  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
59  let PrintMethod = "printMemOperand";
60}
61
62def MEMrr : Operand<iPTR> {
63  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
64}
65
66// Operands for non-registers
67
68class InstFlag<string PM = "printOperand", int Default = 0>
69    : OperandWithDefaultOps <i32, (ops (i32 Default))> {
70  let PrintMethod = PM;
71}
72
73// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
74def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
75  let PrintMethod = "printSel";
76}
77
78def LITERAL : InstFlag<"printLiteral">;
79
80def WRITE : InstFlag <"printWrite", 1>;
81def OMOD : InstFlag <"printOMOD">;
82def REL : InstFlag <"printRel">;
83def CLAMP : InstFlag <"printClamp">;
84def NEG : InstFlag <"printNeg">;
85def ABS : InstFlag <"printAbs">;
86def UEM : InstFlag <"printUpdateExecMask">;
87def UP : InstFlag <"printUpdatePred">;
88
89// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
90// Once we start using the packetizer in this backend we should have this
91// default to 0.
92def LAST : InstFlag<"printLast", 1>;
93
94def FRAMEri : Operand<iPTR> {
95  let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
96}
97
98def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
99def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
100def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
101def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
102def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
103def ADDRIndirect : ComplexPattern<iPTR, 2, "SelectADDRIndirect", [], []>;
104
105class R600ALU_Word0 {
106  field bits<32> Word0;
107
108  bits<11> src0;
109  bits<1>  src0_neg;
110  bits<1>  src0_rel;
111  bits<11> src1;
112  bits<1>  src1_rel;
113  bits<1>  src1_neg;
114  bits<3>  index_mode = 0;
115  bits<2>  pred_sel;
116  bits<1>  last;
117
118  bits<9>  src0_sel  = src0{8-0};
119  bits<2>  src0_chan = src0{10-9};
120  bits<9>  src1_sel  = src1{8-0};
121  bits<2>  src1_chan = src1{10-9};
122
123  let Word0{8-0}   = src0_sel;
124  let Word0{9}     = src0_rel;
125  let Word0{11-10} = src0_chan;
126  let Word0{12}    = src0_neg;
127  let Word0{21-13} = src1_sel;
128  let Word0{22}    = src1_rel;
129  let Word0{24-23} = src1_chan;
130  let Word0{25}    = src1_neg;
131  let Word0{28-26} = index_mode;
132  let Word0{30-29} = pred_sel;
133  let Word0{31}    = last;
134}
135
136class R600ALU_Word1 {
137  field bits<32> Word1;
138
139  bits<11> dst;
140  bits<3>  bank_swizzle = 0;
141  bits<1>  dst_rel;
142  bits<1>  clamp;
143
144  bits<7>  dst_sel  = dst{6-0};
145  bits<2>  dst_chan = dst{10-9};
146
147  let Word1{20-18} = bank_swizzle;
148  let Word1{27-21} = dst_sel;
149  let Word1{28}    = dst_rel;
150  let Word1{30-29} = dst_chan;
151  let Word1{31}    = clamp;
152}
153
154class R600ALU_Word1_OP2 <bits<11> alu_inst> : R600ALU_Word1{
155
156  bits<1>  src0_abs;
157  bits<1>  src1_abs;
158  bits<1>  update_exec_mask;
159  bits<1>  update_pred;
160  bits<1>  write;
161  bits<2>  omod;
162
163  let Word1{0}     = src0_abs;
164  let Word1{1}     = src1_abs;
165  let Word1{2}     = update_exec_mask;
166  let Word1{3}     = update_pred;
167  let Word1{4}     = write;
168  let Word1{6-5}   = omod;
169  let Word1{17-7}  = alu_inst;
170}
171
172class R600ALU_Word1_OP3 <bits<5> alu_inst> : R600ALU_Word1{
173
174  bits<11> src2;
175  bits<1>  src2_rel;
176  bits<1>  src2_neg;
177
178  bits<9>  src2_sel = src2{8-0};
179  bits<2>  src2_chan = src2{10-9};
180
181  let Word1{8-0}   = src2_sel;
182  let Word1{9}     = src2_rel;
183  let Word1{11-10} = src2_chan;
184  let Word1{12}    = src2_neg;
185  let Word1{17-13} = alu_inst;
186}
187
188class VTX_WORD0 {
189  field bits<32> Word0;
190  bits<7> SRC_GPR;
191  bits<5> VC_INST;
192  bits<2> FETCH_TYPE;
193  bits<1> FETCH_WHOLE_QUAD;
194  bits<8> BUFFER_ID;
195  bits<1> SRC_REL;
196  bits<2> SRC_SEL_X;
197  bits<6> MEGA_FETCH_COUNT;
198
199  let Word0{4-0}   = VC_INST;
200  let Word0{6-5}   = FETCH_TYPE;
201  let Word0{7}     = FETCH_WHOLE_QUAD;
202  let Word0{15-8}  = BUFFER_ID;
203  let Word0{22-16} = SRC_GPR;
204  let Word0{23}    = SRC_REL;
205  let Word0{25-24} = SRC_SEL_X;
206  let Word0{31-26} = MEGA_FETCH_COUNT;
207}
208
209class VTX_WORD1_GPR {
210  field bits<32> Word1;
211  bits<7> DST_GPR;
212  bits<1> DST_REL;
213  bits<3> DST_SEL_X;
214  bits<3> DST_SEL_Y;
215  bits<3> DST_SEL_Z;
216  bits<3> DST_SEL_W;
217  bits<1> USE_CONST_FIELDS;
218  bits<6> DATA_FORMAT;
219  bits<2> NUM_FORMAT_ALL;
220  bits<1> FORMAT_COMP_ALL;
221  bits<1> SRF_MODE_ALL;
222
223  let Word1{6-0} = DST_GPR;
224  let Word1{7}    = DST_REL;
225  let Word1{8}    = 0; // Reserved
226  let Word1{11-9} = DST_SEL_X;
227  let Word1{14-12} = DST_SEL_Y;
228  let Word1{17-15} = DST_SEL_Z;
229  let Word1{20-18} = DST_SEL_W;
230  let Word1{21}    = USE_CONST_FIELDS;
231  let Word1{27-22} = DATA_FORMAT;
232  let Word1{29-28} = NUM_FORMAT_ALL;
233  let Word1{30}    = FORMAT_COMP_ALL;
234  let Word1{31}    = SRF_MODE_ALL;
235}
236
237/*
238XXX: R600 subtarget uses a slightly different encoding than the other
239subtargets.  We currently handle this in R600MCCodeEmitter, but we may
240want to use these instruction classes in the future.
241
242class R600ALU_Word1_OP2_r600 : R600ALU_Word1_OP2 {
243
244  bits<1>  fog_merge;
245  bits<10> alu_inst;
246
247  let Inst{37}    = fog_merge;
248  let Inst{39-38} = omod;
249  let Inst{49-40} = alu_inst;
250}
251
252class R600ALU_Word1_OP2_r700 : R600ALU_Word1_OP2 {
253
254  bits<11> alu_inst;
255
256  let Inst{38-37} = omod;
257  let Inst{49-39} = alu_inst;
258}
259*/
260
261def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
262                                     (ops PRED_SEL_OFF)>;
263
264
265let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
266
267// Class for instructions with only one source register.
268// If you add new ins to this instruction, make sure they are listed before
269// $literal, because the backend currently assumes that the last operand is
270// a literal.  Also be sure to update the enum R600Op1OperandIndex::ROI in
271// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
272// and R600InstrInfo::getOperandIdx().
273class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
274                InstrItinClass itin = AnyALU> :
275    InstR600 <0,
276              (outs R600_Reg32:$dst),
277              (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
278                   R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
279                   LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
280              !strconcat(opName,
281                   "$clamp $dst$write$dst_rel$omod, "
282                   "$src0_neg$src0_abs$src0$src0_sel$src0_abs$src0_rel, "
283                   "$literal $pred_sel$last"),
284              pattern,
285              itin>,
286    R600ALU_Word0,
287    R600ALU_Word1_OP2 <inst> {
288
289  let src1 = 0;
290  let src1_rel = 0;
291  let src1_neg = 0;
292  let src1_abs = 0;
293  let update_exec_mask = 0;
294  let update_pred = 0;
295  let HasNativeOperands = 1;
296  let Op1 = 1;
297  let DisableEncoding = "$literal";
298
299  let Inst{31-0}  = Word0;
300  let Inst{63-32} = Word1;
301}
302
303class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
304                    InstrItinClass itin = AnyALU> :
305    R600_1OP <inst, opName,
306              [(set R600_Reg32:$dst, (node R600_Reg32:$src0))]
307>;
308
309// If you add our change the operands for R600_2OP instructions, you must
310// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
311// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
312class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
313                InstrItinClass itin = AnyALU> :
314  InstR600 <inst,
315          (outs R600_Reg32:$dst),
316          (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
317               OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
318               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
319               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
320               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
321          !strconcat(opName,
322                "$clamp $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
323                "$src0_neg$src0_abs$src0$src0_sel$src0_abs$src0_rel, "
324                "$src1_neg$src1_abs$src1$src1_sel$src1_abs$src1_rel, "
325                "$literal $pred_sel$last"),
326          pattern,
327          itin>,
328    R600ALU_Word0,
329    R600ALU_Word1_OP2 <inst> {
330
331  let HasNativeOperands = 1;
332  let Op2 = 1;
333  let DisableEncoding = "$literal";
334
335  let Inst{31-0}  = Word0;
336  let Inst{63-32} = Word1;
337}
338
339class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
340                       InstrItinClass itim = AnyALU> :
341    R600_2OP <inst, opName,
342              [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
343                                           R600_Reg32:$src1))]
344>;
345
346// If you add our change the operands for R600_3OP instructions, you must
347// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
348// R600InstrInfo::buildDefaultInstruction(), and
349// R600InstrInfo::getOperandIdx().
350class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
351                InstrItinClass itin = AnyALU> :
352  InstR600 <0,
353          (outs R600_Reg32:$dst),
354          (ins REL:$dst_rel, CLAMP:$clamp,
355               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
356               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
357               R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
358               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
359          !strconcat(opName, "$clamp $dst$dst_rel, "
360                             "$src0_neg$src0$src0_sel$src0_rel, "
361                             "$src1_neg$src1$src1_sel$src1_rel, "
362                             "$src2_neg$src2$src2_sel$src2_rel, "
363                             "$literal $pred_sel$last"),
364          pattern,
365          itin>,
366    R600ALU_Word0,
367    R600ALU_Word1_OP3<inst>{
368
369  let HasNativeOperands = 1;
370  let DisableEncoding = "$literal";
371  let Op3 = 1;
372
373  let Inst{31-0}  = Word0;
374  let Inst{63-32} = Word1;
375}
376
377class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
378                      InstrItinClass itin = VecALU> :
379  InstR600 <inst,
380          (outs R600_Reg32:$dst),
381          ins,
382          asm,
383          pattern,
384          itin>;
385
386class R600_TEX <bits<11> inst, string opName, list<dag> pattern,
387                InstrItinClass itin = AnyALU> :
388  InstR600 <inst,
389          (outs R600_Reg128:$dst),
390          (ins R600_Reg128:$src0, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
391          !strconcat(opName, "$dst, $src0, $resourceId, $samplerId, $textureTarget"),
392          pattern,
393          itin>{
394    let Inst {10-0} = inst;
395  }
396
397} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
398
399def TEX_SHADOW : PatLeaf<
400  (imm),
401  [{uint32_t TType = (uint32_t)N->getZExtValue();
402    return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13);
403  }]
404>;
405
406def TEX_RECT : PatLeaf<
407  (imm),
408  [{uint32_t TType = (uint32_t)N->getZExtValue();
409    return TType == 5;
410  }]
411>;
412
413def TEX_ARRAY : PatLeaf<
414  (imm),
415  [{uint32_t TType = (uint32_t)N->getZExtValue();
416    return TType == 9 || TType == 10 || TType == 15 || TType == 16;
417  }]
418>;
419
420def TEX_SHADOW_ARRAY : PatLeaf<
421  (imm),
422  [{uint32_t TType = (uint32_t)N->getZExtValue();
423    return TType == 11 || TType == 12 || TType == 17;
424  }]
425>;
426
427class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
428                 dag ins, string asm, list<dag> pattern> :
429    InstR600ISA <outs, ins, asm, pattern> {
430  bits<7>  RW_GPR;
431  bits<7>  INDEX_GPR;
432
433  bits<2>  RIM;
434  bits<2>  TYPE;
435  bits<1>  RW_REL;
436  bits<2>  ELEM_SIZE;
437
438  bits<12> ARRAY_SIZE;
439  bits<4>  COMP_MASK;
440  bits<4>  BURST_COUNT;
441  bits<1>  VPM;
442  bits<1>  eop;
443  bits<1>  MARK;
444  bits<1>  BARRIER;
445
446  // CF_ALLOC_EXPORT_WORD0_RAT
447  let Inst{3-0}   = rat_id;
448  let Inst{9-4}   = rat_inst;
449  let Inst{10}    = 0; // Reserved
450  let Inst{12-11} = RIM;
451  let Inst{14-13} = TYPE;
452  let Inst{21-15} = RW_GPR;
453  let Inst{22}    = RW_REL;
454  let Inst{29-23} = INDEX_GPR;
455  let Inst{31-30} = ELEM_SIZE;
456
457  // CF_ALLOC_EXPORT_WORD1_BUF
458  let Inst{43-32} = ARRAY_SIZE;
459  let Inst{47-44} = COMP_MASK;
460  let Inst{51-48} = BURST_COUNT;
461  let Inst{52}    = VPM;
462  let Inst{53}    = eop;
463  let Inst{61-54} = cf_inst;
464  let Inst{62}    = MARK;
465  let Inst{63}    = BARRIER;
466}
467
468class LoadParamFrag <PatFrag load_type> : PatFrag <
469  (ops node:$ptr), (load_type node:$ptr),
470  [{ return isParamLoad(dyn_cast<LoadSDNode>(N)); }]
471>;
472
473def load_param : LoadParamFrag<load>;
474def load_param_zexti8 : LoadParamFrag<zextloadi8>;
475def load_param_zexti16 : LoadParamFrag<zextloadi16>;
476
477def isR600 : Predicate<"Subtarget.device()"
478                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
479def isR700 : Predicate<"Subtarget.device()"
480                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
481                            "Subtarget.device()->getDeviceFlag()"
482                            ">= OCL_DEVICE_RV710">;
483def isEG : Predicate<
484  "Subtarget.device()->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
485  "Subtarget.device()->getGeneration() < AMDGPUDeviceInfo::HD7XXX && "
486  "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
487
488def isCayman : Predicate<"Subtarget.device()"
489                            "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
490def isEGorCayman : Predicate<"Subtarget.device()"
491                            "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
492                            "|| Subtarget.device()->getGeneration() =="
493                            "AMDGPUDeviceInfo::HD6XXX">;
494
495def isR600toCayman : Predicate<
496                     "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
497
498//===----------------------------------------------------------------------===//
499// R600 SDNodes
500//===----------------------------------------------------------------------===//
501
502def INTERP_PAIR_XY :  AMDGPUShaderInst <
503  (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
504  (ins i32imm:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
505  "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
506  []>;
507
508def INTERP_PAIR_ZW :  AMDGPUShaderInst <
509  (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
510  (ins i32imm:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
511  "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
512  []>;
513
514def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
515  SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
516  [SDNPVariadic]
517>;
518
519//===----------------------------------------------------------------------===//
520// Interpolation Instructions
521//===----------------------------------------------------------------------===//
522
523def INTERP_VEC_LOAD :  AMDGPUShaderInst <
524  (outs R600_Reg128:$dst),
525  (ins i32imm:$src0),
526  "INTERP_LOAD $src0 : $dst",
527  []>;
528
529def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
530  let bank_swizzle = 5;
531}
532
533def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
534  let bank_swizzle = 5;
535}
536
537def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
538
539//===----------------------------------------------------------------------===//
540// Export Instructions
541//===----------------------------------------------------------------------===//
542
543def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
544
545def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
546  [SDNPHasChain, SDNPSideEffect]>;
547
548class ExportWord0 {
549  field bits<32> Word0;
550
551  bits<13> arraybase;
552  bits<2> type;
553  bits<7> gpr;
554  bits<2> elem_size;
555
556  let Word0{12-0} = arraybase;
557  let Word0{14-13} = type;
558  let Word0{21-15} = gpr;
559  let Word0{22} = 0; // RW_REL
560  let Word0{29-23} = 0; // INDEX_GPR
561  let Word0{31-30} = elem_size;
562}
563
564class ExportSwzWord1 {
565  field bits<32> Word1;
566
567  bits<3> sw_x;
568  bits<3> sw_y;
569  bits<3> sw_z;
570  bits<3> sw_w;
571  bits<1> eop;
572  bits<8> inst;
573
574  let Word1{2-0} = sw_x;
575  let Word1{5-3} = sw_y;
576  let Word1{8-6} = sw_z;
577  let Word1{11-9} = sw_w;
578}
579
580class ExportBufWord1 {
581  field bits<32> Word1;
582
583  bits<12> arraySize;
584  bits<4> compMask;
585  bits<1> eop;
586  bits<8> inst;
587
588  let Word1{11-0} = arraySize;
589  let Word1{15-12} = compMask;
590}
591
592multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
593  def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
594    (ExportInst
595        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
596        0, 61, 0, 7, 7, 7, cf_inst, 0)
597  >;
598
599  def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
600    (ExportInst
601        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
602        0, 61, 7, 0, 7, 7, cf_inst, 0)
603  >;
604
605  def : Pat<(int_R600_store_dummy (i32 imm:$type)),
606    (ExportInst
607        (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
608  >;
609
610  def : Pat<(int_R600_store_dummy 1),
611    (ExportInst
612        (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
613  >;
614
615  def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
616    (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
617        (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
618        imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
619  >;
620
621}
622
623multiclass SteamOutputExportPattern<Instruction ExportInst,
624    bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
625// Stream0
626  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
627      (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
628      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
629      4095, imm:$mask, buf0inst, 0)>;
630// Stream1
631  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
632      (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
633      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
634      4095, imm:$mask, buf1inst, 0)>;
635// Stream2
636  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
637      (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
638      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
639      4095, imm:$mask, buf2inst, 0)>;
640// Stream3
641  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
642      (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
643      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
644      4095, imm:$mask, buf3inst, 0)>;
645}
646
647let usesCustomInserter = 1 in {
648
649class ExportSwzInst : InstR600ISA<(
650    outs),
651    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
652    i32imm:$sw_x, i32imm:$sw_y, i32imm:$sw_z, i32imm:$sw_w, i32imm:$inst,
653    i32imm:$eop),
654    !strconcat("EXPORT", " $gpr"),
655    []>, ExportWord0, ExportSwzWord1 {
656  let elem_size = 3;
657  let Inst{31-0} = Word0;
658  let Inst{63-32} = Word1;
659}
660
661} // End usesCustomInserter = 1
662
663class ExportBufInst : InstR600ISA<(
664    outs),
665    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
666    i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
667    !strconcat("EXPORT", " $gpr"),
668    []>, ExportWord0, ExportBufWord1 {
669  let elem_size = 0;
670  let Inst{31-0} = Word0;
671  let Inst{63-32} = Word1;
672}
673
674let Predicates = [isR600toCayman] in {
675
676//===----------------------------------------------------------------------===//
677// Common Instructions R600, R700, Evergreen, Cayman
678//===----------------------------------------------------------------------===//
679
680def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
681// Non-IEEE MUL: 0 * anything = 0
682def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
683def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
684def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
685def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
686
687// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
688// so some of the instruction names don't match the asm string.
689// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
690def SETE : R600_2OP <
691  0x08, "SETE",
692  [(set R600_Reg32:$dst,
693   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
694             COND_EQ))]
695>;
696
697def SGT : R600_2OP <
698  0x09, "SETGT",
699  [(set R600_Reg32:$dst,
700   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
701              COND_GT))]
702>;
703
704def SGE : R600_2OP <
705  0xA, "SETGE",
706  [(set R600_Reg32:$dst,
707   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
708              COND_GE))]
709>;
710
711def SNE : R600_2OP <
712  0xB, "SETNE",
713  [(set R600_Reg32:$dst,
714   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
715    COND_NE))]
716>;
717
718def SETE_DX10 : R600_2OP <
719  0xC, "SETE_DX10",
720  [(set R600_Reg32:$dst,
721   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
722    COND_EQ))]
723>;
724
725def SETGT_DX10 : R600_2OP <
726  0xD, "SETGT_DX10",
727  [(set R600_Reg32:$dst,
728   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
729    COND_GT))]
730>;
731
732def SETGE_DX10 : R600_2OP <
733  0xE, "SETGE_DX10",
734  [(set R600_Reg32:$dst,
735   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
736    COND_GE))]
737>;
738
739def SETNE_DX10 : R600_2OP <
740  0xF, "SETNE_DX10",
741  [(set R600_Reg32:$dst,
742    (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
743     COND_NE))]
744>;
745
746def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
747def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>;
748def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
749def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
750def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
751
752def MOV : R600_1OP <0x19, "MOV", []>;
753
754let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
755
756class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
757  (outs R600_Reg32:$dst),
758  (ins immType:$imm),
759  "",
760  []
761>;
762
763} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
764
765def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
766def : Pat <
767  (imm:$val),
768  (MOV_IMM_I32 imm:$val)
769>;
770
771def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
772def : Pat <
773  (fpimm:$val),
774  (MOV_IMM_F32  fpimm:$val)
775>;
776
777def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
778def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
779def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
780def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
781
782let hasSideEffects = 1 in {
783
784def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
785
786} // end hasSideEffects
787
788def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
789def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
790def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
791def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
792def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
793def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
794def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
795def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
796def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
797def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
798
799def SETE_INT : R600_2OP <
800  0x3A, "SETE_INT",
801  [(set (i32 R600_Reg32:$dst),
802   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
803>;
804
805def SETGT_INT : R600_2OP <
806  0x3B, "SETGT_INT",
807  [(set (i32 R600_Reg32:$dst),
808   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
809>;
810
811def SETGE_INT : R600_2OP <
812  0x3C, "SETGE_INT",
813  [(set (i32 R600_Reg32:$dst),
814   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
815>;
816
817def SETNE_INT : R600_2OP <
818  0x3D, "SETNE_INT",
819  [(set (i32 R600_Reg32:$dst),
820   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
821>;
822
823def SETGT_UINT : R600_2OP <
824  0x3E, "SETGT_UINT",
825  [(set (i32 R600_Reg32:$dst),
826   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
827>;
828
829def SETGE_UINT : R600_2OP <
830  0x3F, "SETGE_UINT",
831  [(set (i32 R600_Reg32:$dst),
832    (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
833>;
834
835def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
836def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
837def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
838def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
839
840def CNDE_INT : R600_3OP <
841  0x1C, "CNDE_INT",
842  [(set (i32 R600_Reg32:$dst),
843   (selectcc (i32 R600_Reg32:$src0), 0,
844       (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
845       COND_EQ))]
846>;
847
848def CNDGE_INT : R600_3OP <
849  0x1E, "CNDGE_INT",
850  [(set (i32 R600_Reg32:$dst),
851   (selectcc (i32 R600_Reg32:$src0), 0,
852       (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
853       COND_GE))]
854>;
855
856def CNDGT_INT : R600_3OP <
857  0x1D, "CNDGT_INT",
858  [(set (i32 R600_Reg32:$dst),
859   (selectcc (i32 R600_Reg32:$src0), 0,
860       (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
861       COND_GT))]
862>;
863
864//===----------------------------------------------------------------------===//
865// Texture instructions
866//===----------------------------------------------------------------------===//
867
868def TEX_LD : R600_TEX <
869  0x03, "TEX_LD",
870  [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
871> {
872let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $resourceId, $samplerId, $textureTarget";
873let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget);
874}
875
876def TEX_GET_TEXTURE_RESINFO : R600_TEX <
877  0x04, "TEX_GET_TEXTURE_RESINFO",
878  [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
879>;
880
881def TEX_GET_GRADIENTS_H : R600_TEX <
882  0x07, "TEX_GET_GRADIENTS_H",
883  [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
884>;
885
886def TEX_GET_GRADIENTS_V : R600_TEX <
887  0x08, "TEX_GET_GRADIENTS_V",
888  [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
889>;
890
891def TEX_SET_GRADIENTS_H : R600_TEX <
892  0x0B, "TEX_SET_GRADIENTS_H",
893  []
894>;
895
896def TEX_SET_GRADIENTS_V : R600_TEX <
897  0x0C, "TEX_SET_GRADIENTS_V",
898  []
899>;
900
901def TEX_SAMPLE : R600_TEX <
902  0x10, "TEX_SAMPLE",
903  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
904>;
905
906def TEX_SAMPLE_C : R600_TEX <
907  0x18, "TEX_SAMPLE_C",
908  [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
909>;
910
911def TEX_SAMPLE_L : R600_TEX <
912  0x11, "TEX_SAMPLE_L",
913  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
914>;
915
916def TEX_SAMPLE_C_L : R600_TEX <
917  0x19, "TEX_SAMPLE_C_L",
918  [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
919>;
920
921def TEX_SAMPLE_LB : R600_TEX <
922  0x12, "TEX_SAMPLE_LB",
923  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0,imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
924>;
925
926def TEX_SAMPLE_C_LB : R600_TEX <
927  0x1A, "TEX_SAMPLE_C_LB",
928  [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
929>;
930
931def TEX_SAMPLE_G : R600_TEX <
932  0x14, "TEX_SAMPLE_G",
933  []
934>;
935
936def TEX_SAMPLE_C_G : R600_TEX <
937  0x1C, "TEX_SAMPLE_C_G",
938  []
939>;
940
941//===----------------------------------------------------------------------===//
942// Helper classes for common instructions
943//===----------------------------------------------------------------------===//
944
945class MUL_LIT_Common <bits<5> inst> : R600_3OP <
946  inst, "MUL_LIT",
947  []
948>;
949
950class MULADD_Common <bits<5> inst> : R600_3OP <
951  inst, "MULADD",
952  []
953>;
954
955class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
956  inst, "MULADD_IEEE",
957  [(set (f32 R600_Reg32:$dst),
958   (fadd (fmul R600_Reg32:$src0, R600_Reg32:$src1), R600_Reg32:$src2))]
959>;
960
961class CNDE_Common <bits<5> inst> : R600_3OP <
962  inst, "CNDE",
963  [(set R600_Reg32:$dst,
964   (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
965       (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
966       COND_EQ))]
967>;
968
969class CNDGT_Common <bits<5> inst> : R600_3OP <
970  inst, "CNDGT",
971  [(set R600_Reg32:$dst,
972   (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
973       (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
974       COND_GT))]
975>;
976
977class CNDGE_Common <bits<5> inst> : R600_3OP <
978  inst, "CNDGE",
979  [(set R600_Reg32:$dst,
980   (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
981       (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
982       COND_GE))]
983>;
984
985multiclass DOT4_Common <bits<11> inst> {
986
987  def _pseudo : R600_REDUCTION <inst,
988    (ins R600_Reg128:$src0, R600_Reg128:$src1),
989    "DOT4 $dst $src0, $src1",
990    [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
991  >;
992
993  def _real : R600_2OP <inst, "DOT4", []>;
994}
995
996let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
997multiclass CUBE_Common <bits<11> inst> {
998
999  def _pseudo : InstR600 <
1000    inst,
1001    (outs R600_Reg128:$dst),
1002    (ins R600_Reg128:$src),
1003    "CUBE $dst $src",
1004    [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
1005    VecALU
1006  > {
1007    let isPseudo = 1;
1008  }
1009
1010  def _real : R600_2OP <inst, "CUBE", []>;
1011}
1012} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
1013
1014class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1015  inst, "EXP_IEEE", fexp2
1016>;
1017
1018class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
1019  inst, "FLT_TO_INT", fp_to_sint
1020>;
1021
1022class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1023  inst, "INT_TO_FLT", sint_to_fp
1024>;
1025
1026class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1027  inst, "FLT_TO_UINT", fp_to_uint
1028>;
1029
1030class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1031  inst, "UINT_TO_FLT", uint_to_fp
1032>;
1033
1034class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
1035  inst, "LOG_CLAMPED", []
1036>;
1037
1038class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1039  inst, "LOG_IEEE", flog2
1040>;
1041
1042class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
1043class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
1044class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
1045class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
1046  inst, "MULHI_INT", mulhs
1047>;
1048class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
1049  inst, "MULHI", mulhu
1050>;
1051class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
1052  inst, "MULLO_INT", mul
1053>;
1054class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []>;
1055
1056class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
1057  inst, "RECIP_CLAMPED", []
1058>;
1059
1060class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
1061  inst, "RECIP_IEEE", [(set R600_Reg32:$dst, (fdiv FP_ONE, R600_Reg32:$src0))]
1062>;
1063
1064class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1065  inst, "RECIP_UINT", AMDGPUurecip
1066>;
1067
1068class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
1069  inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq
1070>;
1071
1072class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
1073  inst, "RECIPSQRT_IEEE", []
1074>;
1075
1076class SIN_Common <bits<11> inst> : R600_1OP <
1077  inst, "SIN", []>{
1078  let Trig = 1;
1079}
1080
1081class COS_Common <bits<11> inst> : R600_1OP <
1082  inst, "COS", []> {
1083  let Trig = 1;
1084}
1085
1086//===----------------------------------------------------------------------===//
1087// Helper patterns for complex intrinsics
1088//===----------------------------------------------------------------------===//
1089
1090multiclass DIV_Common <InstR600 recip_ieee> {
1091def : Pat<
1092  (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
1093  (MUL_IEEE R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
1094>;
1095
1096def : Pat<
1097  (fdiv R600_Reg32:$src0, R600_Reg32:$src1),
1098  (MUL_IEEE R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
1099>;
1100}
1101
1102class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
1103  (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
1104  (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
1105>;
1106
1107//===----------------------------------------------------------------------===//
1108// R600 / R700 Instructions
1109//===----------------------------------------------------------------------===//
1110
1111let Predicates = [isR600] in {
1112
1113  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
1114  def MULADD_r600 : MULADD_Common<0x10>;
1115  def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
1116  def CNDE_r600 : CNDE_Common<0x18>;
1117  def CNDGT_r600 : CNDGT_Common<0x19>;
1118  def CNDGE_r600 : CNDGE_Common<0x1A>;
1119  defm DOT4_r600 : DOT4_Common<0x50>;
1120  defm CUBE_r600 : CUBE_Common<0x52>;
1121  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
1122  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
1123  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
1124  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
1125  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
1126  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
1127  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
1128  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
1129  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
1130  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
1131  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
1132  def SIN_r600 : SIN_Common<0x6E>;
1133  def COS_r600 : COS_Common<0x6F>;
1134  def ASHR_r600 : ASHR_Common<0x70>;
1135  def LSHR_r600 : LSHR_Common<0x71>;
1136  def LSHL_r600 : LSHL_Common<0x72>;
1137  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
1138  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
1139  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
1140  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
1141  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
1142
1143  defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
1144  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
1145
1146  def : Pat<(fsqrt R600_Reg32:$src),
1147    (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_r600 R600_Reg32:$src))>;
1148
1149  def R600_ExportSwz : ExportSwzInst {
1150    let Word1{20-17} = 1; // BURST_COUNT
1151    let Word1{21} = eop;
1152    let Word1{22} = 1; // VALID_PIXEL_MODE
1153    let Word1{30-23} = inst;
1154    let Word1{31} = 1; // BARRIER
1155  }
1156  defm : ExportPattern<R600_ExportSwz, 39>;
1157
1158  def R600_ExportBuf : ExportBufInst {
1159    let Word1{20-17} = 1; // BURST_COUNT
1160    let Word1{21} = eop;
1161    let Word1{22} = 1; // VALID_PIXEL_MODE
1162    let Word1{30-23} = inst;
1163    let Word1{31} = 1; // BARRIER
1164  }
1165  defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
1166}
1167
1168// Helper pattern for normalizing inputs to triginomic instructions for R700+
1169// cards.
1170class COS_PAT <InstR600 trig> : Pat<
1171  (fcos R600_Reg32:$src),
1172  (trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
1173>;
1174
1175class SIN_PAT <InstR600 trig> : Pat<
1176  (fsin R600_Reg32:$src),
1177  (trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
1178>;
1179
1180//===----------------------------------------------------------------------===//
1181// R700 Only instructions
1182//===----------------------------------------------------------------------===//
1183
1184let Predicates = [isR700] in {
1185  def SIN_r700 : SIN_Common<0x6E>;
1186  def COS_r700 : COS_Common<0x6F>;
1187
1188  // R700 normalizes inputs to SIN/COS the same as EG
1189  def : SIN_PAT <SIN_r700>;
1190  def : COS_PAT <COS_r700>;
1191}
1192
1193//===----------------------------------------------------------------------===//
1194// Evergreen Only instructions
1195//===----------------------------------------------------------------------===//
1196
1197let Predicates = [isEG] in {
1198
1199def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
1200defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
1201
1202def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
1203def MULHI_INT_eg : MULHI_INT_Common<0x90>;
1204def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
1205def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
1206def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
1207def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
1208def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
1209def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
1210def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
1211def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
1212def SIN_eg : SIN_Common<0x8D>;
1213def COS_eg : COS_Common<0x8E>;
1214
1215def : SIN_PAT <SIN_eg>;
1216def : COS_PAT <COS_eg>;
1217def : Pat<(fsqrt R600_Reg32:$src),
1218  (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_eg R600_Reg32:$src))>;
1219} // End Predicates = [isEG]
1220
1221//===----------------------------------------------------------------------===//
1222// Evergreen / Cayman Instructions
1223//===----------------------------------------------------------------------===//
1224
1225let Predicates = [isEGorCayman] in {
1226
1227  // BFE_UINT - bit_extract, an optimization for mask and shift
1228  // Src0 = Input
1229  // Src1 = Offset
1230  // Src2 = Width
1231  //
1232  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
1233  //
1234  // Example Usage:
1235  // (Offset, Width)
1236  //
1237  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
1238  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
1239  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
1240  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
1241  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
1242    [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
1243                                                      R600_Reg32:$src1,
1244                                                      R600_Reg32:$src2))],
1245    VecALU
1246  >;
1247
1248  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
1249    [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
1250                                          R600_Reg32:$src2))],
1251    VecALU
1252  >;
1253
1254  def MULADD_eg : MULADD_Common<0x14>;
1255  def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
1256  def ASHR_eg : ASHR_Common<0x15>;
1257  def LSHR_eg : LSHR_Common<0x16>;
1258  def LSHL_eg : LSHL_Common<0x17>;
1259  def CNDE_eg : CNDE_Common<0x19>;
1260  def CNDGT_eg : CNDGT_Common<0x1A>;
1261  def CNDGE_eg : CNDGE_Common<0x1B>;
1262  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
1263  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
1264  defm DOT4_eg : DOT4_Common<0xBE>;
1265  defm CUBE_eg : CUBE_Common<0xC0>;
1266
1267let hasSideEffects = 1 in {
1268  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", []>;
1269}
1270
1271  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
1272
1273  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
1274    let Pattern = [];
1275  }
1276
1277  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
1278
1279  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
1280    let Pattern = [];
1281  }
1282
1283  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
1284
1285  // TRUNC is used for the FLT_TO_INT instructions to work around a
1286  // perceived problem where the rounding modes are applied differently
1287  // depending on the instruction and the slot they are in.
1288  // See:
1289  // https://bugs.freedesktop.org/show_bug.cgi?id=50232
1290  // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
1291  //
1292  // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
1293  // which do not need to be truncated since the fp values are 0.0f or 1.0f.
1294  // We should look into handling these cases separately.
1295  def : Pat<(fp_to_sint R600_Reg32:$src0),
1296    (FLT_TO_INT_eg (TRUNC R600_Reg32:$src0))>;
1297
1298  def : Pat<(fp_to_uint R600_Reg32:$src0),
1299    (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src0))>;
1300
1301  def EG_ExportSwz : ExportSwzInst {
1302    let Word1{19-16} = 1; // BURST_COUNT
1303    let Word1{20} = 1; // VALID_PIXEL_MODE
1304    let Word1{21} = eop;
1305    let Word1{29-22} = inst;
1306    let Word1{30} = 0; // MARK
1307    let Word1{31} = 1; // BARRIER
1308  }
1309  defm : ExportPattern<EG_ExportSwz, 83>;
1310
1311  def EG_ExportBuf : ExportBufInst {
1312    let Word1{19-16} = 1; // BURST_COUNT
1313    let Word1{20} = 1; // VALID_PIXEL_MODE
1314    let Word1{21} = eop;
1315    let Word1{29-22} = inst;
1316    let Word1{30} = 0; // MARK
1317    let Word1{31} = 1; // BARRIER
1318  }
1319  defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
1320
1321//===----------------------------------------------------------------------===//
1322// Memory read/write instructions
1323//===----------------------------------------------------------------------===//
1324let usesCustomInserter = 1 in {
1325
1326class RAT_WRITE_CACHELESS_eg <dag ins, bits<4> comp_mask, string name,
1327                              list<dag> pattern>
1328    : EG_CF_RAT <0x57, 0x2, 0, (outs), ins,
1329                 !strconcat(name, " $rw_gpr, $index_gpr, $eop"), pattern> {
1330  let RIM         = 0;
1331  // XXX: Have a separate instruction for non-indexed writes.
1332  let TYPE        = 1;
1333  let RW_REL      = 0;
1334  let ELEM_SIZE   = 0;
1335
1336  let ARRAY_SIZE  = 0;
1337  let COMP_MASK   = comp_mask;
1338  let BURST_COUNT = 0;
1339  let VPM         = 0;
1340  let MARK        = 0;
1341  let BARRIER     = 1;
1342}
1343
1344} // End usesCustomInserter = 1
1345
1346// 32-bit store
1347def RAT_WRITE_CACHELESS_32_eg : RAT_WRITE_CACHELESS_eg <
1348  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1349  0x1, "RAT_WRITE_CACHELESS_32_eg",
1350  [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]
1351>;
1352
1353//128-bit store
1354def RAT_WRITE_CACHELESS_128_eg : RAT_WRITE_CACHELESS_eg <
1355  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1356  0xf, "RAT_WRITE_CACHELESS_128",
1357  [(global_store (v4i32 R600_Reg128:$rw_gpr), R600_TReg32_X:$index_gpr)]
1358>;
1359
1360class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1361    : InstR600ISA <outs, (ins MEMxi:$ptr), name#" $dst, $ptr", pattern>,
1362      VTX_WORD1_GPR, VTX_WORD0 {
1363
1364  // Static fields
1365  let VC_INST = 0;
1366  let FETCH_TYPE = 2;
1367  let FETCH_WHOLE_QUAD = 0;
1368  let BUFFER_ID = buffer_id;
1369  let SRC_REL = 0;
1370  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
1371  // to store vertex addresses in any channel, not just X.
1372  let SRC_SEL_X = 0;
1373  let DST_REL = 0;
1374  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
1375  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
1376  // however, based on my testing if USE_CONST_FIELDS is set, then all
1377  // these fields need to be set to 0.
1378  let USE_CONST_FIELDS = 0;
1379  let NUM_FORMAT_ALL = 1;
1380  let FORMAT_COMP_ALL = 0;
1381  let SRF_MODE_ALL = 0;
1382
1383  let Inst{31-0} = Word0;
1384  let Inst{63-32} = Word1;
1385  // LLVM can only encode 64-bit instructions, so these fields are manually
1386  // encoded in R600CodeEmitter
1387  //
1388  // bits<16> OFFSET;
1389  // bits<2>  ENDIAN_SWAP = 0;
1390  // bits<1>  CONST_BUF_NO_STRIDE = 0;
1391  // bits<1>  MEGA_FETCH = 0;
1392  // bits<1>  ALT_CONST = 0;
1393  // bits<2>  BUFFER_INDEX_MODE = 0;
1394
1395
1396
1397  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1398  // is done in R600CodeEmitter
1399  //
1400  // Inst{79-64} = OFFSET;
1401  // Inst{81-80} = ENDIAN_SWAP;
1402  // Inst{82}    = CONST_BUF_NO_STRIDE;
1403  // Inst{83}    = MEGA_FETCH;
1404  // Inst{84}    = ALT_CONST;
1405  // Inst{86-85} = BUFFER_INDEX_MODE;
1406  // Inst{95-86} = 0; Reserved
1407
1408  // VTX_WORD3 (Padding)
1409  //
1410  // Inst{127-96} = 0;
1411}
1412
1413class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
1414    : VTX_READ_eg <"VTX_READ_8", buffer_id, (outs R600_TReg32_X:$dst),
1415                   pattern> {
1416
1417  let MEGA_FETCH_COUNT = 1;
1418  let DST_SEL_X = 0;
1419  let DST_SEL_Y = 7;   // Masked
1420  let DST_SEL_Z = 7;   // Masked
1421  let DST_SEL_W = 7;   // Masked
1422  let DATA_FORMAT = 1; // FMT_8
1423}
1424
1425class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
1426    : VTX_READ_eg <"VTX_READ_16", buffer_id, (outs R600_TReg32_X:$dst),
1427                    pattern> {
1428  let MEGA_FETCH_COUNT = 2;
1429  let DST_SEL_X = 0;
1430  let DST_SEL_Y = 7;   // Masked
1431  let DST_SEL_Z = 7;   // Masked
1432  let DST_SEL_W = 7;   // Masked
1433  let DATA_FORMAT = 5; // FMT_16
1434
1435}
1436
1437class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1438    : VTX_READ_eg <"VTX_READ_32", buffer_id, (outs R600_TReg32_X:$dst),
1439                   pattern> {
1440
1441  let MEGA_FETCH_COUNT = 4;
1442  let DST_SEL_X        = 0;
1443  let DST_SEL_Y        = 7;   // Masked
1444  let DST_SEL_Z        = 7;   // Masked
1445  let DST_SEL_W        = 7;   // Masked
1446  let DATA_FORMAT      = 0xD; // COLOR_32
1447
1448  // This is not really necessary, but there were some GPU hangs that appeared
1449  // to be caused by ALU instructions in the next instruction group that wrote
1450  // to the $ptr registers of the VTX_READ.
1451  // e.g.
1452  // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1453  // %T2_X<def> = MOV %ZERO
1454  //Adding this constraint prevents this from happening.
1455  let Constraints = "$ptr.ptr = $dst";
1456}
1457
1458class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1459    : VTX_READ_eg <"VTX_READ_128", buffer_id, (outs R600_Reg128:$dst),
1460                   pattern> {
1461
1462  let MEGA_FETCH_COUNT = 16;
1463  let DST_SEL_X        =  0;
1464  let DST_SEL_Y        =  1;
1465  let DST_SEL_Z        =  2;
1466  let DST_SEL_W        =  3;
1467  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1468
1469  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1470  // that holds its buffer address to avoid potential hangs.  We can't use
1471  // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1472  // registers are different sizes.
1473}
1474
1475//===----------------------------------------------------------------------===//
1476// VTX Read from parameter memory space
1477//===----------------------------------------------------------------------===//
1478
1479def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
1480  [(set (i32 R600_TReg32_X:$dst), (load_param_zexti8 ADDRVTX_READ:$ptr))]
1481>;
1482
1483def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
1484  [(set (i32 R600_TReg32_X:$dst), (load_param_zexti16 ADDRVTX_READ:$ptr))]
1485>;
1486
1487def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
1488  [(set (i32 R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1489>;
1490
1491def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
1492  [(set (v4i32 R600_Reg128:$dst), (load_param ADDRVTX_READ:$ptr))]
1493>;
1494
1495//===----------------------------------------------------------------------===//
1496// VTX Read from global memory space
1497//===----------------------------------------------------------------------===//
1498
1499// 8-bit reads
1500def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
1501  [(set (i32 R600_TReg32_X:$dst), (zextloadi8_global ADDRVTX_READ:$ptr))]
1502>;
1503
1504// 32-bit reads
1505def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
1506  [(set (i32 R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1507>;
1508
1509// 128-bit reads
1510def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
1511  [(set (v4i32 R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1512>;
1513
1514//===----------------------------------------------------------------------===//
1515// Constant Loads
1516// XXX: We are currently storing all constants in the global address space.
1517//===----------------------------------------------------------------------===//
1518
1519def CONSTANT_LOAD_eg : VTX_READ_32_eg <1,
1520  [(set (i32 R600_TReg32_X:$dst), (constant_load ADDRVTX_READ:$ptr))]
1521>;
1522
1523}
1524
1525//===----------------------------------------------------------------------===//
1526// Regist loads and stores - for indirect addressing
1527//===----------------------------------------------------------------------===//
1528
1529defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
1530
1531let Predicates = [isCayman] in {
1532
1533let isVector = 1 in {
1534
1535def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1536
1537def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1538def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1539def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1540def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1541def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
1542def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
1543def LOG_IEEE_ : LOG_IEEE_Common<0x83>;
1544def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
1545def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
1546def SIN_cm : SIN_Common<0x8D>;
1547def COS_cm : COS_Common<0x8E>;
1548} // End isVector = 1
1549
1550def : SIN_PAT <SIN_cm>;
1551def : COS_PAT <COS_cm>;
1552
1553defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
1554
1555// RECIP_UINT emulation for Cayman
1556def : Pat <
1557  (AMDGPUurecip R600_Reg32:$src0),
1558  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1559                            (MOV_IMM_I32 0x4f800000)))
1560>;
1561
1562
1563def : Pat<(fsqrt R600_Reg32:$src),
1564  (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm R600_Reg32:$src))>;
1565
1566} // End isCayman
1567
1568//===----------------------------------------------------------------------===//
1569// Branch Instructions
1570//===----------------------------------------------------------------------===//
1571
1572
1573def IF_PREDICATE_SET  : ILFormat<(outs), (ins GPRI32:$src),
1574  "IF_PREDICATE_SET $src", []>;
1575
1576def PREDICATED_BREAK : ILFormat<(outs), (ins GPRI32:$src),
1577  "PREDICATED_BREAK $src", []>;
1578
1579//===----------------------------------------------------------------------===//
1580// Pseudo instructions
1581//===----------------------------------------------------------------------===//
1582
1583let isPseudo = 1 in {
1584
1585def PRED_X : InstR600 <
1586  0, (outs R600_Predicate_Bit:$dst),
1587  (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
1588  "", [], NullALU> {
1589  let FlagOperandIdx = 3;
1590}
1591
1592let isTerminator = 1, isBranch = 1 in {
1593def JUMP_COND : InstR600 <0x10,
1594          (outs),
1595          (ins brtarget:$target, R600_Predicate_Bit:$p),
1596          "JUMP $target ($p)",
1597          [], AnyALU
1598  >;
1599
1600def JUMP : InstR600 <0x10,
1601          (outs),
1602          (ins brtarget:$target),
1603          "JUMP $target",
1604          [], AnyALU
1605  >
1606{
1607  let isPredicable = 1;
1608  let isBarrier = 1;
1609}
1610
1611}  // End isTerminator = 1, isBranch = 1
1612
1613let usesCustomInserter = 1 in {
1614
1615let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
1616
1617def MASK_WRITE : AMDGPUShaderInst <
1618    (outs),
1619    (ins R600_Reg32:$src),
1620    "MASK_WRITE $src",
1621    []
1622>;
1623
1624} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
1625
1626
1627def TXD: AMDGPUShaderInst <
1628  (outs R600_Reg128:$dst),
1629  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1630  "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1631  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
1632>;
1633
1634def TXD_SHADOW: AMDGPUShaderInst <
1635  (outs R600_Reg128:$dst),
1636  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1637  "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1638  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
1639>;
1640
1641} // End isPseudo = 1
1642} // End usesCustomInserter = 1
1643
1644def CLAMP_R600 :  CLAMP <R600_Reg32>;
1645def FABS_R600 : FABS<R600_Reg32>;
1646def FNEG_R600 : FNEG<R600_Reg32>;
1647
1648//===---------------------------------------------------------------------===//
1649// Return instruction
1650//===---------------------------------------------------------------------===//
1651let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
1652    usesCustomInserter = 1 in {
1653  def RETURN          : ILFormat<(outs), (ins variable_ops),
1654      "RETURN", [(IL_retflag)]>;
1655}
1656
1657
1658//===----------------------------------------------------------------------===//
1659// Constant Buffer Addressing Support
1660//===----------------------------------------------------------------------===//
1661
1662let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
1663def CONST_COPY : Instruction {
1664  let OutOperandList = (outs R600_Reg32:$dst);
1665  let InOperandList = (ins i32imm:$src);
1666  let Pattern =
1667      [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
1668  let AsmString = "CONST_COPY";
1669  let neverHasSideEffects = 1;
1670  let isAsCheapAsAMove = 1;
1671  let Itinerary = NullALU;
1672}
1673} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
1674
1675def TEX_VTX_CONSTBUF :
1676  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
1677      [(set R600_Reg128:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
1678  VTX_WORD1_GPR, VTX_WORD0 {
1679
1680  let VC_INST = 0;
1681  let FETCH_TYPE = 2;
1682  let FETCH_WHOLE_QUAD = 0;
1683  let SRC_REL = 0;
1684  let SRC_SEL_X = 0;
1685  let DST_REL = 0;
1686  let USE_CONST_FIELDS = 0;
1687  let NUM_FORMAT_ALL = 2;
1688  let FORMAT_COMP_ALL = 1;
1689  let SRF_MODE_ALL = 1;
1690  let MEGA_FETCH_COUNT = 16;
1691  let DST_SEL_X        = 0;
1692  let DST_SEL_Y        = 1;
1693  let DST_SEL_Z        = 2;
1694  let DST_SEL_W        = 3;
1695  let DATA_FORMAT      = 35;
1696
1697  let Inst{31-0} = Word0;
1698  let Inst{63-32} = Word1;
1699
1700// LLVM can only encode 64-bit instructions, so these fields are manually
1701// encoded in R600CodeEmitter
1702//
1703// bits<16> OFFSET;
1704// bits<2>  ENDIAN_SWAP = 0;
1705// bits<1>  CONST_BUF_NO_STRIDE = 0;
1706// bits<1>  MEGA_FETCH = 0;
1707// bits<1>  ALT_CONST = 0;
1708// bits<2>  BUFFER_INDEX_MODE = 0;
1709
1710
1711
1712// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1713// is done in R600CodeEmitter
1714//
1715// Inst{79-64} = OFFSET;
1716// Inst{81-80} = ENDIAN_SWAP;
1717// Inst{82}    = CONST_BUF_NO_STRIDE;
1718// Inst{83}    = MEGA_FETCH;
1719// Inst{84}    = ALT_CONST;
1720// Inst{86-85} = BUFFER_INDEX_MODE;
1721// Inst{95-86} = 0; Reserved
1722
1723// VTX_WORD3 (Padding)
1724//
1725// Inst{127-96} = 0;
1726}
1727
1728def TEX_VTX_TEXBUF:
1729  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
1730      [(set R600_Reg128:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
1731VTX_WORD1_GPR, VTX_WORD0 {
1732
1733let VC_INST = 0;
1734let FETCH_TYPE = 2;
1735let FETCH_WHOLE_QUAD = 0;
1736let SRC_REL = 0;
1737let SRC_SEL_X = 0;
1738let DST_REL = 0;
1739let USE_CONST_FIELDS = 1;
1740let NUM_FORMAT_ALL = 0;
1741let FORMAT_COMP_ALL = 0;
1742let SRF_MODE_ALL = 1;
1743let MEGA_FETCH_COUNT = 16;
1744let DST_SEL_X        = 0;
1745let DST_SEL_Y        = 1;
1746let DST_SEL_Z        = 2;
1747let DST_SEL_W        = 3;
1748let DATA_FORMAT      = 0;
1749
1750let Inst{31-0} = Word0;
1751let Inst{63-32} = Word1;
1752
1753// LLVM can only encode 64-bit instructions, so these fields are manually
1754// encoded in R600CodeEmitter
1755//
1756// bits<16> OFFSET;
1757// bits<2>  ENDIAN_SWAP = 0;
1758// bits<1>  CONST_BUF_NO_STRIDE = 0;
1759// bits<1>  MEGA_FETCH = 0;
1760// bits<1>  ALT_CONST = 0;
1761// bits<2>  BUFFER_INDEX_MODE = 0;
1762
1763
1764
1765// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1766// is done in R600CodeEmitter
1767//
1768// Inst{79-64} = OFFSET;
1769// Inst{81-80} = ENDIAN_SWAP;
1770// Inst{82}    = CONST_BUF_NO_STRIDE;
1771// Inst{83}    = MEGA_FETCH;
1772// Inst{84}    = ALT_CONST;
1773// Inst{86-85} = BUFFER_INDEX_MODE;
1774// Inst{95-86} = 0; Reserved
1775
1776// VTX_WORD3 (Padding)
1777//
1778// Inst{127-96} = 0;
1779}
1780
1781
1782
1783//===--------------------------------------------------------------------===//
1784// Instructions support
1785//===--------------------------------------------------------------------===//
1786//===---------------------------------------------------------------------===//
1787// Custom Inserter for Branches and returns, this eventually will be a
1788// seperate pass
1789//===---------------------------------------------------------------------===//
1790let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
1791  def BRANCH : ILFormat<(outs), (ins brtarget:$target),
1792      "; Pseudo unconditional branch instruction",
1793      [(br bb:$target)]>;
1794  defm BRANCH_COND : BranchConditional<IL_brcond>;
1795}
1796
1797//===---------------------------------------------------------------------===//
1798// Flow and Program control Instructions
1799//===---------------------------------------------------------------------===//
1800let isTerminator=1 in {
1801  def SWITCH      : ILFormat< (outs), (ins GPRI32:$src),
1802  !strconcat("SWITCH", " $src"), []>;
1803  def CASE        : ILFormat< (outs), (ins GPRI32:$src),
1804      !strconcat("CASE", " $src"), []>;
1805  def BREAK       : ILFormat< (outs), (ins),
1806      "BREAK", []>;
1807  def CONTINUE    : ILFormat< (outs), (ins),
1808      "CONTINUE", []>;
1809  def DEFAULT     : ILFormat< (outs), (ins),
1810      "DEFAULT", []>;
1811  def ELSE        : ILFormat< (outs), (ins),
1812      "ELSE", []>;
1813  def ENDSWITCH   : ILFormat< (outs), (ins),
1814      "ENDSWITCH", []>;
1815  def ENDMAIN     : ILFormat< (outs), (ins),
1816      "ENDMAIN", []>;
1817  def END         : ILFormat< (outs), (ins),
1818      "END", []>;
1819  def ENDFUNC     : ILFormat< (outs), (ins),
1820      "ENDFUNC", []>;
1821  def ENDIF       : ILFormat< (outs), (ins),
1822      "ENDIF", []>;
1823  def WHILELOOP   : ILFormat< (outs), (ins),
1824      "WHILE", []>;
1825  def ENDLOOP     : ILFormat< (outs), (ins),
1826      "ENDLOOP", []>;
1827  def FUNC        : ILFormat< (outs), (ins),
1828      "FUNC", []>;
1829  def RETDYN      : ILFormat< (outs), (ins),
1830      "RET_DYN", []>;
1831  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1832  defm IF_LOGICALNZ  : BranchInstr<"IF_LOGICALNZ">;
1833  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1834  defm IF_LOGICALZ   : BranchInstr<"IF_LOGICALZ">;
1835  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1836  defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
1837  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1838  defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
1839  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1840  defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
1841  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1842  defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
1843  defm IFC         : BranchInstr2<"IFC">;
1844  defm BREAKC      : BranchInstr2<"BREAKC">;
1845  defm CONTINUEC   : BranchInstr2<"CONTINUEC">;
1846}
1847
1848//===----------------------------------------------------------------------===//
1849// ISel Patterns
1850//===----------------------------------------------------------------------===//
1851
1852// CND*_INT Pattterns for f32 True / False values
1853
1854class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
1855  (selectcc (i32 R600_Reg32:$src0), 0, (f32 R600_Reg32:$src1),
1856                                            R600_Reg32:$src2, cc),
1857  (cnd R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
1858>;
1859
1860def : CND_INT_f32 <CNDE_INT,  SETEQ>;
1861def : CND_INT_f32 <CNDGT_INT, SETGT>;
1862def : CND_INT_f32 <CNDGE_INT, SETGE>;
1863
1864//CNDGE_INT extra pattern
1865def : Pat <
1866  (selectcc (i32 R600_Reg32:$src0), -1, (i32 R600_Reg32:$src1),
1867                                        (i32 R600_Reg32:$src2), COND_GT),
1868  (CNDGE_INT R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
1869>;
1870
1871// KIL Patterns
1872def KILP : Pat <
1873  (int_AMDGPU_kilp),
1874  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1875>;
1876
1877def KIL : Pat <
1878  (int_AMDGPU_kill R600_Reg32:$src0),
1879  (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1880>;
1881
1882// SGT Reverse args
1883def : Pat <
1884  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1885  (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1886>;
1887
1888// SGE Reverse args
1889def : Pat <
1890  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1891  (SGE R600_Reg32:$src1, R600_Reg32:$src0)
1892>;
1893
1894// SETGT_DX10 reverse args
1895def : Pat <
1896  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, COND_LT),
1897  (SETGT_DX10 R600_Reg32:$src1, R600_Reg32:$src0)
1898>;
1899
1900// SETGE_DX10 reverse args
1901def : Pat <
1902  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, COND_LE),
1903  (SETGE_DX10 R600_Reg32:$src1, R600_Reg32:$src0)
1904>;
1905
1906// SETGT_INT reverse args
1907def : Pat <
1908  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1909  (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1910>;
1911
1912// SETGE_INT reverse args
1913def : Pat <
1914  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1915  (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1916>;
1917
1918// SETGT_UINT reverse args
1919def : Pat <
1920  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1921  (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1922>;
1923
1924// SETGE_UINT reverse args
1925def : Pat <
1926  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1927  (SETGE_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1928>;
1929
1930// The next two patterns are special cases for handling 'true if ordered' and
1931// 'true if unordered' conditionals.  The assumption here is that the behavior of
1932// SETE and SNE conforms to the Direct3D 10 rules for floating point values
1933// described here:
1934// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1935// We assume that  SETE returns false when one of the operands is NAN and
1936// SNE returns true when on of the operands is NAN
1937
1938//SETE - 'true if ordered'
1939def : Pat <
1940  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1941  (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1942>;
1943
1944//SETE_DX10 - 'true if ordered'
1945def : Pat <
1946  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETO),
1947  (SETE_DX10 R600_Reg32:$src0, R600_Reg32:$src1)
1948>;
1949
1950//SNE - 'true if unordered'
1951def : Pat <
1952  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1953  (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1954>;
1955
1956//SETNE_DX10 - 'true if ordered'
1957def : Pat <
1958  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUO),
1959  (SETNE_DX10 R600_Reg32:$src0, R600_Reg32:$src1)
1960>;
1961
1962def : Extract_Element <f32, v4f32, R600_Reg128, 0, sub0>;
1963def : Extract_Element <f32, v4f32, R600_Reg128, 1, sub1>;
1964def : Extract_Element <f32, v4f32, R600_Reg128, 2, sub2>;
1965def : Extract_Element <f32, v4f32, R600_Reg128, 3, sub3>;
1966
1967def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 0, sub0>;
1968def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 1, sub1>;
1969def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 2, sub2>;
1970def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 3, sub3>;
1971
1972def : Extract_Element <i32, v4i32, R600_Reg128, 0, sub0>;
1973def : Extract_Element <i32, v4i32, R600_Reg128, 1, sub1>;
1974def : Extract_Element <i32, v4i32, R600_Reg128, 2, sub2>;
1975def : Extract_Element <i32, v4i32, R600_Reg128, 3, sub3>;
1976
1977def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 0, sub0>;
1978def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 1, sub1>;
1979def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 2, sub2>;
1980def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 3, sub3>;
1981
1982def : Vector4_Build <v4f32, R600_Reg128, f32, R600_Reg32>;
1983def : Vector4_Build <v4i32, R600_Reg128, i32, R600_Reg32>;
1984
1985// bitconvert patterns
1986
1987def : BitConvert <i32, f32, R600_Reg32>;
1988def : BitConvert <f32, i32, R600_Reg32>;
1989def : BitConvert <v4f32, v4i32, R600_Reg128>;
1990def : BitConvert <v4i32, v4f32, R600_Reg128>;
1991
1992// DWORDADDR pattern
1993def : DwordAddrPat  <i32, R600_Reg32>;
1994
1995} // End isR600toCayman Predicate
1996