1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "mccodeemitter"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "MCTargetDesc/X86FixupKinds.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/Support/raw_ostream.h"
27
28 using namespace llvm;
29
30 namespace {
31 class X86MCCodeEmitter : public MCCodeEmitter {
32 X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
33 void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34 const MCInstrInfo &MCII;
35 const MCSubtargetInfo &STI;
36 MCContext &Ctx;
37 public:
X86MCCodeEmitter(const MCInstrInfo & mcii,const MCSubtargetInfo & sti,MCContext & ctx)38 X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
39 MCContext &ctx)
40 : MCII(mcii), STI(sti), Ctx(ctx) {
41 }
42
~X86MCCodeEmitter()43 ~X86MCCodeEmitter() {}
44
is64BitMode() const45 bool is64BitMode() const {
46 // FIXME: Can tablegen auto-generate this?
47 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
48 }
49
is32BitMode() const50 bool is32BitMode() const {
51 // FIXME: Can tablegen auto-generate this?
52 return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
53 }
54
GetX86RegNum(const MCOperand & MO) const55 unsigned GetX86RegNum(const MCOperand &MO) const {
56 return Ctx.getRegisterInfo().getEncodingValue(MO.getReg()) & 0x7;
57 }
58
59 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
60 // 0-7 and the difference between the 2 groups is given by the REX prefix.
61 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
62 // in 1's complement form, example:
63 //
64 // ModRM field => XMM9 => 1
65 // VEX.VVVV => XMM9 => ~9
66 //
67 // See table 4-35 of Intel AVX Programming Reference for details.
getVEXRegisterEncoding(const MCInst & MI,unsigned OpNum) const68 unsigned char getVEXRegisterEncoding(const MCInst &MI,
69 unsigned OpNum) const {
70 unsigned SrcReg = MI.getOperand(OpNum).getReg();
71 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
72 if (X86II::isX86_64ExtendedReg(SrcReg))
73 SrcRegNum |= 8;
74
75 // The registers represented through VEX_VVVV should
76 // be encoded in 1's complement form.
77 return (~SrcRegNum) & 0xf;
78 }
79
EmitByte(unsigned char C,unsigned & CurByte,raw_ostream & OS) const80 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
81 OS << (char)C;
82 ++CurByte;
83 }
84
EmitConstant(uint64_t Val,unsigned Size,unsigned & CurByte,raw_ostream & OS) const85 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
86 raw_ostream &OS) const {
87 // Output the constant in little endian byte order.
88 for (unsigned i = 0; i != Size; ++i) {
89 EmitByte(Val & 255, CurByte, OS);
90 Val >>= 8;
91 }
92 }
93
94 void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
95 unsigned ImmSize, MCFixupKind FixupKind,
96 unsigned &CurByte, raw_ostream &OS,
97 SmallVectorImpl<MCFixup> &Fixups,
98 int ImmOffset = 0) const;
99
ModRMByte(unsigned Mod,unsigned RegOpcode,unsigned RM)100 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
101 unsigned RM) {
102 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
103 return RM | (RegOpcode << 3) | (Mod << 6);
104 }
105
EmitRegModRMByte(const MCOperand & ModRMReg,unsigned RegOpcodeFld,unsigned & CurByte,raw_ostream & OS) const106 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
107 unsigned &CurByte, raw_ostream &OS) const {
108 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
109 }
110
EmitSIBByte(unsigned SS,unsigned Index,unsigned Base,unsigned & CurByte,raw_ostream & OS) const111 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
112 unsigned &CurByte, raw_ostream &OS) const {
113 // SIB byte is in the same format as the ModRMByte.
114 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
115 }
116
117
118 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
119 unsigned RegOpcodeField,
120 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
121 SmallVectorImpl<MCFixup> &Fixups) const;
122
123 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
124 SmallVectorImpl<MCFixup> &Fixups) const;
125
126 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
127 const MCInst &MI, const MCInstrDesc &Desc,
128 raw_ostream &OS) const;
129
130 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
131 int MemOperand, const MCInst &MI,
132 raw_ostream &OS) const;
133
134 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
135 const MCInst &MI, const MCInstrDesc &Desc,
136 raw_ostream &OS) const;
137 };
138
139 } // end anonymous namespace
140
141
createX86MCCodeEmitter(const MCInstrInfo & MCII,const MCRegisterInfo & MRI,const MCSubtargetInfo & STI,MCContext & Ctx)142 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
143 const MCRegisterInfo &MRI,
144 const MCSubtargetInfo &STI,
145 MCContext &Ctx) {
146 return new X86MCCodeEmitter(MCII, STI, Ctx);
147 }
148
149 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
150 /// sign-extended field.
isDisp8(int Value)151 static bool isDisp8(int Value) {
152 return Value == (signed char)Value;
153 }
154
155 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
156 /// in an instruction with the specified TSFlags.
getImmFixupKind(uint64_t TSFlags)157 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
158 unsigned Size = X86II::getSizeOfImm(TSFlags);
159 bool isPCRel = X86II::isImmPCRel(TSFlags);
160
161 return MCFixup::getKindForSize(Size, isPCRel);
162 }
163
164 /// Is32BitMemOperand - Return true if the specified instruction has
165 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
Is32BitMemOperand(const MCInst & MI,unsigned Op)166 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
167 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
168 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
169
170 if ((BaseReg.getReg() != 0 &&
171 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
172 (IndexReg.getReg() != 0 &&
173 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
174 return true;
175 return false;
176 }
177
178 /// Is64BitMemOperand - Return true if the specified instruction has
179 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
180 #ifndef NDEBUG
Is64BitMemOperand(const MCInst & MI,unsigned Op)181 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
182 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
183 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
184
185 if ((BaseReg.getReg() != 0 &&
186 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
187 (IndexReg.getReg() != 0 &&
188 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
189 return true;
190 return false;
191 }
192 #endif
193
194 /// Is16BitMemOperand - Return true if the specified instruction has
195 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
Is16BitMemOperand(const MCInst & MI,unsigned Op)196 static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
197 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
198 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
199
200 if ((BaseReg.getReg() != 0 &&
201 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
202 (IndexReg.getReg() != 0 &&
203 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
204 return true;
205 return false;
206 }
207
208 /// StartsWithGlobalOffsetTable - Check if this expression starts with
209 /// _GLOBAL_OFFSET_TABLE_ and if it is of the form
210 /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
211 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
212 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
213 /// of a binary expression.
214 enum GlobalOffsetTableExprKind {
215 GOT_None,
216 GOT_Normal,
217 GOT_SymDiff
218 };
219 static GlobalOffsetTableExprKind
StartsWithGlobalOffsetTable(const MCExpr * Expr)220 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
221 const MCExpr *RHS = 0;
222 if (Expr->getKind() == MCExpr::Binary) {
223 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
224 Expr = BE->getLHS();
225 RHS = BE->getRHS();
226 }
227
228 if (Expr->getKind() != MCExpr::SymbolRef)
229 return GOT_None;
230
231 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
232 const MCSymbol &S = Ref->getSymbol();
233 if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
234 return GOT_None;
235 if (RHS && RHS->getKind() == MCExpr::SymbolRef)
236 return GOT_SymDiff;
237 return GOT_Normal;
238 }
239
240 void X86MCCodeEmitter::
EmitImmediate(const MCOperand & DispOp,SMLoc Loc,unsigned Size,MCFixupKind FixupKind,unsigned & CurByte,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,int ImmOffset) const241 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
242 MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
243 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
244 const MCExpr *Expr = NULL;
245 if (DispOp.isImm()) {
246 // If this is a simple integer displacement that doesn't require a
247 // relocation, emit it now.
248 if (FixupKind != FK_PCRel_1 &&
249 FixupKind != FK_PCRel_2 &&
250 FixupKind != FK_PCRel_4) {
251 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
252 return;
253 }
254 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
255 } else {
256 Expr = DispOp.getExpr();
257 }
258
259 // If we have an immoffset, add it to the expression.
260 if ((FixupKind == FK_Data_4 ||
261 FixupKind == FK_Data_8 ||
262 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
263 GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
264 if (Kind != GOT_None) {
265 assert(ImmOffset == 0);
266
267 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
268 if (Kind == GOT_Normal)
269 ImmOffset = CurByte;
270 } else if (Expr->getKind() == MCExpr::SymbolRef) {
271 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
272 if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
273 FixupKind = MCFixupKind(FK_SecRel_4);
274 }
275 }
276 }
277
278 // If the fixup is pc-relative, we need to bias the value to be relative to
279 // the start of the field, not the end of the field.
280 if (FixupKind == FK_PCRel_4 ||
281 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
282 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
283 ImmOffset -= 4;
284 if (FixupKind == FK_PCRel_2)
285 ImmOffset -= 2;
286 if (FixupKind == FK_PCRel_1)
287 ImmOffset -= 1;
288
289 if (ImmOffset)
290 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
291 Ctx);
292
293 // Emit a symbolic constant as a fixup and 4 zeros.
294 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
295 EmitConstant(0, Size, CurByte, OS);
296 }
297
EmitMemModRMByte(const MCInst & MI,unsigned Op,unsigned RegOpcodeField,uint64_t TSFlags,unsigned & CurByte,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups) const298 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
299 unsigned RegOpcodeField,
300 uint64_t TSFlags, unsigned &CurByte,
301 raw_ostream &OS,
302 SmallVectorImpl<MCFixup> &Fixups) const{
303 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
304 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
305 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
306 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
307 unsigned BaseReg = Base.getReg();
308
309 // Handle %rip relative addressing.
310 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
311 assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
312 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
313 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
314
315 unsigned FixupKind = X86::reloc_riprel_4byte;
316
317 // movq loads are handled with a special relocation form which allows the
318 // linker to eliminate some loads for GOT references which end up in the
319 // same linkage unit.
320 if (MI.getOpcode() == X86::MOV64rm)
321 FixupKind = X86::reloc_riprel_4byte_movq_load;
322
323 // rip-relative addressing is actually relative to the *next* instruction.
324 // Since an immediate can follow the mod/rm byte for an instruction, this
325 // means that we need to bias the immediate field of the instruction with
326 // the size of the immediate field. If we have this case, add it into the
327 // expression to emit.
328 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
329
330 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
331 CurByte, OS, Fixups, -ImmSize);
332 return;
333 }
334
335 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
336
337 // Determine whether a SIB byte is needed.
338 // If no BaseReg, issue a RIP relative instruction only if the MCE can
339 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
340 // 2-7) and absolute references.
341
342 if (// The SIB byte must be used if there is an index register.
343 IndexReg.getReg() == 0 &&
344 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
345 // encode to an R/M value of 4, which indicates that a SIB byte is
346 // present.
347 BaseRegNo != N86::ESP &&
348 // If there is no base register and we're in 64-bit mode, we need a SIB
349 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
350 (!is64BitMode() || BaseReg != 0)) {
351
352 if (BaseReg == 0) { // [disp32] in X86-32 mode
353 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
354 EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
355 return;
356 }
357
358 // If the base is not EBP/ESP and there is no displacement, use simple
359 // indirect register encoding, this handles addresses like [EAX]. The
360 // encoding for [EBP] with no displacement means [disp32] so we handle it
361 // by emitting a displacement of 0 below.
362 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
363 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
364 return;
365 }
366
367 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
368 if (Disp.isImm() && isDisp8(Disp.getImm())) {
369 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
370 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
371 return;
372 }
373
374 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
375 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
376 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
377 Fixups);
378 return;
379 }
380
381 // We need a SIB byte, so start by outputting the ModR/M byte first
382 assert(IndexReg.getReg() != X86::ESP &&
383 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
384
385 bool ForceDisp32 = false;
386 bool ForceDisp8 = false;
387 if (BaseReg == 0) {
388 // If there is no base register, we emit the special case SIB byte with
389 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
390 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
391 ForceDisp32 = true;
392 } else if (!Disp.isImm()) {
393 // Emit the normal disp32 encoding.
394 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
395 ForceDisp32 = true;
396 } else if (Disp.getImm() == 0 &&
397 // Base reg can't be anything that ends up with '5' as the base
398 // reg, it is the magic [*] nomenclature that indicates no base.
399 BaseRegNo != N86::EBP) {
400 // Emit no displacement ModR/M byte
401 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
402 } else if (isDisp8(Disp.getImm())) {
403 // Emit the disp8 encoding.
404 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
405 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
406 } else {
407 // Emit the normal disp32 encoding.
408 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
409 }
410
411 // Calculate what the SS field value should be...
412 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
413 unsigned SS = SSTable[Scale.getImm()];
414
415 if (BaseReg == 0) {
416 // Handle the SIB byte for the case where there is no base, see Intel
417 // Manual 2A, table 2-7. The displacement has already been output.
418 unsigned IndexRegNo;
419 if (IndexReg.getReg())
420 IndexRegNo = GetX86RegNum(IndexReg);
421 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
422 IndexRegNo = 4;
423 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
424 } else {
425 unsigned IndexRegNo;
426 if (IndexReg.getReg())
427 IndexRegNo = GetX86RegNum(IndexReg);
428 else
429 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
430 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
431 }
432
433 // Do we need to output a displacement?
434 if (ForceDisp8)
435 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
436 else if (ForceDisp32 || Disp.getImm() != 0)
437 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
438 CurByte, OS, Fixups);
439 }
440
441 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
442 /// called VEX.
EmitVEXOpcodePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,const MCInstrDesc & Desc,raw_ostream & OS) const443 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
444 int MemOperand, const MCInst &MI,
445 const MCInstrDesc &Desc,
446 raw_ostream &OS) const {
447 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
448 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
449 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
450
451 // VEX_R: opcode externsion equivalent to REX.R in
452 // 1's complement (inverted) form
453 //
454 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
455 // 0: Same as REX_R=1 (64 bit mode only)
456 //
457 unsigned char VEX_R = 0x1;
458
459 // VEX_X: equivalent to REX.X, only used when a
460 // register is used for index in SIB Byte.
461 //
462 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
463 // 0: Same as REX.X=1 (64-bit mode only)
464 unsigned char VEX_X = 0x1;
465
466 // VEX_B:
467 //
468 // 1: Same as REX_B=0 (ignored in 32-bit mode)
469 // 0: Same as REX_B=1 (64 bit mode only)
470 //
471 unsigned char VEX_B = 0x1;
472
473 // VEX_W: opcode specific (use like REX.W, or used for
474 // opcode extension, or ignored, depending on the opcode byte)
475 unsigned char VEX_W = 0;
476
477 // XOP: Use XOP prefix byte 0x8f instead of VEX.
478 unsigned char XOP = 0;
479
480 // VEX_5M (VEX m-mmmmm field):
481 //
482 // 0b00000: Reserved for future use
483 // 0b00001: implied 0F leading opcode
484 // 0b00010: implied 0F 38 leading opcode bytes
485 // 0b00011: implied 0F 3A leading opcode bytes
486 // 0b00100-0b11111: Reserved for future use
487 // 0b01000: XOP map select - 08h instructions with imm byte
488 // 0b10001: XOP map select - 09h instructions with no imm byte
489 unsigned char VEX_5M = 0x1;
490
491 // VEX_4V (VEX vvvv field): a register specifier
492 // (in 1's complement form) or 1111 if unused.
493 unsigned char VEX_4V = 0xf;
494
495 // VEX_L (Vector Length):
496 //
497 // 0: scalar or 128-bit vector
498 // 1: 256-bit vector
499 //
500 unsigned char VEX_L = 0;
501
502 // VEX_PP: opcode extension providing equivalent
503 // functionality of a SIMD prefix
504 //
505 // 0b00: None
506 // 0b01: 66
507 // 0b10: F3
508 // 0b11: F2
509 //
510 unsigned char VEX_PP = 0;
511
512 // Encode the operand size opcode prefix as needed.
513 if (TSFlags & X86II::OpSize)
514 VEX_PP = 0x01;
515
516 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
517 VEX_W = 1;
518
519 if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
520 XOP = 1;
521
522 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
523 VEX_L = 1;
524
525 switch (TSFlags & X86II::Op0Mask) {
526 default: llvm_unreachable("Invalid prefix!");
527 case X86II::T8: // 0F 38
528 VEX_5M = 0x2;
529 break;
530 case X86II::TA: // 0F 3A
531 VEX_5M = 0x3;
532 break;
533 case X86II::T8XS: // F3 0F 38
534 VEX_PP = 0x2;
535 VEX_5M = 0x2;
536 break;
537 case X86II::T8XD: // F2 0F 38
538 VEX_PP = 0x3;
539 VEX_5M = 0x2;
540 break;
541 case X86II::TAXD: // F2 0F 3A
542 VEX_PP = 0x3;
543 VEX_5M = 0x3;
544 break;
545 case X86II::XS: // F3 0F
546 VEX_PP = 0x2;
547 break;
548 case X86II::XD: // F2 0F
549 VEX_PP = 0x3;
550 break;
551 case X86II::XOP8:
552 VEX_5M = 0x8;
553 break;
554 case X86II::XOP9:
555 VEX_5M = 0x9;
556 break;
557 case X86II::A6: // Bypass: Not used by VEX
558 case X86II::A7: // Bypass: Not used by VEX
559 case X86II::TB: // Bypass: Not used by VEX
560 case 0:
561 break; // No prefix!
562 }
563
564
565 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
566 unsigned NumOps = Desc.getNumOperands();
567 unsigned CurOp = 0;
568 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
569 ++CurOp;
570 else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
571 assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
572 // Special case for GATHER with 2 TIED_TO operands
573 // Skip the first 2 operands: dst, mask_wb
574 CurOp += 2;
575 }
576
577 switch (TSFlags & X86II::FormMask) {
578 case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
579 case X86II::MRMDestMem: {
580 // MRMDestMem instructions forms:
581 // MemAddr, src1(ModR/M)
582 // MemAddr, src1(VEX_4V), src2(ModR/M)
583 // MemAddr, src1(ModR/M), imm8
584 //
585 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
586 VEX_B = 0x0;
587 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
588 VEX_X = 0x0;
589
590 CurOp = X86::AddrNumOperands;
591 if (HasVEX_4V)
592 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
593
594 const MCOperand &MO = MI.getOperand(CurOp);
595 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
596 VEX_R = 0x0;
597 break;
598 }
599 case X86II::MRMSrcMem:
600 // MRMSrcMem instructions forms:
601 // src1(ModR/M), MemAddr
602 // src1(ModR/M), src2(VEX_4V), MemAddr
603 // src1(ModR/M), MemAddr, imm8
604 // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
605 //
606 // FMA4:
607 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
608 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
609 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp++).getReg()))
610 VEX_R = 0x0;
611
612 if (HasVEX_4V)
613 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
614
615 if (X86II::isX86_64ExtendedReg(
616 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
617 VEX_B = 0x0;
618 if (X86II::isX86_64ExtendedReg(
619 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
620 VEX_X = 0x0;
621
622 if (HasVEX_4VOp3)
623 // Instruction format for 4VOp3:
624 // src1(ModR/M), MemAddr, src3(VEX_4V)
625 // CurOp points to start of the MemoryOperand,
626 // it skips TIED_TO operands if exist, then increments past src1.
627 // CurOp + X86::AddrNumOperands will point to src3.
628 VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
629 break;
630 case X86II::MRM0m: case X86II::MRM1m:
631 case X86II::MRM2m: case X86II::MRM3m:
632 case X86II::MRM4m: case X86II::MRM5m:
633 case X86II::MRM6m: case X86II::MRM7m: {
634 // MRM[0-9]m instructions forms:
635 // MemAddr
636 // src1(VEX_4V), MemAddr
637 if (HasVEX_4V)
638 VEX_4V = getVEXRegisterEncoding(MI, 0);
639
640 if (X86II::isX86_64ExtendedReg(
641 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
642 VEX_B = 0x0;
643 if (X86II::isX86_64ExtendedReg(
644 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
645 VEX_X = 0x0;
646 break;
647 }
648 case X86II::MRMSrcReg:
649 // MRMSrcReg instructions forms:
650 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
651 // dst(ModR/M), src1(ModR/M)
652 // dst(ModR/M), src1(ModR/M), imm8
653 //
654 // FMA4:
655 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
656 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
657 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
658 VEX_R = 0x0;
659 CurOp++;
660
661 if (HasVEX_4V)
662 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
663
664 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
665 CurOp++;
666
667 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
668 VEX_B = 0x0;
669 CurOp++;
670 if (HasVEX_4VOp3)
671 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
672 break;
673 case X86II::MRMDestReg:
674 // MRMDestReg instructions forms:
675 // dst(ModR/M), src(ModR/M)
676 // dst(ModR/M), src(ModR/M), imm8
677 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
678 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
679 VEX_B = 0x0;
680 CurOp++;
681
682 if (HasVEX_4V)
683 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
684
685 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
686 VEX_R = 0x0;
687 break;
688 case X86II::MRM0r: case X86II::MRM1r:
689 case X86II::MRM2r: case X86II::MRM3r:
690 case X86II::MRM4r: case X86II::MRM5r:
691 case X86II::MRM6r: case X86II::MRM7r:
692 // MRM0r-MRM7r instructions forms:
693 // dst(VEX_4V), src(ModR/M), imm8
694 VEX_4V = getVEXRegisterEncoding(MI, 0);
695 if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
696 VEX_B = 0x0;
697 break;
698 default: // RawFrm
699 break;
700 }
701
702 // Emit segment override opcode prefix as needed.
703 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
704
705 // VEX opcode prefix can have 2 or 3 bytes
706 //
707 // 3 bytes:
708 // +-----+ +--------------+ +-------------------+
709 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
710 // +-----+ +--------------+ +-------------------+
711 // 2 bytes:
712 // +-----+ +-------------------+
713 // | C5h | | R | vvvv | L | pp |
714 // +-----+ +-------------------+
715 //
716 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
717
718 if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
719 EmitByte(0xC5, CurByte, OS);
720 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
721 return;
722 }
723
724 // 3 byte VEX prefix
725 EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
726 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
727 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
728 }
729
730 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
731 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
732 /// size, and 3) use of X86-64 extended registers.
DetermineREXPrefix(const MCInst & MI,uint64_t TSFlags,const MCInstrDesc & Desc)733 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
734 const MCInstrDesc &Desc) {
735 unsigned REX = 0;
736 if (TSFlags & X86II::REX_W)
737 REX |= 1 << 3; // set REX.W
738
739 if (MI.getNumOperands() == 0) return REX;
740
741 unsigned NumOps = MI.getNumOperands();
742 // FIXME: MCInst should explicitize the two-addrness.
743 bool isTwoAddr = NumOps > 1 &&
744 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
745
746 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
747 unsigned i = isTwoAddr ? 1 : 0;
748 for (; i != NumOps; ++i) {
749 const MCOperand &MO = MI.getOperand(i);
750 if (!MO.isReg()) continue;
751 unsigned Reg = MO.getReg();
752 if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
753 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
754 // that returns non-zero.
755 REX |= 0x40; // REX fixed encoding prefix
756 break;
757 }
758
759 switch (TSFlags & X86II::FormMask) {
760 case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
761 case X86II::MRMSrcReg:
762 if (MI.getOperand(0).isReg() &&
763 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
764 REX |= 1 << 2; // set REX.R
765 i = isTwoAddr ? 2 : 1;
766 for (; i != NumOps; ++i) {
767 const MCOperand &MO = MI.getOperand(i);
768 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
769 REX |= 1 << 0; // set REX.B
770 }
771 break;
772 case X86II::MRMSrcMem: {
773 if (MI.getOperand(0).isReg() &&
774 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
775 REX |= 1 << 2; // set REX.R
776 unsigned Bit = 0;
777 i = isTwoAddr ? 2 : 1;
778 for (; i != NumOps; ++i) {
779 const MCOperand &MO = MI.getOperand(i);
780 if (MO.isReg()) {
781 if (X86II::isX86_64ExtendedReg(MO.getReg()))
782 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
783 Bit++;
784 }
785 }
786 break;
787 }
788 case X86II::MRM0m: case X86II::MRM1m:
789 case X86II::MRM2m: case X86II::MRM3m:
790 case X86II::MRM4m: case X86II::MRM5m:
791 case X86II::MRM6m: case X86II::MRM7m:
792 case X86II::MRMDestMem: {
793 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
794 i = isTwoAddr ? 1 : 0;
795 if (NumOps > e && MI.getOperand(e).isReg() &&
796 X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
797 REX |= 1 << 2; // set REX.R
798 unsigned Bit = 0;
799 for (; i != e; ++i) {
800 const MCOperand &MO = MI.getOperand(i);
801 if (MO.isReg()) {
802 if (X86II::isX86_64ExtendedReg(MO.getReg()))
803 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
804 Bit++;
805 }
806 }
807 break;
808 }
809 default:
810 if (MI.getOperand(0).isReg() &&
811 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
812 REX |= 1 << 0; // set REX.B
813 i = isTwoAddr ? 2 : 1;
814 for (unsigned e = NumOps; i != e; ++i) {
815 const MCOperand &MO = MI.getOperand(i);
816 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
817 REX |= 1 << 2; // set REX.R
818 }
819 break;
820 }
821 return REX;
822 }
823
824 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
EmitSegmentOverridePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,raw_ostream & OS) const825 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
826 unsigned &CurByte, int MemOperand,
827 const MCInst &MI,
828 raw_ostream &OS) const {
829 switch (TSFlags & X86II::SegOvrMask) {
830 default: llvm_unreachable("Invalid segment!");
831 case 0:
832 // No segment override, check for explicit one on memory operand.
833 if (MemOperand != -1) { // If the instruction has a memory operand.
834 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
835 default: llvm_unreachable("Unknown segment register!");
836 case 0: break;
837 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
838 case X86::SS: EmitByte(0x36, CurByte, OS); break;
839 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
840 case X86::ES: EmitByte(0x26, CurByte, OS); break;
841 case X86::FS: EmitByte(0x64, CurByte, OS); break;
842 case X86::GS: EmitByte(0x65, CurByte, OS); break;
843 }
844 }
845 break;
846 case X86II::FS:
847 EmitByte(0x64, CurByte, OS);
848 break;
849 case X86II::GS:
850 EmitByte(0x65, CurByte, OS);
851 break;
852 }
853 }
854
855 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
856 ///
857 /// MemOperand is the operand # of the start of a memory operand if present. If
858 /// Not present, it is -1.
EmitOpcodePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,const MCInstrDesc & Desc,raw_ostream & OS) const859 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
860 int MemOperand, const MCInst &MI,
861 const MCInstrDesc &Desc,
862 raw_ostream &OS) const {
863
864 // Emit the lock opcode prefix as needed.
865 if (TSFlags & X86II::LOCK)
866 EmitByte(0xF0, CurByte, OS);
867
868 // Emit segment override opcode prefix as needed.
869 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
870
871 // Emit the repeat opcode prefix as needed.
872 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
873 EmitByte(0xF3, CurByte, OS);
874
875 // Emit the address size opcode prefix as needed.
876 bool need_address_override;
877 if (TSFlags & X86II::AdSize) {
878 need_address_override = true;
879 } else if (MemOperand == -1) {
880 need_address_override = false;
881 } else if (is64BitMode()) {
882 assert(!Is16BitMemOperand(MI, MemOperand));
883 need_address_override = Is32BitMemOperand(MI, MemOperand);
884 } else if (is32BitMode()) {
885 assert(!Is64BitMemOperand(MI, MemOperand));
886 need_address_override = Is16BitMemOperand(MI, MemOperand);
887 } else {
888 need_address_override = false;
889 }
890
891 if (need_address_override)
892 EmitByte(0x67, CurByte, OS);
893
894 // Emit the operand size opcode prefix as needed.
895 if (TSFlags & X86II::OpSize)
896 EmitByte(0x66, CurByte, OS);
897
898 bool Need0FPrefix = false;
899 switch (TSFlags & X86II::Op0Mask) {
900 default: llvm_unreachable("Invalid prefix!");
901 case 0: break; // No prefix!
902 case X86II::REP: break; // already handled.
903 case X86II::TB: // Two-byte opcode prefix
904 case X86II::T8: // 0F 38
905 case X86II::TA: // 0F 3A
906 case X86II::A6: // 0F A6
907 case X86II::A7: // 0F A7
908 Need0FPrefix = true;
909 break;
910 case X86II::T8XS: // F3 0F 38
911 EmitByte(0xF3, CurByte, OS);
912 Need0FPrefix = true;
913 break;
914 case X86II::T8XD: // F2 0F 38
915 EmitByte(0xF2, CurByte, OS);
916 Need0FPrefix = true;
917 break;
918 case X86II::TAXD: // F2 0F 3A
919 EmitByte(0xF2, CurByte, OS);
920 Need0FPrefix = true;
921 break;
922 case X86II::XS: // F3 0F
923 EmitByte(0xF3, CurByte, OS);
924 Need0FPrefix = true;
925 break;
926 case X86II::XD: // F2 0F
927 EmitByte(0xF2, CurByte, OS);
928 Need0FPrefix = true;
929 break;
930 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
931 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
932 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
933 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
934 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
935 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
936 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
937 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
938 }
939
940 // Handle REX prefix.
941 // FIXME: Can this come before F2 etc to simplify emission?
942 if (is64BitMode()) {
943 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
944 EmitByte(0x40 | REX, CurByte, OS);
945 }
946
947 // 0x0F escape code must be emitted just before the opcode.
948 if (Need0FPrefix)
949 EmitByte(0x0F, CurByte, OS);
950
951 // FIXME: Pull this up into previous switch if REX can be moved earlier.
952 switch (TSFlags & X86II::Op0Mask) {
953 case X86II::T8XS: // F3 0F 38
954 case X86II::T8XD: // F2 0F 38
955 case X86II::T8: // 0F 38
956 EmitByte(0x38, CurByte, OS);
957 break;
958 case X86II::TAXD: // F2 0F 3A
959 case X86II::TA: // 0F 3A
960 EmitByte(0x3A, CurByte, OS);
961 break;
962 case X86II::A6: // 0F A6
963 EmitByte(0xA6, CurByte, OS);
964 break;
965 case X86II::A7: // 0F A7
966 EmitByte(0xA7, CurByte, OS);
967 break;
968 }
969 }
970
971 void X86MCCodeEmitter::
EncodeInstruction(const MCInst & MI,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups) const972 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
973 SmallVectorImpl<MCFixup> &Fixups) const {
974 unsigned Opcode = MI.getOpcode();
975 const MCInstrDesc &Desc = MCII.get(Opcode);
976 uint64_t TSFlags = Desc.TSFlags;
977
978 // Pseudo instructions don't get encoded.
979 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
980 return;
981
982 // If this is a two-address instruction, skip one of the register operands.
983 // FIXME: This should be handled during MCInst lowering.
984 unsigned NumOps = Desc.getNumOperands();
985 unsigned CurOp = 0;
986 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
987 ++CurOp;
988 else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
989 assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
990 // Special case for GATHER with 2 TIED_TO operands
991 // Skip the first 2 operands: dst, mask_wb
992 CurOp += 2;
993 }
994
995 // Keep track of the current byte being emitted.
996 unsigned CurByte = 0;
997
998 // Is this instruction encoded using the AVX VEX prefix?
999 bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
1000
1001 // It uses the VEX.VVVV field?
1002 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1003 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1004 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1005 const unsigned MemOp4_I8IMMOperand = 2;
1006
1007 // Determine where the memory operand starts, if present.
1008 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1009 if (MemoryOperand != -1) MemoryOperand += CurOp;
1010
1011 if (!HasVEXPrefix)
1012 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1013 else
1014 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1015
1016 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1017
1018 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1019 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1020
1021 unsigned SrcRegNum = 0;
1022 switch (TSFlags & X86II::FormMask) {
1023 case X86II::MRMInitReg:
1024 llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1025 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1026 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1027 case X86II::Pseudo:
1028 llvm_unreachable("Pseudo instruction shouldn't be emitted");
1029 case X86II::RawFrm:
1030 EmitByte(BaseOpcode, CurByte, OS);
1031 break;
1032 case X86II::RawFrmImm8:
1033 EmitByte(BaseOpcode, CurByte, OS);
1034 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1035 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1036 CurByte, OS, Fixups);
1037 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1038 OS, Fixups);
1039 break;
1040 case X86II::RawFrmImm16:
1041 EmitByte(BaseOpcode, CurByte, OS);
1042 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1043 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1044 CurByte, OS, Fixups);
1045 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1046 OS, Fixups);
1047 break;
1048
1049 case X86II::AddRegFrm:
1050 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1051 break;
1052
1053 case X86II::MRMDestReg:
1054 EmitByte(BaseOpcode, CurByte, OS);
1055 SrcRegNum = CurOp + 1;
1056
1057 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1058 ++SrcRegNum;
1059
1060 EmitRegModRMByte(MI.getOperand(CurOp),
1061 GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1062 CurOp = SrcRegNum + 1;
1063 break;
1064
1065 case X86II::MRMDestMem:
1066 EmitByte(BaseOpcode, CurByte, OS);
1067 SrcRegNum = CurOp + X86::AddrNumOperands;
1068
1069 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1070 ++SrcRegNum;
1071
1072 EmitMemModRMByte(MI, CurOp,
1073 GetX86RegNum(MI.getOperand(SrcRegNum)),
1074 TSFlags, CurByte, OS, Fixups);
1075 CurOp = SrcRegNum + 1;
1076 break;
1077
1078 case X86II::MRMSrcReg:
1079 EmitByte(BaseOpcode, CurByte, OS);
1080 SrcRegNum = CurOp + 1;
1081
1082 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1083 ++SrcRegNum;
1084
1085 if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1086 ++SrcRegNum;
1087
1088 EmitRegModRMByte(MI.getOperand(SrcRegNum),
1089 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1090
1091 // 2 operands skipped with HasMemOp4, compensate accordingly
1092 CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1093 if (HasVEX_4VOp3)
1094 ++CurOp;
1095 break;
1096
1097 case X86II::MRMSrcMem: {
1098 int AddrOperands = X86::AddrNumOperands;
1099 unsigned FirstMemOp = CurOp+1;
1100 if (HasVEX_4V) {
1101 ++AddrOperands;
1102 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1103 }
1104 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1105 ++FirstMemOp;
1106
1107 EmitByte(BaseOpcode, CurByte, OS);
1108
1109 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1110 TSFlags, CurByte, OS, Fixups);
1111 CurOp += AddrOperands + 1;
1112 if (HasVEX_4VOp3)
1113 ++CurOp;
1114 break;
1115 }
1116
1117 case X86II::MRM0r: case X86II::MRM1r:
1118 case X86II::MRM2r: case X86II::MRM3r:
1119 case X86II::MRM4r: case X86II::MRM5r:
1120 case X86II::MRM6r: case X86II::MRM7r:
1121 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1122 ++CurOp;
1123 EmitByte(BaseOpcode, CurByte, OS);
1124 EmitRegModRMByte(MI.getOperand(CurOp++),
1125 (TSFlags & X86II::FormMask)-X86II::MRM0r,
1126 CurByte, OS);
1127 break;
1128 case X86II::MRM0m: case X86II::MRM1m:
1129 case X86II::MRM2m: case X86II::MRM3m:
1130 case X86II::MRM4m: case X86II::MRM5m:
1131 case X86II::MRM6m: case X86II::MRM7m:
1132 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1133 ++CurOp;
1134 EmitByte(BaseOpcode, CurByte, OS);
1135 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1136 TSFlags, CurByte, OS, Fixups);
1137 CurOp += X86::AddrNumOperands;
1138 break;
1139 case X86II::MRM_C1: case X86II::MRM_C2:
1140 case X86II::MRM_C3: case X86II::MRM_C4:
1141 case X86II::MRM_C8: case X86II::MRM_C9:
1142 case X86II::MRM_D0: case X86II::MRM_D1:
1143 case X86II::MRM_D4: case X86II::MRM_D5:
1144 case X86II::MRM_D8: case X86II::MRM_D9:
1145 case X86II::MRM_DA: case X86II::MRM_DB:
1146 case X86II::MRM_DC: case X86II::MRM_DD:
1147 case X86II::MRM_DE: case X86II::MRM_DF:
1148 case X86II::MRM_E8: case X86II::MRM_F0:
1149 case X86II::MRM_F8: case X86II::MRM_F9:
1150 EmitByte(BaseOpcode, CurByte, OS);
1151
1152 unsigned char MRM;
1153 switch (TSFlags & X86II::FormMask) {
1154 default: llvm_unreachable("Invalid Form");
1155 case X86II::MRM_C1: MRM = 0xC1; break;
1156 case X86II::MRM_C2: MRM = 0xC2; break;
1157 case X86II::MRM_C3: MRM = 0xC3; break;
1158 case X86II::MRM_C4: MRM = 0xC4; break;
1159 case X86II::MRM_C8: MRM = 0xC8; break;
1160 case X86II::MRM_C9: MRM = 0xC9; break;
1161 case X86II::MRM_D0: MRM = 0xD0; break;
1162 case X86II::MRM_D1: MRM = 0xD1; break;
1163 case X86II::MRM_D4: MRM = 0xD4; break;
1164 case X86II::MRM_D5: MRM = 0xD5; break;
1165 case X86II::MRM_D8: MRM = 0xD8; break;
1166 case X86II::MRM_D9: MRM = 0xD9; break;
1167 case X86II::MRM_DA: MRM = 0xDA; break;
1168 case X86II::MRM_DB: MRM = 0xDB; break;
1169 case X86II::MRM_DC: MRM = 0xDC; break;
1170 case X86II::MRM_DD: MRM = 0xDD; break;
1171 case X86II::MRM_DE: MRM = 0xDE; break;
1172 case X86II::MRM_DF: MRM = 0xDF; break;
1173 case X86II::MRM_E8: MRM = 0xE8; break;
1174 case X86II::MRM_F0: MRM = 0xF0; break;
1175 case X86II::MRM_F8: MRM = 0xF8; break;
1176 case X86II::MRM_F9: MRM = 0xF9; break;
1177 }
1178 EmitByte(MRM, CurByte, OS);
1179 break;
1180 }
1181
1182 // If there is a remaining operand, it must be a trailing immediate. Emit it
1183 // according to the right size for the instruction. Some instructions
1184 // (SSE4a extrq and insertq) have two trailing immediates.
1185 while (CurOp != NumOps && NumOps - CurOp <= 2) {
1186 // The last source register of a 4 operand instruction in AVX is encoded
1187 // in bits[7:4] of a immediate byte.
1188 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1189 const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1190 : CurOp);
1191 ++CurOp;
1192 unsigned RegNum = GetX86RegNum(MO) << 4;
1193 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1194 RegNum |= 1 << 7;
1195 // If there is an additional 5th operand it must be an immediate, which
1196 // is encoded in bits[3:0]
1197 if (CurOp != NumOps) {
1198 const MCOperand &MIMM = MI.getOperand(CurOp++);
1199 if (MIMM.isImm()) {
1200 unsigned Val = MIMM.getImm();
1201 assert(Val < 16 && "Immediate operand value out of range");
1202 RegNum |= Val;
1203 }
1204 }
1205 EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1206 CurByte, OS, Fixups);
1207 } else {
1208 unsigned FixupKind;
1209 // FIXME: Is there a better way to know that we need a signed relocation?
1210 if (MI.getOpcode() == X86::ADD64ri32 ||
1211 MI.getOpcode() == X86::MOV64ri32 ||
1212 MI.getOpcode() == X86::MOV64mi32 ||
1213 MI.getOpcode() == X86::PUSH64i32)
1214 FixupKind = X86::reloc_signed_4byte;
1215 else
1216 FixupKind = getImmFixupKind(TSFlags);
1217 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1218 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1219 CurByte, OS, Fixups);
1220 }
1221 }
1222
1223 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1224 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1225
1226 #ifndef NDEBUG
1227 // FIXME: Verify.
1228 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1229 errs() << "Cannot encode all operands of: ";
1230 MI.dump();
1231 errs() << '\n';
1232 abort();
1233 }
1234 #endif
1235 }
1236