• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                           "#ADJCALLSTACKDOWN",
48                           [(X86callseq_start timm:$amt)]>,
49                          Requires<[In32BitMode]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[In32BitMode]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                           "#ADJCALLSTACKDOWN",
64                           [(X86callseq_start timm:$amt)]>,
65                          Requires<[In64BitMode]>;
66def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                           "#ADJCALLSTACKUP",
68                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                          Requires<[In64BitMode]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1 in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                              (outs),
78                              (ins GR8:$al,
79                                   i64imm:$regsavefi, i64imm:$offset,
80                                   variable_ops),
81                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                              [(X86vastart_save_xmm_regs GR8:$al,
83                                                         imm:$regsavefi,
84                                                         imm:$offset)]>;
85
86// The VAARG_64 pseudo-instruction takes the address of the va_list,
87// and places the address of the next argument into a register.
88let Defs = [EFLAGS] in
89def VAARG_64 : I<0, Pseudo,
90                 (outs GR64:$dst),
91                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
93                 [(set GR64:$dst,
94                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95                  (implicit EFLAGS)]>;
96
97// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
98// targets.  These calls are needed to probe the stack when allocating more than
99// 4k bytes in one go. Touching the stack at 4K increments is necessary to
100// ensure that the guard pages used by the OS virtual memory manager are
101// allocated in correct sequence.
102// The main point of having separate instruction are extra unmodelled effects
103// (compared to ordinary calls) like stack pointer change.
104
105let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
107                     "# dynamic stack allocation",
108                     [(X86WinAlloca)]>;
109
110// When using segmented stacks these are lowered into instructions which first
111// check if the current stacklet has enough free memory. If it does, memory is
112// allocated by bumping the stack pointer. Otherwise memory is allocated from
113// the heap.
114
115let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
116def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
117                      "# variable sized alloca for segmented stacks",
118                      [(set GR32:$dst,
119                         (X86SegAlloca GR32:$size))]>,
120                    Requires<[In32BitMode]>;
121
122let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
123def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
124                      "# variable sized alloca for segmented stacks",
125                      [(set GR64:$dst,
126                         (X86SegAlloca GR64:$size))]>,
127                    Requires<[In64BitMode]>;
128}
129
130// The MSVC runtime contains an _ftol2 routine for converting floating-point
131// to integer values. It has a strange calling convention: the input is
132// popped from the x87 stack, and the return value is given in EDX:EAX. No
133// other registers (aside from flags) are touched.
134// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
135// variant is unnecessary.
136
137let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in {
138  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
139                      "# win32 fptoui",
140                      [(X86WinFTOL RFP32:$src)]>,
141                    Requires<[In32BitMode]>;
142
143  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
144                      "# win32 fptoui",
145                      [(X86WinFTOL RFP64:$src)]>,
146                    Requires<[In32BitMode]>;
147}
148
149//===----------------------------------------------------------------------===//
150// EH Pseudo Instructions
151//
152let isTerminator = 1, isReturn = 1, isBarrier = 1,
153    hasCtrlDep = 1, isCodeGenOnly = 1 in {
154def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
155                    "ret\t#eh_return, addr: $addr",
156                    [(X86ehret GR32:$addr)], IIC_RET>;
157
158}
159
160let isTerminator = 1, isReturn = 1, isBarrier = 1,
161    hasCtrlDep = 1, isCodeGenOnly = 1 in {
162def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
163                     "ret\t#eh_return, addr: $addr",
164                     [(X86ehret GR64:$addr)], IIC_RET>;
165
166}
167
168let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
169    usesCustomInserter = 1 in {
170  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
171                            "#EH_SJLJ_SETJMP32",
172                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
173                          Requires<[In32BitMode]>;
174  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
175                            "#EH_SJLJ_SETJMP64",
176                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
177                          Requires<[In64BitMode]>;
178  let isTerminator = 1 in {
179  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
180                            "#EH_SJLJ_LONGJMP32",
181                            [(X86eh_sjlj_longjmp addr:$buf)]>,
182                          Requires<[In32BitMode]>;
183  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
184                            "#EH_SJLJ_LONGJMP64",
185                            [(X86eh_sjlj_longjmp addr:$buf)]>,
186                          Requires<[In64BitMode]>;
187  }
188}
189
190let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
191  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
192                        "#EH_SjLj_Setup\t$dst", []>;
193}
194
195//===----------------------------------------------------------------------===//
196// Pseudo instructions used by segmented stacks.
197//
198
199// This is lowered into a RET instruction by MCInstLower.  We need
200// this so that we don't have to have a MachineBasicBlock which ends
201// with a RET and also has successors.
202let isPseudo = 1 in {
203def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
204                          "", []>;
205
206// This instruction is lowered to a RET followed by a MOV.  The two
207// instructions are not generated on a higher level since then the
208// verifier sees a MachineBasicBlock ending with a non-terminator.
209def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
210                                  "", []>;
211}
212
213//===----------------------------------------------------------------------===//
214// Alias Instructions
215//===----------------------------------------------------------------------===//
216
217// Alias instructions that map movr0 to xor.
218// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
219// FIXME: Set encoding to pseudo.
220let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
221    isCodeGenOnly = 1 in {
222def MOV8r0   : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
223                 [(set GR8:$dst, 0)], IIC_ALU_NONMEM>;
224
225// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
226// encoding and avoids a partial-register update sometimes, but doing so
227// at isel time interferes with rematerialization in the current register
228// allocator. For now, this is rewritten when the instruction is lowered
229// to an MCInst.
230def MOV16r0   : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
231                 "",
232                 [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize;
233
234// FIXME: Set encoding to pseudo.
235def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
236                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>;
237}
238
239// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
240// smaller encoding, but doing so at isel time interferes with rematerialization
241// in the current register allocator. For now, this is rewritten when the
242// instruction is lowered to an MCInst.
243// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
244// when we have a better way to specify isel priority.
245let Defs = [EFLAGS], isCodeGenOnly=1,
246    AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
247def MOV64r0   : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
248                 [(set GR64:$dst, 0)], IIC_ALU_NONMEM>;
249
250// Materialize i64 constant where top 32-bits are zero. This could theoretically
251// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
252// that would make it more difficult to rematerialize.
253let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
254    isCodeGenOnly = 1 in
255def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
256                        "", [(set GR64:$dst, i64immZExt32:$src)],
257                        IIC_ALU_NONMEM>;
258
259// Use sbb to materialize carry bit.
260let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1 in {
261// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
262// However, Pat<> can't replicate the destination reg into the inputs of the
263// result.
264def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
265                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
266def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
267                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
268def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
269                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
270def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
271                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
272} // isCodeGenOnly
273
274
275def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
276          (SETB_C16r)>;
277def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
278          (SETB_C32r)>;
279def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
280          (SETB_C64r)>;
281
282def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
283          (SETB_C16r)>;
284def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
285          (SETB_C32r)>;
286def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
287          (SETB_C64r)>;
288
289// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
290// will be eliminated and that the sbb can be extended up to a wider type.  When
291// this happens, it is great.  However, if we are left with an 8-bit sbb and an
292// and, we might as well just match it as a setb.
293def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
294          (SETBr)>;
295
296// (add OP, SETB) -> (adc OP, 0)
297def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
298          (ADC8ri GR8:$op, 0)>;
299def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
300          (ADC32ri8 GR32:$op, 0)>;
301def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
302          (ADC64ri8 GR64:$op, 0)>;
303
304// (sub OP, SETB) -> (sbb OP, 0)
305def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
306          (SBB8ri GR8:$op, 0)>;
307def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
308          (SBB32ri8 GR32:$op, 0)>;
309def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
310          (SBB64ri8 GR64:$op, 0)>;
311
312// (sub OP, SETCC_CARRY) -> (adc OP, 0)
313def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
314          (ADC8ri GR8:$op, 0)>;
315def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
316          (ADC32ri8 GR32:$op, 0)>;
317def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
318          (ADC64ri8 GR64:$op, 0)>;
319
320//===----------------------------------------------------------------------===//
321// String Pseudo Instructions
322//
323let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
324def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
325                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
326                   Requires<[In32BitMode]>;
327def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
328                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
329                   Requires<[In32BitMode]>;
330def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
331                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
332                   Requires<[In32BitMode]>;
333}
334
335let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
336def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
337                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
338                   Requires<[In64BitMode]>;
339def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
340                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
341                   Requires<[In64BitMode]>;
342def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
343                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
344                   Requires<[In64BitMode]>;
345def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
346                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
347                   Requires<[In64BitMode]>;
348}
349
350// FIXME: Should use "(X86rep_stos AL)" as the pattern.
351let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
352  let Uses = [AL,ECX,EDI] in
353  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
354                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
355                     Requires<[In32BitMode]>;
356  let Uses = [AX,ECX,EDI] in
357  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
358                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
359                     Requires<[In32BitMode]>;
360  let Uses = [EAX,ECX,EDI] in
361  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
362                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
363                     Requires<[In32BitMode]>;
364}
365
366let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
367  let Uses = [AL,RCX,RDI] in
368  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
369                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
370                     Requires<[In64BitMode]>;
371  let Uses = [AX,RCX,RDI] in
372  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
373                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
374                     Requires<[In64BitMode]>;
375  let Uses = [RAX,RCX,RDI] in
376  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
377                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
378                     Requires<[In64BitMode]>;
379
380  let Uses = [RAX,RCX,RDI] in
381  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
382                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
383                     Requires<[In64BitMode]>;
384}
385
386//===----------------------------------------------------------------------===//
387// Thread Local Storage Instructions
388//
389
390// ELF TLS Support
391// All calls clobber the non-callee saved registers. ESP is marked as
392// a use to prevent stack-pointer assignments that appear immediately
393// before calls from potentially appearing dead.
394let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
395            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
396            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
397            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
398    Uses = [ESP] in {
399def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
400                  "# TLS_addr32",
401                  [(X86tlsaddr tls32addr:$sym)]>,
402                  Requires<[In32BitMode]>;
403def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
404                  "# TLS_base_addr32",
405                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
406                  Requires<[In32BitMode]>;
407}
408
409// All calls clobber the non-callee saved registers. RSP is marked as
410// a use to prevent stack-pointer assignments that appear immediately
411// before calls from potentially appearing dead.
412let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
413            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
414            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
415            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
416            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
417    Uses = [RSP] in {
418def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
419                   "# TLS_addr64",
420                  [(X86tlsaddr tls64addr:$sym)]>,
421                  Requires<[In64BitMode]>;
422def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
423                   "# TLS_base_addr64",
424                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
425                  Requires<[In64BitMode]>;
426}
427
428// Darwin TLS Support
429// For i386, the address of the thunk is passed on the stack, on return the
430// address of the variable is in %eax.  %ecx is trashed during the function
431// call.  All other registers are preserved.
432let Defs = [EAX, ECX, EFLAGS],
433    Uses = [ESP],
434    usesCustomInserter = 1 in
435def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
436                "# TLSCall_32",
437                [(X86TLSCall addr:$sym)]>,
438                Requires<[In32BitMode]>;
439
440// For x86_64, the address of the thunk is passed in %rdi, on return
441// the address of the variable is in %rax.  All other registers are preserved.
442let Defs = [RAX, EFLAGS],
443    Uses = [RSP, RDI],
444    usesCustomInserter = 1 in
445def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
446                  "# TLSCall_64",
447                  [(X86TLSCall addr:$sym)]>,
448                  Requires<[In64BitMode]>;
449
450
451//===----------------------------------------------------------------------===//
452// Conditional Move Pseudo Instructions
453
454// X86 doesn't have 8-bit conditional moves. Use a customInserter to
455// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
456// however that requires promoting the operands, and can induce additional
457// i8 register pressure.
458let usesCustomInserter = 1, Uses = [EFLAGS] in {
459def CMOV_GR8 : I<0, Pseudo,
460                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
461                 "#CMOV_GR8 PSEUDO!",
462                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
463                                          imm:$cond, EFLAGS))]>;
464
465let Predicates = [NoCMov] in {
466def CMOV_GR32 : I<0, Pseudo,
467                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
468                    "#CMOV_GR32* PSEUDO!",
469                    [(set GR32:$dst,
470                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
471def CMOV_GR16 : I<0, Pseudo,
472                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
473                    "#CMOV_GR16* PSEUDO!",
474                    [(set GR16:$dst,
475                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
476} // Predicates = [NoCMov]
477
478// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
479// SSE1.
480let Predicates = [FPStackf32] in
481def CMOV_RFP32 : I<0, Pseudo,
482                    (outs RFP32:$dst),
483                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
484                    "#CMOV_RFP32 PSEUDO!",
485                    [(set RFP32:$dst,
486                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
487                                                  EFLAGS))]>;
488// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
489// SSE2.
490let Predicates = [FPStackf64] in
491def CMOV_RFP64 : I<0, Pseudo,
492                    (outs RFP64:$dst),
493                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
494                    "#CMOV_RFP64 PSEUDO!",
495                    [(set RFP64:$dst,
496                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
497                                                  EFLAGS))]>;
498def CMOV_RFP80 : I<0, Pseudo,
499                    (outs RFP80:$dst),
500                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
501                    "#CMOV_RFP80 PSEUDO!",
502                    [(set RFP80:$dst,
503                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
504                                                  EFLAGS))]>;
505} // UsesCustomInserter = 1, Uses = [EFLAGS]
506
507
508//===----------------------------------------------------------------------===//
509// Atomic Instruction Pseudo Instructions
510//===----------------------------------------------------------------------===//
511
512// Pseudo atomic instructions
513
514multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
515  let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
516    let Defs = [EFLAGS, AL] in
517    def NAME#8  : I<0, Pseudo, (outs GR8:$dst),
518                    (ins i8mem:$ptr, GR8:$val),
519                    !strconcat(mnemonic, "8 PSEUDO!"), []>;
520    let Defs = [EFLAGS, AX] in
521    def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
522                    (ins i16mem:$ptr, GR16:$val),
523                    !strconcat(mnemonic, "16 PSEUDO!"), []>;
524    let Defs = [EFLAGS, EAX] in
525    def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
526                    (ins i32mem:$ptr, GR32:$val),
527                    !strconcat(mnemonic, "32 PSEUDO!"), []>;
528    let Defs = [EFLAGS, RAX] in
529    def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
530                    (ins i64mem:$ptr, GR64:$val),
531                    !strconcat(mnemonic, "64 PSEUDO!"), []>;
532  }
533}
534
535multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
536  def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
537            (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
538  def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
539            (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
540  def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
541            (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
542  def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
543            (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
544}
545
546// Atomic exchange, and, or, xor
547defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
548defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
549defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
550defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
551defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
552defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
553defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
554defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
555
556defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND",  "atomic_load_and">;
557defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR",   "atomic_load_or">;
558defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR",  "atomic_load_xor">;
559defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
560defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX",  "atomic_load_max">;
561defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN",  "atomic_load_min">;
562defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
563defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
564
565multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
566  let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
567      mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
568    def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
569                      (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
570                      !strconcat(mnemonic, "6432 PSEUDO!"), []>;
571}
572
573defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
574defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
575defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
576defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
577defm ATOMADD  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
578defm ATOMSUB  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
579defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
580defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
581defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
582defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
583defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
584
585//===----------------------------------------------------------------------===//
586// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
587//===----------------------------------------------------------------------===//
588
589// FIXME: Use normal instructions and add lock prefix dynamically.
590
591// Memory barriers
592
593// TODO: Get this to fold the constant into the instruction.
594let isCodeGenOnly = 1, Defs = [EFLAGS] in
595def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
596                      "or{l}\t{$zero, $dst|$dst, $zero}",
597                      [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK;
598
599let hasSideEffects = 1 in
600def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
601                     "#MEMBARRIER",
602                     [(X86MemBarrier)]>;
603
604// RegOpc corresponds to the mr version of the instruction
605// ImmOpc corresponds to the mi version of the instruction
606// ImmOpc8 corresponds to the mi8 version of the instruction
607// ImmMod corresponds to the instruction format of the mi and mi8 versions
608multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
609                           Format ImmMod, string mnemonic> {
610let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
611
612def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
613                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
614                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
615                  !strconcat(mnemonic, "{b}\t",
616                             "{$src2, $dst|$dst, $src2}"),
617                  [], IIC_ALU_NONMEM>, LOCK;
618def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
619                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
620                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
621                   !strconcat(mnemonic, "{w}\t",
622                              "{$src2, $dst|$dst, $src2}"),
623                   [], IIC_ALU_NONMEM>, OpSize, LOCK;
624def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
625                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
626                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
627                   !strconcat(mnemonic, "{l}\t",
628                              "{$src2, $dst|$dst, $src2}"),
629                   [], IIC_ALU_NONMEM>, LOCK;
630def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
631                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
632                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
633                    !strconcat(mnemonic, "{q}\t",
634                               "{$src2, $dst|$dst, $src2}"),
635                    [], IIC_ALU_NONMEM>, LOCK;
636
637def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
638                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
639                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
640                    !strconcat(mnemonic, "{b}\t",
641                               "{$src2, $dst|$dst, $src2}"),
642                    [], IIC_ALU_MEM>, LOCK;
643
644def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
645                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
646                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
647                      !strconcat(mnemonic, "{w}\t",
648                                 "{$src2, $dst|$dst, $src2}"),
649                      [], IIC_ALU_MEM>, OpSize, LOCK;
650
651def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
652                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
653                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
654                      !strconcat(mnemonic, "{l}\t",
655                                 "{$src2, $dst|$dst, $src2}"),
656                      [], IIC_ALU_MEM>, LOCK;
657
658def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
659                         ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
660                         ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
661                         !strconcat(mnemonic, "{q}\t",
662                                    "{$src2, $dst|$dst, $src2}"),
663                         [], IIC_ALU_MEM>, LOCK;
664
665def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
666                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
667                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
668                      !strconcat(mnemonic, "{w}\t",
669                                 "{$src2, $dst|$dst, $src2}"),
670                      [], IIC_ALU_MEM>, OpSize, LOCK;
671def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
672                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
673                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
674                      !strconcat(mnemonic, "{l}\t",
675                                 "{$src2, $dst|$dst, $src2}"),
676                      [], IIC_ALU_MEM>, LOCK;
677def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
678                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
679                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
680                       !strconcat(mnemonic, "{q}\t",
681                                  "{$src2, $dst|$dst, $src2}"),
682                       [], IIC_ALU_MEM>, LOCK;
683
684}
685
686}
687
688defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
689defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
690defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
691defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
692defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
693
694// Optimized codegen when the non-memory output is not used.
695multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
696                          string mnemonic> {
697let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
698
699def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
700                 !strconcat(mnemonic, "{b}\t$dst"),
701                 [], IIC_UNARY_MEM>, LOCK;
702def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
703                 !strconcat(mnemonic, "{w}\t$dst"),
704                 [], IIC_UNARY_MEM>, OpSize, LOCK;
705def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
706                 !strconcat(mnemonic, "{l}\t$dst"),
707                 [], IIC_UNARY_MEM>, LOCK;
708def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
709                  !strconcat(mnemonic, "{q}\t$dst"),
710                  [], IIC_UNARY_MEM>, LOCK;
711}
712}
713
714defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
715defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
716
717// Atomic compare and swap.
718multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
719                         SDPatternOperator frag, X86MemOperand x86memop,
720                         InstrItinClass itin> {
721let isCodeGenOnly = 1 in {
722  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
723               !strconcat(mnemonic, "\t$ptr"),
724               [(frag addr:$ptr)], itin>, TB, LOCK;
725}
726}
727
728multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
729                          string mnemonic, SDPatternOperator frag,
730                          InstrItinClass itin8, InstrItinClass itin> {
731let isCodeGenOnly = 1 in {
732  let Defs = [AL, EFLAGS], Uses = [AL] in
733  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
734                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
735                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
736  let Defs = [AX, EFLAGS], Uses = [AX] in
737  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
738                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
739                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
740  let Defs = [EAX, EFLAGS], Uses = [EAX] in
741  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
742                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
743                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
744  let Defs = [RAX, EFLAGS], Uses = [RAX] in
745  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
746                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
747                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
748}
749}
750
751let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
752defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
753                                X86cas8, i64mem,
754                                IIC_CMPX_LOCK_8B>;
755}
756
757let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
758    Predicates = [HasCmpxchg16b] in {
759defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
760                                 X86cas16, i128mem,
761                                 IIC_CMPX_LOCK_16B>, REX_W;
762}
763
764defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
765                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
766
767// Atomic exchange and add
768multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
769                             string frag,
770                             InstrItinClass itin8, InstrItinClass itin> {
771  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in {
772    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
773                    (ins GR8:$val, i8mem:$ptr),
774                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
775                    [(set GR8:$dst,
776                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
777                    itin8>;
778    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
779                    (ins GR16:$val, i16mem:$ptr),
780                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
781                    [(set
782                       GR16:$dst,
783                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
784                    itin>, OpSize;
785    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
786                    (ins GR32:$val, i32mem:$ptr),
787                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
788                    [(set
789                       GR32:$dst,
790                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
791                    itin>;
792    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
793                     (ins GR64:$val, i64mem:$ptr),
794                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
795                     [(set
796                        GR64:$dst,
797                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
798                     itin>;
799  }
800}
801
802defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
803                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
804             TB, LOCK;
805
806def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
807                      "#ACQUIRE_MOV PSEUDO!",
808                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
809def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
810                      "#ACQUIRE_MOV PSEUDO!",
811                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
812def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
813                      "#ACQUIRE_MOV PSEUDO!",
814                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
815def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
816                      "#ACQUIRE_MOV PSEUDO!",
817                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
818
819def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
820                        "#RELEASE_MOV PSEUDO!",
821                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
822def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
823                        "#RELEASE_MOV PSEUDO!",
824                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
825def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
826                        "#RELEASE_MOV PSEUDO!",
827                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
828def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
829                        "#RELEASE_MOV PSEUDO!",
830                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
831
832//===----------------------------------------------------------------------===//
833// Conditional Move Pseudo Instructions.
834//===----------------------------------------------------------------------===//
835
836
837// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
838// instruction selection into a branch sequence.
839let Uses = [EFLAGS], usesCustomInserter = 1 in {
840  def CMOV_FR32 : I<0, Pseudo,
841                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
842                    "#CMOV_FR32 PSEUDO!",
843                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
844                                                  EFLAGS))]>;
845  def CMOV_FR64 : I<0, Pseudo,
846                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
847                    "#CMOV_FR64 PSEUDO!",
848                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
849                                                  EFLAGS))]>;
850  def CMOV_V4F32 : I<0, Pseudo,
851                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
852                    "#CMOV_V4F32 PSEUDO!",
853                    [(set VR128:$dst,
854                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
855                                          EFLAGS)))]>;
856  def CMOV_V2F64 : I<0, Pseudo,
857                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
858                    "#CMOV_V2F64 PSEUDO!",
859                    [(set VR128:$dst,
860                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
861                                          EFLAGS)))]>;
862  def CMOV_V2I64 : I<0, Pseudo,
863                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
864                    "#CMOV_V2I64 PSEUDO!",
865                    [(set VR128:$dst,
866                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
867                                          EFLAGS)))]>;
868  def CMOV_V8F32 : I<0, Pseudo,
869                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
870                    "#CMOV_V8F32 PSEUDO!",
871                    [(set VR256:$dst,
872                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
873                                          EFLAGS)))]>;
874  def CMOV_V4F64 : I<0, Pseudo,
875                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
876                    "#CMOV_V4F64 PSEUDO!",
877                    [(set VR256:$dst,
878                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
879                                          EFLAGS)))]>;
880  def CMOV_V4I64 : I<0, Pseudo,
881                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
882                    "#CMOV_V4I64 PSEUDO!",
883                    [(set VR256:$dst,
884                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
885                                          EFLAGS)))]>;
886}
887
888
889//===----------------------------------------------------------------------===//
890// DAG Pattern Matching Rules
891//===----------------------------------------------------------------------===//
892
893// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
894def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
895def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
896def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
897def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
898def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
899def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
900
901def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
902          (ADD32ri GR32:$src1, tconstpool:$src2)>;
903def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
904          (ADD32ri GR32:$src1, tjumptable:$src2)>;
905def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
906          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
907def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
908          (ADD32ri GR32:$src1, texternalsym:$src2)>;
909def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
910          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
911
912def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
913          (MOV32mi addr:$dst, tglobaladdr:$src)>;
914def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
915          (MOV32mi addr:$dst, texternalsym:$src)>;
916def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
917          (MOV32mi addr:$dst, tblockaddress:$src)>;
918
919
920
921// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
922// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
923//  'movabs' predicate should handle this sort of thing.
924def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
925          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
926def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
927          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
928def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
929          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
930def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
931          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
932def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
933          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
934
935// In static codegen with small code model, we can get the address of a label
936// into a register with 'movl'.  FIXME: This is a hack, the 'imm' predicate of
937// the MOV64ri64i32 should accept these.
938def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
939          (MOV64ri64i32 tconstpool  :$dst)>, Requires<[SmallCode]>;
940def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
941          (MOV64ri64i32 tjumptable  :$dst)>, Requires<[SmallCode]>;
942def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
943          (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
944def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
945          (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
946def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
947          (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
948
949// In kernel code model, we can get the address of a label
950// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
951// the MOV64ri32 should accept these.
952def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
953          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
954def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
955          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
956def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
957          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
958def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
959          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
960def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
961          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
962
963// If we have small model and -static mode, it is safe to store global addresses
964// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
965// for MOV64mi32 should handle this sort of thing.
966def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
967          (MOV64mi32 addr:$dst, tconstpool:$src)>,
968          Requires<[NearData, IsStatic]>;
969def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
970          (MOV64mi32 addr:$dst, tjumptable:$src)>,
971          Requires<[NearData, IsStatic]>;
972def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
973          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
974          Requires<[NearData, IsStatic]>;
975def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
976          (MOV64mi32 addr:$dst, texternalsym:$src)>,
977          Requires<[NearData, IsStatic]>;
978def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
979          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
980          Requires<[NearData, IsStatic]>;
981
982
983
984// Calls
985
986// tls has some funny stuff here...
987// This corresponds to movabs $foo@tpoff, %rax
988def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
989          (MOV64ri tglobaltlsaddr :$dst)>;
990// This corresponds to add $foo@tpoff, %rax
991def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
992          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
993// This corresponds to mov foo@tpoff(%rbx), %eax
994def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
995          (MOV64rm tglobaltlsaddr :$dst)>;
996
997
998// Direct PC relative function call for small code model. 32-bit displacement
999// sign extended to 64-bit.
1000def : Pat<(X86call (i64 tglobaladdr:$dst)),
1001          (CALL64pcrel32 tglobaladdr:$dst)>;
1002def : Pat<(X86call (i64 texternalsym:$dst)),
1003          (CALL64pcrel32 texternalsym:$dst)>;
1004
1005// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1006// can never use callee-saved registers. That is the purpose of the GR64_TC
1007// register classes.
1008//
1009// The only volatile register that is never used by the calling convention is
1010// %r11. This happens when calling a vararg function with 6 arguments.
1011//
1012// Match an X86tcret that uses less than 7 volatile registers.
1013def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1014                             (X86tcret node:$ptr, node:$off), [{
1015  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1016  unsigned NumRegs = 0;
1017  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1018    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1019      return false;
1020  return true;
1021}]>;
1022
1023def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1024          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1025          Requires<[In32BitMode]>;
1026
1027// FIXME: This is disabled for 32-bit PIC mode because the global base
1028// register which is part of the address mode may be assigned a
1029// callee-saved register.
1030def : Pat<(X86tcret (load addr:$dst), imm:$off),
1031          (TCRETURNmi addr:$dst, imm:$off)>,
1032          Requires<[In32BitMode, IsNotPIC]>;
1033
1034def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1035          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1036          Requires<[In32BitMode]>;
1037
1038def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1039          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1040          Requires<[In32BitMode]>;
1041
1042def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1043          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1044          Requires<[In64BitMode]>;
1045
1046// Don't fold loads into X86tcret requiring more than 6 regs.
1047// There wouldn't be enough scratch registers for base+index.
1048def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1049          (TCRETURNmi64 addr:$dst, imm:$off)>,
1050          Requires<[In64BitMode]>;
1051
1052def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1053          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1054          Requires<[In64BitMode]>;
1055
1056def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1057          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1058          Requires<[In64BitMode]>;
1059
1060// Normal calls, with various flavors of addresses.
1061def : Pat<(X86call (i32 tglobaladdr:$dst)),
1062          (CALLpcrel32 tglobaladdr:$dst)>;
1063def : Pat<(X86call (i32 texternalsym:$dst)),
1064          (CALLpcrel32 texternalsym:$dst)>;
1065def : Pat<(X86call (i32 imm:$dst)),
1066          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1067
1068// Comparisons.
1069
1070// TEST R,R is smaller than CMP R,0
1071def : Pat<(X86cmp GR8:$src1, 0),
1072          (TEST8rr GR8:$src1, GR8:$src1)>;
1073def : Pat<(X86cmp GR16:$src1, 0),
1074          (TEST16rr GR16:$src1, GR16:$src1)>;
1075def : Pat<(X86cmp GR32:$src1, 0),
1076          (TEST32rr GR32:$src1, GR32:$src1)>;
1077def : Pat<(X86cmp GR64:$src1, 0),
1078          (TEST64rr GR64:$src1, GR64:$src1)>;
1079
1080// Conditional moves with folded loads with operands swapped and conditions
1081// inverted.
1082multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1083                  Instruction Inst64> {
1084  let Predicates = [HasCMov] in {
1085    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1086              (Inst16 GR16:$src2, addr:$src1)>;
1087    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1088              (Inst32 GR32:$src2, addr:$src1)>;
1089    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1090              (Inst64 GR64:$src2, addr:$src1)>;
1091  }
1092}
1093
1094defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1095defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1096defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1097defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1098defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1099defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1100defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1101defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1102defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1103defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1104defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1105defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1106defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1107defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1108defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1109defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1110
1111// zextload bool -> zextload byte
1112def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1113def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1114def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1115def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
1116
1117// extload bool -> extload byte
1118// When extloading from 16-bit and smaller memory locations into 64-bit
1119// registers, use zero-extending loads so that the entire 64-bit register is
1120// defined, avoiding partial-register updates.
1121
1122def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1123def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1124def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1125def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1126def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1127def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1128
1129def : Pat<(extloadi64i1 addr:$src),  (MOVZX64rm8  addr:$src)>;
1130def : Pat<(extloadi64i8 addr:$src),  (MOVZX64rm8  addr:$src)>;
1131def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
1132// For other extloads, use subregs, since the high contents of the register are
1133// defined after an extload.
1134def : Pat<(extloadi64i32 addr:$src),
1135          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
1136                         sub_32bit)>;
1137
1138// anyext. Define these to do an explicit zero-extend to
1139// avoid partial-register updates.
1140def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1141                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1142def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1143
1144// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1145def : Pat<(i32 (anyext GR16:$src)),
1146          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1147
1148def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8  GR8  :$src)>;
1149def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
1150def : Pat<(i64 (anyext GR32:$src)),
1151          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1152
1153
1154// Any instruction that defines a 32-bit result leaves the high half of the
1155// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1156// be copying from a truncate. And x86's cmov doesn't do anything if the
1157// condition is false. But any other 32-bit operation will zero-extend
1158// up to 64 bits.
1159def def32 : PatLeaf<(i32 GR32:$src), [{
1160  return N->getOpcode() != ISD::TRUNCATE &&
1161         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1162         N->getOpcode() != ISD::CopyFromReg &&
1163         N->getOpcode() != X86ISD::CMOV;
1164}]>;
1165
1166// In the case of a 32-bit def that is known to implicitly zero-extend,
1167// we can use a SUBREG_TO_REG.
1168def : Pat<(i64 (zext def32:$src)),
1169          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1170
1171//===----------------------------------------------------------------------===//
1172// Pattern match OR as ADD
1173//===----------------------------------------------------------------------===//
1174
1175// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1176// 3-addressified into an LEA instruction to avoid copies.  However, we also
1177// want to finally emit these instructions as an or at the end of the code
1178// generator to make the generated code easier to read.  To do this, we select
1179// into "disjoint bits" pseudo ops.
1180
1181// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1182def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1183  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1184    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1185
1186  APInt KnownZero0, KnownOne0;
1187  CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1188  APInt KnownZero1, KnownOne1;
1189  CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1190  return (~KnownZero0 & ~KnownZero1) == 0;
1191}]>;
1192
1193
1194// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1195let AddedComplexity = 5 in { // Try this before the selecting to OR
1196
1197let isConvertibleToThreeAddress = 1,
1198    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1199let isCommutable = 1 in {
1200def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1201                    "", // orw/addw REG, REG
1202                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1203def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1204                    "", // orl/addl REG, REG
1205                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1206def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1207                    "", // orq/addq REG, REG
1208                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1209} // isCommutable
1210
1211// NOTE: These are order specific, we want the ri8 forms to be listed
1212// first so that they are slightly preferred to the ri forms.
1213
1214def ADD16ri8_DB : I<0, Pseudo,
1215                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1216                    "", // orw/addw REG, imm8
1217                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1218def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1219                    "", // orw/addw REG, imm
1220                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1221
1222def ADD32ri8_DB : I<0, Pseudo,
1223                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1224                    "", // orl/addl REG, imm8
1225                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1226def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1227                    "", // orl/addl REG, imm
1228                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1229
1230
1231def ADD64ri8_DB : I<0, Pseudo,
1232                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1233                    "", // orq/addq REG, imm8
1234                    [(set GR64:$dst, (or_is_add GR64:$src1,
1235                                                i64immSExt8:$src2))]>;
1236def ADD64ri32_DB : I<0, Pseudo,
1237                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1238                      "", // orq/addq REG, imm
1239                      [(set GR64:$dst, (or_is_add GR64:$src1,
1240                                                  i64immSExt32:$src2))]>;
1241}
1242} // AddedComplexity
1243
1244
1245//===----------------------------------------------------------------------===//
1246// Some peepholes
1247//===----------------------------------------------------------------------===//
1248
1249// Odd encoding trick: -128 fits into an 8-bit immediate field while
1250// +128 doesn't, so in this special case use a sub instead of an add.
1251def : Pat<(add GR16:$src1, 128),
1252          (SUB16ri8 GR16:$src1, -128)>;
1253def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1254          (SUB16mi8 addr:$dst, -128)>;
1255
1256def : Pat<(add GR32:$src1, 128),
1257          (SUB32ri8 GR32:$src1, -128)>;
1258def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1259          (SUB32mi8 addr:$dst, -128)>;
1260
1261def : Pat<(add GR64:$src1, 128),
1262          (SUB64ri8 GR64:$src1, -128)>;
1263def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1264          (SUB64mi8 addr:$dst, -128)>;
1265
1266// The same trick applies for 32-bit immediate fields in 64-bit
1267// instructions.
1268def : Pat<(add GR64:$src1, 0x0000000080000000),
1269          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1270def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1271          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1272
1273// To avoid needing to materialize an immediate in a register, use a 32-bit and
1274// with implicit zero-extension instead of a 64-bit and if the immediate has at
1275// least 32 bits of leading zeros. If in addition the last 32 bits can be
1276// represented with a sign extension of a 8 bit constant, use that.
1277
1278def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1279          (SUBREG_TO_REG
1280            (i64 0),
1281            (AND32ri8
1282              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1283              (i32 (GetLo8XForm imm:$imm))),
1284            sub_32bit)>;
1285
1286def : Pat<(and GR64:$src, i64immZExt32:$imm),
1287          (SUBREG_TO_REG
1288            (i64 0),
1289            (AND32ri
1290              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1291              (i32 (GetLo32XForm imm:$imm))),
1292            sub_32bit)>;
1293
1294
1295// r & (2^16-1) ==> movz
1296def : Pat<(and GR32:$src1, 0xffff),
1297          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1298// r & (2^8-1) ==> movz
1299def : Pat<(and GR32:$src1, 0xff),
1300          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1301                                                             GR32_ABCD)),
1302                                      sub_8bit))>,
1303      Requires<[In32BitMode]>;
1304// r & (2^8-1) ==> movz
1305def : Pat<(and GR16:$src1, 0xff),
1306           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1307            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1308             sub_16bit)>,
1309      Requires<[In32BitMode]>;
1310
1311// r & (2^32-1) ==> movz
1312def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1313          (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1314// r & (2^16-1) ==> movz
1315def : Pat<(and GR64:$src, 0xffff),
1316          (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1317// r & (2^8-1) ==> movz
1318def : Pat<(and GR64:$src, 0xff),
1319          (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1320// r & (2^8-1) ==> movz
1321def : Pat<(and GR32:$src1, 0xff),
1322           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1323      Requires<[In64BitMode]>;
1324// r & (2^8-1) ==> movz
1325def : Pat<(and GR16:$src1, 0xff),
1326           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1327            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1328      Requires<[In64BitMode]>;
1329
1330
1331// sext_inreg patterns
1332def : Pat<(sext_inreg GR32:$src, i16),
1333          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1334def : Pat<(sext_inreg GR32:$src, i8),
1335          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1336                                                             GR32_ABCD)),
1337                                      sub_8bit))>,
1338      Requires<[In32BitMode]>;
1339
1340def : Pat<(sext_inreg GR16:$src, i8),
1341           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1342            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1343             sub_16bit)>,
1344      Requires<[In32BitMode]>;
1345
1346def : Pat<(sext_inreg GR64:$src, i32),
1347          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1348def : Pat<(sext_inreg GR64:$src, i16),
1349          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1350def : Pat<(sext_inreg GR64:$src, i8),
1351          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1352def : Pat<(sext_inreg GR32:$src, i8),
1353          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1354      Requires<[In64BitMode]>;
1355def : Pat<(sext_inreg GR16:$src, i8),
1356           (EXTRACT_SUBREG (MOVSX32rr8
1357            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1358      Requires<[In64BitMode]>;
1359
1360// sext, sext_load, zext, zext_load
1361def: Pat<(i16 (sext GR8:$src)),
1362          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1363def: Pat<(sextloadi16i8 addr:$src),
1364          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1365def: Pat<(i16 (zext GR8:$src)),
1366          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1367def: Pat<(zextloadi16i8 addr:$src),
1368          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1369
1370// trunc patterns
1371def : Pat<(i16 (trunc GR32:$src)),
1372          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1373def : Pat<(i8 (trunc GR32:$src)),
1374          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1375                          sub_8bit)>,
1376      Requires<[In32BitMode]>;
1377def : Pat<(i8 (trunc GR16:$src)),
1378          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1379                          sub_8bit)>,
1380      Requires<[In32BitMode]>;
1381def : Pat<(i32 (trunc GR64:$src)),
1382          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1383def : Pat<(i16 (trunc GR64:$src)),
1384          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1385def : Pat<(i8 (trunc GR64:$src)),
1386          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1387def : Pat<(i8 (trunc GR32:$src)),
1388          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1389      Requires<[In64BitMode]>;
1390def : Pat<(i8 (trunc GR16:$src)),
1391          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1392      Requires<[In64BitMode]>;
1393
1394// h-register tricks
1395def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1396          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1397                          sub_8bit_hi)>,
1398      Requires<[In32BitMode]>;
1399def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1400          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1401                          sub_8bit_hi)>,
1402      Requires<[In32BitMode]>;
1403def : Pat<(srl GR16:$src, (i8 8)),
1404          (EXTRACT_SUBREG
1405            (MOVZX32rr8
1406              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1407                              sub_8bit_hi)),
1408            sub_16bit)>,
1409      Requires<[In32BitMode]>;
1410def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1411          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1412                                                             GR16_ABCD)),
1413                                      sub_8bit_hi))>,
1414      Requires<[In32BitMode]>;
1415def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1416          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1417                                                             GR16_ABCD)),
1418                                      sub_8bit_hi))>,
1419      Requires<[In32BitMode]>;
1420def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1421          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1422                                                             GR32_ABCD)),
1423                                      sub_8bit_hi))>,
1424      Requires<[In32BitMode]>;
1425def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1426          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1427                                                             GR32_ABCD)),
1428                                      sub_8bit_hi))>,
1429      Requires<[In32BitMode]>;
1430
1431// h-register tricks.
1432// For now, be conservative on x86-64 and use an h-register extract only if the
1433// value is immediately zero-extended or stored, which are somewhat common
1434// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1435// from being allocated in the same instruction as the h register, as there's
1436// currently no way to describe this requirement to the register allocator.
1437
1438// h-register extract and zero-extend.
1439def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1440          (SUBREG_TO_REG
1441            (i64 0),
1442            (MOVZX32_NOREXrr8
1443              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1444                              sub_8bit_hi)),
1445            sub_32bit)>;
1446def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1447          (MOVZX32_NOREXrr8
1448            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1449                            sub_8bit_hi))>,
1450      Requires<[In64BitMode]>;
1451def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1452          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1453                                                                   GR32_ABCD)),
1454                                             sub_8bit_hi))>,
1455      Requires<[In64BitMode]>;
1456def : Pat<(srl GR16:$src, (i8 8)),
1457          (EXTRACT_SUBREG
1458            (MOVZX32_NOREXrr8
1459              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1460                              sub_8bit_hi)),
1461            sub_16bit)>,
1462      Requires<[In64BitMode]>;
1463def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1464          (MOVZX32_NOREXrr8
1465            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1466                            sub_8bit_hi))>,
1467      Requires<[In64BitMode]>;
1468def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1469          (MOVZX32_NOREXrr8
1470            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1471                            sub_8bit_hi))>,
1472      Requires<[In64BitMode]>;
1473def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1474          (SUBREG_TO_REG
1475            (i64 0),
1476            (MOVZX32_NOREXrr8
1477              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1478                              sub_8bit_hi)),
1479            sub_32bit)>;
1480def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1481          (SUBREG_TO_REG
1482            (i64 0),
1483            (MOVZX32_NOREXrr8
1484              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1485                              sub_8bit_hi)),
1486            sub_32bit)>;
1487
1488// h-register extract and store.
1489def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1490          (MOV8mr_NOREX
1491            addr:$dst,
1492            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1493                            sub_8bit_hi))>;
1494def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1495          (MOV8mr_NOREX
1496            addr:$dst,
1497            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1498                            sub_8bit_hi))>,
1499      Requires<[In64BitMode]>;
1500def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1501          (MOV8mr_NOREX
1502            addr:$dst,
1503            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1504                            sub_8bit_hi))>,
1505      Requires<[In64BitMode]>;
1506
1507
1508// (shl x, 1) ==> (add x, x)
1509// Note that if x is undef (immediate or otherwise), we could theoretically
1510// end up with the two uses of x getting different values, producing a result
1511// where the least significant bit is not 0. However, the probability of this
1512// happening is considered low enough that this is officially not a
1513// "real problem".
1514def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1515def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1516def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1517def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1518
1519// Helper imms that check if a mask doesn't change significant shift bits.
1520def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1521def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1522
1523// (shl x (and y, 31)) ==> (shl x, y)
1524def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1525          (SHL8rCL GR8:$src1)>;
1526def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1527          (SHL16rCL GR16:$src1)>;
1528def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1529          (SHL32rCL GR32:$src1)>;
1530def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1531          (SHL8mCL addr:$dst)>;
1532def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1533          (SHL16mCL addr:$dst)>;
1534def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1535          (SHL32mCL addr:$dst)>;
1536
1537def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1538          (SHR8rCL GR8:$src1)>;
1539def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1540          (SHR16rCL GR16:$src1)>;
1541def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1542          (SHR32rCL GR32:$src1)>;
1543def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1544          (SHR8mCL addr:$dst)>;
1545def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1546          (SHR16mCL addr:$dst)>;
1547def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1548          (SHR32mCL addr:$dst)>;
1549
1550def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1551          (SAR8rCL GR8:$src1)>;
1552def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1553          (SAR16rCL GR16:$src1)>;
1554def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1555          (SAR32rCL GR32:$src1)>;
1556def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1557          (SAR8mCL addr:$dst)>;
1558def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1559          (SAR16mCL addr:$dst)>;
1560def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1561          (SAR32mCL addr:$dst)>;
1562
1563// (shl x (and y, 63)) ==> (shl x, y)
1564def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1565          (SHL64rCL GR64:$src1)>;
1566def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1567          (SHL64mCL addr:$dst)>;
1568
1569def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1570          (SHR64rCL GR64:$src1)>;
1571def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1572          (SHR64mCL addr:$dst)>;
1573
1574def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1575          (SAR64rCL GR64:$src1)>;
1576def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1577          (SAR64mCL addr:$dst)>;
1578
1579
1580// (anyext (setcc_carry)) -> (setcc_carry)
1581def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1582          (SETB_C16r)>;
1583def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1584          (SETB_C32r)>;
1585def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1586          (SETB_C32r)>;
1587
1588
1589
1590
1591//===----------------------------------------------------------------------===//
1592// EFLAGS-defining Patterns
1593//===----------------------------------------------------------------------===//
1594
1595// add reg, reg
1596def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1597def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1598def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1599
1600// add reg, mem
1601def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1602          (ADD8rm GR8:$src1, addr:$src2)>;
1603def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1604          (ADD16rm GR16:$src1, addr:$src2)>;
1605def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1606          (ADD32rm GR32:$src1, addr:$src2)>;
1607
1608// add reg, imm
1609def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1610def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1611def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1612def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1613          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1614def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1615          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1616
1617// sub reg, reg
1618def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1619def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1620def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1621
1622// sub reg, mem
1623def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1624          (SUB8rm GR8:$src1, addr:$src2)>;
1625def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1626          (SUB16rm GR16:$src1, addr:$src2)>;
1627def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1628          (SUB32rm GR32:$src1, addr:$src2)>;
1629
1630// sub reg, imm
1631def : Pat<(sub GR8:$src1, imm:$src2),
1632          (SUB8ri GR8:$src1, imm:$src2)>;
1633def : Pat<(sub GR16:$src1, imm:$src2),
1634          (SUB16ri GR16:$src1, imm:$src2)>;
1635def : Pat<(sub GR32:$src1, imm:$src2),
1636          (SUB32ri GR32:$src1, imm:$src2)>;
1637def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1638          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1639def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1640          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1641
1642// sub 0, reg
1643def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1644def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1645def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1646def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1647
1648// mul reg, reg
1649def : Pat<(mul GR16:$src1, GR16:$src2),
1650          (IMUL16rr GR16:$src1, GR16:$src2)>;
1651def : Pat<(mul GR32:$src1, GR32:$src2),
1652          (IMUL32rr GR32:$src1, GR32:$src2)>;
1653
1654// mul reg, mem
1655def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1656          (IMUL16rm GR16:$src1, addr:$src2)>;
1657def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1658          (IMUL32rm GR32:$src1, addr:$src2)>;
1659
1660// mul reg, imm
1661def : Pat<(mul GR16:$src1, imm:$src2),
1662          (IMUL16rri GR16:$src1, imm:$src2)>;
1663def : Pat<(mul GR32:$src1, imm:$src2),
1664          (IMUL32rri GR32:$src1, imm:$src2)>;
1665def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1666          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1667def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1668          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1669
1670// reg = mul mem, imm
1671def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1672          (IMUL16rmi addr:$src1, imm:$src2)>;
1673def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1674          (IMUL32rmi addr:$src1, imm:$src2)>;
1675def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1676          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1677def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1678          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1679
1680// Patterns for nodes that do not produce flags, for instructions that do.
1681
1682// addition
1683def : Pat<(add GR64:$src1, GR64:$src2),
1684          (ADD64rr GR64:$src1, GR64:$src2)>;
1685def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1686          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1687def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1688          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1689def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1690          (ADD64rm GR64:$src1, addr:$src2)>;
1691
1692// subtraction
1693def : Pat<(sub GR64:$src1, GR64:$src2),
1694          (SUB64rr GR64:$src1, GR64:$src2)>;
1695def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1696          (SUB64rm GR64:$src1, addr:$src2)>;
1697def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1698          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1699def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1700          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1701
1702// Multiply
1703def : Pat<(mul GR64:$src1, GR64:$src2),
1704          (IMUL64rr GR64:$src1, GR64:$src2)>;
1705def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1706          (IMUL64rm GR64:$src1, addr:$src2)>;
1707def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1708          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1709def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1710          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1711def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1712          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1713def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1714          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1715
1716// Increment reg.
1717def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1718def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1719def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1720def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1721def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1722def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1723
1724// Decrement reg.
1725def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1726def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1727def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1728def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1729def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1730def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1731
1732// or reg/reg.
1733def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1734def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1735def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1736def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1737
1738// or reg/mem
1739def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1740          (OR8rm GR8:$src1, addr:$src2)>;
1741def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1742          (OR16rm GR16:$src1, addr:$src2)>;
1743def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1744          (OR32rm GR32:$src1, addr:$src2)>;
1745def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1746          (OR64rm GR64:$src1, addr:$src2)>;
1747
1748// or reg/imm
1749def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1750def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1751def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1752def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1753          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1754def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1755          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1756def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1757          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1758def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1759          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1760
1761// xor reg/reg
1762def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1763def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1764def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1765def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1766
1767// xor reg/mem
1768def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1769          (XOR8rm GR8:$src1, addr:$src2)>;
1770def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1771          (XOR16rm GR16:$src1, addr:$src2)>;
1772def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1773          (XOR32rm GR32:$src1, addr:$src2)>;
1774def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1775          (XOR64rm GR64:$src1, addr:$src2)>;
1776
1777// xor reg/imm
1778def : Pat<(xor GR8:$src1, imm:$src2),
1779          (XOR8ri GR8:$src1, imm:$src2)>;
1780def : Pat<(xor GR16:$src1, imm:$src2),
1781          (XOR16ri GR16:$src1, imm:$src2)>;
1782def : Pat<(xor GR32:$src1, imm:$src2),
1783          (XOR32ri GR32:$src1, imm:$src2)>;
1784def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1785          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1786def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1787          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1788def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1789          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1790def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1791          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1792
1793// and reg/reg
1794def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1795def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1796def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1797def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1798
1799// and reg/mem
1800def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1801          (AND8rm GR8:$src1, addr:$src2)>;
1802def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1803          (AND16rm GR16:$src1, addr:$src2)>;
1804def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1805          (AND32rm GR32:$src1, addr:$src2)>;
1806def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1807          (AND64rm GR64:$src1, addr:$src2)>;
1808
1809// and reg/imm
1810def : Pat<(and GR8:$src1, imm:$src2),
1811          (AND8ri GR8:$src1, imm:$src2)>;
1812def : Pat<(and GR16:$src1, imm:$src2),
1813          (AND16ri GR16:$src1, imm:$src2)>;
1814def : Pat<(and GR32:$src1, imm:$src2),
1815          (AND32ri GR32:$src1, imm:$src2)>;
1816def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1817          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1818def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1819          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1820def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1821          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1822def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1823          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1824
1825// Bit scan instruction patterns to match explicit zero-undef behavior.
1826def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1827def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1828def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1829def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1830def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1831def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1832