1 //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
11 // before calls to SSE encoded functions. This avoids transition latency
12 // penalty when tranfering control between AVX encoded instructions and old
13 // SSE encoding mode.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "x86-vzeroupper"
18 #include "X86.h"
19 #include "X86InstrInfo.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 using namespace llvm;
29
30 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
31
32 namespace {
33 struct VZeroUpperInserter : public MachineFunctionPass {
34 static char ID;
VZeroUpperInserter__anon71de6b4b0111::VZeroUpperInserter35 VZeroUpperInserter() : MachineFunctionPass(ID) {}
36
37 virtual bool runOnMachineFunction(MachineFunction &MF);
38
39 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
40
getPassName__anon71de6b4b0111::VZeroUpperInserter41 virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
42
43 private:
44 const TargetInstrInfo *TII; // Machine instruction info.
45
46 // Any YMM register live-in to this function?
47 bool FnHasLiveInYmm;
48
49 // BBState - Contains the state of each MBB: unknown, clean, dirty
50 SmallVector<uint8_t, 8> BBState;
51
52 // BBSolved - Keep track of all MBB which had been already analyzed
53 // and there is no further processing required.
54 BitVector BBSolved;
55
56 // Machine Basic Blocks are classified according this pass:
57 //
58 // ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
59 // until the MBB exit there isn't a instruction using YMM to change
60 // the state to dirty, or one of the incoming predecessors is unknown
61 // and there's not a dirty predecessor between them.
62 //
63 // ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
64 // instructions using YMM and be marked ST_CLEAN, as long as the state
65 // is cleaned by a vzeroupper before any call.
66 //
67 // ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
68 // vzeroupper instruction.
69 //
70 // ST_INIT - Placeholder for an empty state set
71 //
72 enum {
73 ST_UNKNOWN = 0,
74 ST_CLEAN = 1,
75 ST_DIRTY = 2,
76 ST_INIT = 3
77 };
78
79 // computeState - Given two states, compute the resulting state, in
80 // the following way
81 //
82 // 1) One dirty state yields another dirty state
83 // 2) All states must be clean for the result to be clean
84 // 3) If none above and one unknown, the result state is also unknown
85 //
computeState__anon71de6b4b0111::VZeroUpperInserter86 static unsigned computeState(unsigned PrevState, unsigned CurState) {
87 if (PrevState == ST_INIT)
88 return CurState;
89
90 if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
91 return ST_DIRTY;
92
93 if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
94 return ST_CLEAN;
95
96 return ST_UNKNOWN;
97 }
98
99 };
100 char VZeroUpperInserter::ID = 0;
101 }
102
createX86IssueVZeroUpperPass()103 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
104 return new VZeroUpperInserter();
105 }
106
isYmmReg(unsigned Reg)107 static bool isYmmReg(unsigned Reg) {
108 if (Reg >= X86::YMM0 && Reg <= X86::YMM15)
109 return true;
110
111 return false;
112 }
113
checkFnHasLiveInYmm(MachineRegisterInfo & MRI)114 static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
115 for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
116 E = MRI.livein_end(); I != E; ++I)
117 if (isYmmReg(I->first))
118 return true;
119
120 return false;
121 }
122
clobbersAllYmmRegs(const MachineOperand & MO)123 static bool clobbersAllYmmRegs(const MachineOperand &MO) {
124 for (unsigned reg = X86::YMM0; reg < X86::YMM15; ++reg) {
125 if (!MO.clobbersPhysReg(reg))
126 return false;
127 }
128 return true;
129 }
130
hasYmmReg(MachineInstr * MI)131 static bool hasYmmReg(MachineInstr *MI) {
132 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
133 const MachineOperand &MO = MI->getOperand(i);
134 if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
135 return true;
136 if (!MO.isReg())
137 continue;
138 if (MO.isDebug())
139 continue;
140 if (isYmmReg(MO.getReg()))
141 return true;
142 }
143 return false;
144 }
145
146 /// runOnMachineFunction - Loop over all of the basic blocks, inserting
147 /// vzero upper instructions before function calls.
runOnMachineFunction(MachineFunction & MF)148 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
149 TII = MF.getTarget().getInstrInfo();
150 MachineRegisterInfo &MRI = MF.getRegInfo();
151 bool EverMadeChange = false;
152
153 // Fast check: if the function doesn't use any ymm registers, we don't need
154 // to insert any VZEROUPPER instructions. This is constant-time, so it is
155 // cheap in the common case of no ymm use.
156 bool YMMUsed = false;
157 const TargetRegisterClass *RC = &X86::VR256RegClass;
158 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
159 i != e; i++) {
160 if (!MRI.reg_nodbg_empty(*i)) {
161 YMMUsed = true;
162 break;
163 }
164 }
165 if (!YMMUsed)
166 return EverMadeChange;
167
168 // Pre-compute the existence of any live-in YMM registers to this function
169 FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
170
171 assert(BBState.empty());
172 BBState.resize(MF.getNumBlockIDs(), 0);
173 BBSolved.resize(MF.getNumBlockIDs(), 0);
174
175 // Each BB state depends on all predecessors, loop over until everything
176 // converges. (Once we converge, we can implicitly mark everything that is
177 // still ST_UNKNOWN as ST_CLEAN.)
178 while (1) {
179 bool MadeChange = false;
180
181 // Process all basic blocks.
182 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
183 MadeChange |= processBasicBlock(MF, *I);
184
185 // If this iteration over the code changed anything, keep iterating.
186 if (!MadeChange) break;
187 EverMadeChange = true;
188 }
189
190 BBState.clear();
191 BBSolved.clear();
192 return EverMadeChange;
193 }
194
195 /// processBasicBlock - Loop over all of the instructions in the basic block,
196 /// inserting vzero upper instructions before function calls.
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)197 bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
198 MachineBasicBlock &BB) {
199 bool Changed = false;
200 unsigned BBNum = BB.getNumber();
201
202 // Don't process already solved BBs
203 if (BBSolved[BBNum])
204 return false; // No changes
205
206 // Check the state of all predecessors
207 unsigned EntryState = ST_INIT;
208 for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
209 PE = BB.pred_end(); PI != PE; ++PI) {
210 EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
211 if (EntryState == ST_DIRTY)
212 break;
213 }
214
215
216 // The entry MBB for the function may set the initial state to dirty if
217 // the function receives any YMM incoming arguments
218 if (&BB == MF.begin()) {
219 EntryState = ST_CLEAN;
220 if (FnHasLiveInYmm)
221 EntryState = ST_DIRTY;
222 }
223
224 // The current state is initialized according to the predecessors
225 unsigned CurState = EntryState;
226 bool BBHasCall = false;
227
228 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
229 MachineInstr *MI = I;
230 DebugLoc dl = I->getDebugLoc();
231 bool isControlFlow = MI->isCall() || MI->isReturn();
232
233 // Shortcut: don't need to check regular instructions in dirty state.
234 if (!isControlFlow && CurState == ST_DIRTY)
235 continue;
236
237 if (hasYmmReg(MI)) {
238 // We found a ymm-using instruction; this could be an AVX instruction,
239 // or it could be control flow.
240 CurState = ST_DIRTY;
241 continue;
242 }
243
244 // Check for control-flow out of the current function (which might
245 // indirectly execute SSE instructions).
246 if (!isControlFlow)
247 continue;
248
249 BBHasCall = true;
250
251 // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
252 // registers. This instruction has zero latency. In addition, the processor
253 // changes back to Clean state, after which execution of Intel SSE
254 // instructions or Intel AVX instructions has no transition penalty. Add
255 // the VZEROUPPER instruction before any function call/return that might
256 // execute SSE code.
257 // FIXME: In some cases, we may want to move the VZEROUPPER into a
258 // predecessor block.
259 if (CurState == ST_DIRTY) {
260 // Only insert the VZEROUPPER in case the entry state isn't unknown.
261 // When unknown, only compute the information within the block to have
262 // it available in the exit if possible, but don't change the block.
263 if (EntryState != ST_UNKNOWN) {
264 BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
265 ++NumVZU;
266 }
267
268 // After the inserted VZEROUPPER the state becomes clean again, but
269 // other YMM may appear before other subsequent calls or even before
270 // the end of the BB.
271 CurState = ST_CLEAN;
272 }
273 }
274
275 DEBUG(dbgs() << "MBB #" << BBNum
276 << ", current state: " << CurState << '\n');
277
278 // A BB can only be considered solved when we both have done all the
279 // necessary transformations, and have computed the exit state. This happens
280 // in two cases:
281 // 1) We know the entry state: this immediately implies the exit state and
282 // all the necessary transformations.
283 // 2) There are no calls, and and a non-call instruction marks this block:
284 // no transformations are necessary, and we know the exit state.
285 if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
286 BBSolved[BBNum] = true;
287
288 if (CurState != BBState[BBNum])
289 Changed = true;
290
291 BBState[BBNum] = CurState;
292 return Changed;
293 }
294