1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15
16 #include "InstCombine.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/Support/PatternMatch.h"
20
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23
24 /// ShrinkDemandedConstant - Check to see if the specified operand of the
25 /// specified instruction is a constant integer. If so, check to see if there
26 /// are any bits set in the constant that are not demanded. If so, shrink the
27 /// constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,APInt Demanded)28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29 APInt Demanded) {
30 assert(I && "No instruction?");
31 assert(OpNo < I->getNumOperands() && "Operand index too large");
32
33 // If the operand is not a constant integer, nothing to do.
34 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35 if (!OpC) return false;
36
37 // If there are no bits set that aren't demanded, nothing to do.
38 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39 if ((~Demanded & OpC->getValue()) == 0)
40 return false;
41
42 // This instruction is producing bits that are not demanded. Shrink the RHS.
43 Demanded &= OpC->getValue();
44 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45 return true;
46 }
47
48
49
50 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
51 /// SimplifyDemandedBits knows about. See if the instruction has any
52 /// properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)53 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
54 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
55 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
56 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
57
58 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
59 KnownZero, KnownOne, 0);
60 if (V == 0) return false;
61 if (V == &Inst) return true;
62 ReplaceInstUsesWith(Inst, V);
63 return true;
64 }
65
66 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
67 /// specified instruction operand if possible, updating it in place. It returns
68 /// true if it made any change and false otherwise.
SimplifyDemandedBits(Use & U,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)69 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
70 APInt &KnownZero, APInt &KnownOne,
71 unsigned Depth) {
72 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
73 KnownZero, KnownOne, Depth);
74 if (NewVal == 0) return false;
75 U = NewVal;
76 return true;
77 }
78
79
80 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
81 /// value based on the demanded bits. When this function is called, it is known
82 /// that only the bits set in DemandedMask of the result of V are ever used
83 /// downstream. Consequently, depending on the mask and V, it may be possible
84 /// to replace V with a constant or one of its operands. In such cases, this
85 /// function does the replacement and returns true. In all other cases, it
86 /// returns false after analyzing the expression and setting KnownOne and known
87 /// to be one in the expression. KnownZero contains all the bits that are known
88 /// to be zero in the expression. These are provided to potentially allow the
89 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
90 /// the expression. KnownOne and KnownZero always follow the invariant that
91 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
92 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
93 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
94 /// and KnownOne must all be the same.
95 ///
96 /// This returns null if it did not change anything and it permits no
97 /// simplification. This returns V itself if it did some simplification of V's
98 /// operands based on the information about what bits are demanded. This returns
99 /// some other non-null value if it found out that V is equal to another value
100 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)101 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
102 APInt &KnownZero, APInt &KnownOne,
103 unsigned Depth) {
104 assert(V != 0 && "Null pointer of Value???");
105 assert(Depth <= 6 && "Limit Search Depth");
106 uint32_t BitWidth = DemandedMask.getBitWidth();
107 Type *VTy = V->getType();
108 assert((TD || !VTy->isPointerTy()) &&
109 "SimplifyDemandedBits needs to know bit widths!");
110 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
111 (!VTy->isIntOrIntVectorTy() ||
112 VTy->getScalarSizeInBits() == BitWidth) &&
113 KnownZero.getBitWidth() == BitWidth &&
114 KnownOne.getBitWidth() == BitWidth &&
115 "Value *V, DemandedMask, KnownZero and KnownOne "
116 "must have same BitWidth");
117 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
118 // We know all of the bits for a constant!
119 KnownOne = CI->getValue() & DemandedMask;
120 KnownZero = ~KnownOne & DemandedMask;
121 return 0;
122 }
123 if (isa<ConstantPointerNull>(V)) {
124 // We know all of the bits for a constant!
125 KnownOne.clearAllBits();
126 KnownZero = DemandedMask;
127 return 0;
128 }
129
130 KnownZero.clearAllBits();
131 KnownOne.clearAllBits();
132 if (DemandedMask == 0) { // Not demanding any bits from V.
133 if (isa<UndefValue>(V))
134 return 0;
135 return UndefValue::get(VTy);
136 }
137
138 if (Depth == 6) // Limit search depth.
139 return 0;
140
141 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
142 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143
144 Instruction *I = dyn_cast<Instruction>(V);
145 if (!I) {
146 ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
147 return 0; // Only analyze instructions.
148 }
149
150 // If there are multiple uses of this value and we aren't at the root, then
151 // we can't do any simplifications of the operands, because DemandedMask
152 // only reflects the bits demanded by *one* of the users.
153 if (Depth != 0 && !I->hasOneUse()) {
154 // Despite the fact that we can't simplify this instruction in all User's
155 // context, we can at least compute the knownzero/knownone bits, and we can
156 // do simplifications that apply to *just* the one user if we know that
157 // this instruction has a simpler value in that context.
158 if (I->getOpcode() == Instruction::And) {
159 // If either the LHS or the RHS are Zero, the result is zero.
160 ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
161 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
162
163 // If all of the demanded bits are known 1 on one side, return the other.
164 // These bits cannot contribute to the result of the 'and' in this
165 // context.
166 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
167 (DemandedMask & ~LHSKnownZero))
168 return I->getOperand(0);
169 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
170 (DemandedMask & ~RHSKnownZero))
171 return I->getOperand(1);
172
173 // If all of the demanded bits in the inputs are known zeros, return zero.
174 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
175 return Constant::getNullValue(VTy);
176
177 } else if (I->getOpcode() == Instruction::Or) {
178 // We can simplify (X|Y) -> X or Y in the user's context if we know that
179 // only bits from X or Y are demanded.
180
181 // If either the LHS or the RHS are One, the result is One.
182 ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
183 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
184
185 // If all of the demanded bits are known zero on one side, return the
186 // other. These bits cannot contribute to the result of the 'or' in this
187 // context.
188 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
189 (DemandedMask & ~LHSKnownOne))
190 return I->getOperand(0);
191 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
192 (DemandedMask & ~RHSKnownOne))
193 return I->getOperand(1);
194
195 // If all of the potentially set bits on one side are known to be set on
196 // the other side, just use the 'other' side.
197 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
198 (DemandedMask & (~RHSKnownZero)))
199 return I->getOperand(0);
200 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
201 (DemandedMask & (~LHSKnownZero)))
202 return I->getOperand(1);
203 } else if (I->getOpcode() == Instruction::Xor) {
204 // We can simplify (X^Y) -> X or Y in the user's context if we know that
205 // only bits from X or Y are demanded.
206
207 ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
208 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
209
210 // If all of the demanded bits are known zero on one side, return the
211 // other.
212 if ((DemandedMask & RHSKnownZero) == DemandedMask)
213 return I->getOperand(0);
214 if ((DemandedMask & LHSKnownZero) == DemandedMask)
215 return I->getOperand(1);
216 }
217
218 // Compute the KnownZero/KnownOne bits to simplify things downstream.
219 ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
220 return 0;
221 }
222
223 // If this is the root being simplified, allow it to have multiple uses,
224 // just set the DemandedMask to all bits so that we can try to simplify the
225 // operands. This allows visitTruncInst (for example) to simplify the
226 // operand of a trunc without duplicating all the logic below.
227 if (Depth == 0 && !V->hasOneUse())
228 DemandedMask = APInt::getAllOnesValue(BitWidth);
229
230 switch (I->getOpcode()) {
231 default:
232 ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
233 break;
234 case Instruction::And:
235 // If either the LHS or the RHS are Zero, the result is zero.
236 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
237 RHSKnownZero, RHSKnownOne, Depth+1) ||
238 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
239 LHSKnownZero, LHSKnownOne, Depth+1))
240 return I;
241 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
242 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
243
244 // If all of the demanded bits are known 1 on one side, return the other.
245 // These bits cannot contribute to the result of the 'and'.
246 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
247 (DemandedMask & ~LHSKnownZero))
248 return I->getOperand(0);
249 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
250 (DemandedMask & ~RHSKnownZero))
251 return I->getOperand(1);
252
253 // If all of the demanded bits in the inputs are known zeros, return zero.
254 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
255 return Constant::getNullValue(VTy);
256
257 // If the RHS is a constant, see if we can simplify it.
258 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
259 return I;
260
261 // Output known-1 bits are only known if set in both the LHS & RHS.
262 KnownOne = RHSKnownOne & LHSKnownOne;
263 // Output known-0 are known to be clear if zero in either the LHS | RHS.
264 KnownZero = RHSKnownZero | LHSKnownZero;
265 break;
266 case Instruction::Or:
267 // If either the LHS or the RHS are One, the result is One.
268 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
269 RHSKnownZero, RHSKnownOne, Depth+1) ||
270 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
271 LHSKnownZero, LHSKnownOne, Depth+1))
272 return I;
273 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
274 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
275
276 // If all of the demanded bits are known zero on one side, return the other.
277 // These bits cannot contribute to the result of the 'or'.
278 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
279 (DemandedMask & ~LHSKnownOne))
280 return I->getOperand(0);
281 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
282 (DemandedMask & ~RHSKnownOne))
283 return I->getOperand(1);
284
285 // If all of the potentially set bits on one side are known to be set on
286 // the other side, just use the 'other' side.
287 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
288 (DemandedMask & (~RHSKnownZero)))
289 return I->getOperand(0);
290 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
291 (DemandedMask & (~LHSKnownZero)))
292 return I->getOperand(1);
293
294 // If the RHS is a constant, see if we can simplify it.
295 if (ShrinkDemandedConstant(I, 1, DemandedMask))
296 return I;
297
298 // Output known-0 bits are only known if clear in both the LHS & RHS.
299 KnownZero = RHSKnownZero & LHSKnownZero;
300 // Output known-1 are known to be set if set in either the LHS | RHS.
301 KnownOne = RHSKnownOne | LHSKnownOne;
302 break;
303 case Instruction::Xor: {
304 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
305 RHSKnownZero, RHSKnownOne, Depth+1) ||
306 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
307 LHSKnownZero, LHSKnownOne, Depth+1))
308 return I;
309 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
310 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
311
312 // If all of the demanded bits are known zero on one side, return the other.
313 // These bits cannot contribute to the result of the 'xor'.
314 if ((DemandedMask & RHSKnownZero) == DemandedMask)
315 return I->getOperand(0);
316 if ((DemandedMask & LHSKnownZero) == DemandedMask)
317 return I->getOperand(1);
318
319 // If all of the demanded bits are known to be zero on one side or the
320 // other, turn this into an *inclusive* or.
321 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
322 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
323 Instruction *Or =
324 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
325 I->getName());
326 return InsertNewInstWith(Or, *I);
327 }
328
329 // If all of the demanded bits on one side are known, and all of the set
330 // bits on that side are also known to be set on the other side, turn this
331 // into an AND, as we know the bits will be cleared.
332 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
333 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
334 // all known
335 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
336 Constant *AndC = Constant::getIntegerValue(VTy,
337 ~RHSKnownOne & DemandedMask);
338 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
339 return InsertNewInstWith(And, *I);
340 }
341 }
342
343 // If the RHS is a constant, see if we can simplify it.
344 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
345 if (ShrinkDemandedConstant(I, 1, DemandedMask))
346 return I;
347
348 // If our LHS is an 'and' and if it has one use, and if any of the bits we
349 // are flipping are known to be set, then the xor is just resetting those
350 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
351 // simplifying both of them.
352 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
353 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
354 isa<ConstantInt>(I->getOperand(1)) &&
355 isa<ConstantInt>(LHSInst->getOperand(1)) &&
356 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
357 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
358 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
359 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
360
361 Constant *AndC =
362 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
363 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
364 InsertNewInstWith(NewAnd, *I);
365
366 Constant *XorC =
367 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
368 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
369 return InsertNewInstWith(NewXor, *I);
370 }
371
372 // Output known-0 bits are known if clear or set in both the LHS & RHS.
373 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
374 // Output known-1 are known to be set if set in only one of the LHS, RHS.
375 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
376 break;
377 }
378 case Instruction::Select:
379 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
380 RHSKnownZero, RHSKnownOne, Depth+1) ||
381 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
382 LHSKnownZero, LHSKnownOne, Depth+1))
383 return I;
384 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
385 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
386
387 // If the operands are constants, see if we can simplify them.
388 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
389 ShrinkDemandedConstant(I, 2, DemandedMask))
390 return I;
391
392 // Only known if known in both the LHS and RHS.
393 KnownOne = RHSKnownOne & LHSKnownOne;
394 KnownZero = RHSKnownZero & LHSKnownZero;
395 break;
396 case Instruction::Trunc: {
397 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
398 DemandedMask = DemandedMask.zext(truncBf);
399 KnownZero = KnownZero.zext(truncBf);
400 KnownOne = KnownOne.zext(truncBf);
401 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
402 KnownZero, KnownOne, Depth+1))
403 return I;
404 DemandedMask = DemandedMask.trunc(BitWidth);
405 KnownZero = KnownZero.trunc(BitWidth);
406 KnownOne = KnownOne.trunc(BitWidth);
407 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
408 break;
409 }
410 case Instruction::BitCast:
411 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
412 return 0; // vector->int or fp->int?
413
414 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
415 if (VectorType *SrcVTy =
416 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
417 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
418 // Don't touch a bitcast between vectors of different element counts.
419 return 0;
420 } else
421 // Don't touch a scalar-to-vector bitcast.
422 return 0;
423 } else if (I->getOperand(0)->getType()->isVectorTy())
424 // Don't touch a vector-to-scalar bitcast.
425 return 0;
426
427 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
428 KnownZero, KnownOne, Depth+1))
429 return I;
430 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
431 break;
432 case Instruction::ZExt: {
433 // Compute the bits in the result that are not present in the input.
434 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
435
436 DemandedMask = DemandedMask.trunc(SrcBitWidth);
437 KnownZero = KnownZero.trunc(SrcBitWidth);
438 KnownOne = KnownOne.trunc(SrcBitWidth);
439 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
440 KnownZero, KnownOne, Depth+1))
441 return I;
442 DemandedMask = DemandedMask.zext(BitWidth);
443 KnownZero = KnownZero.zext(BitWidth);
444 KnownOne = KnownOne.zext(BitWidth);
445 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
446 // The top bits are known to be zero.
447 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
448 break;
449 }
450 case Instruction::SExt: {
451 // Compute the bits in the result that are not present in the input.
452 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
453
454 APInt InputDemandedBits = DemandedMask &
455 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
456
457 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
458 // If any of the sign extended bits are demanded, we know that the sign
459 // bit is demanded.
460 if ((NewBits & DemandedMask) != 0)
461 InputDemandedBits.setBit(SrcBitWidth-1);
462
463 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
464 KnownZero = KnownZero.trunc(SrcBitWidth);
465 KnownOne = KnownOne.trunc(SrcBitWidth);
466 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
467 KnownZero, KnownOne, Depth+1))
468 return I;
469 InputDemandedBits = InputDemandedBits.zext(BitWidth);
470 KnownZero = KnownZero.zext(BitWidth);
471 KnownOne = KnownOne.zext(BitWidth);
472 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
473
474 // If the sign bit of the input is known set or clear, then we know the
475 // top bits of the result.
476
477 // If the input sign bit is known zero, or if the NewBits are not demanded
478 // convert this into a zero extension.
479 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
480 // Convert to ZExt cast
481 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
482 return InsertNewInstWith(NewCast, *I);
483 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
484 KnownOne |= NewBits;
485 }
486 break;
487 }
488 case Instruction::Add: {
489 // Figure out what the input bits are. If the top bits of the and result
490 // are not demanded, then the add doesn't demand them from its input
491 // either.
492 unsigned NLZ = DemandedMask.countLeadingZeros();
493
494 // If there is a constant on the RHS, there are a variety of xformations
495 // we can do.
496 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
497 // If null, this should be simplified elsewhere. Some of the xforms here
498 // won't work if the RHS is zero.
499 if (RHS->isZero())
500 break;
501
502 // If the top bit of the output is demanded, demand everything from the
503 // input. Otherwise, we demand all the input bits except NLZ top bits.
504 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
505
506 // Find information about known zero/one bits in the input.
507 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
508 LHSKnownZero, LHSKnownOne, Depth+1))
509 return I;
510
511 // If the RHS of the add has bits set that can't affect the input, reduce
512 // the constant.
513 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
514 return I;
515
516 // Avoid excess work.
517 if (LHSKnownZero == 0 && LHSKnownOne == 0)
518 break;
519
520 // Turn it into OR if input bits are zero.
521 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
522 Instruction *Or =
523 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
524 I->getName());
525 return InsertNewInstWith(Or, *I);
526 }
527
528 // We can say something about the output known-zero and known-one bits,
529 // depending on potential carries from the input constant and the
530 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
531 // bits set and the RHS constant is 0x01001, then we know we have a known
532 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
533
534 // To compute this, we first compute the potential carry bits. These are
535 // the bits which may be modified. I'm not aware of a better way to do
536 // this scan.
537 const APInt &RHSVal = RHS->getValue();
538 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
539
540 // Now that we know which bits have carries, compute the known-1/0 sets.
541
542 // Bits are known one if they are known zero in one operand and one in the
543 // other, and there is no input carry.
544 KnownOne = ((LHSKnownZero & RHSVal) |
545 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
546
547 // Bits are known zero if they are known zero in both operands and there
548 // is no input carry.
549 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
550 } else {
551 // If the high-bits of this ADD are not demanded, then it does not demand
552 // the high bits of its LHS or RHS.
553 if (DemandedMask[BitWidth-1] == 0) {
554 // Right fill the mask of bits for this ADD to demand the most
555 // significant bit and all those below it.
556 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
557 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
558 LHSKnownZero, LHSKnownOne, Depth+1) ||
559 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
560 LHSKnownZero, LHSKnownOne, Depth+1))
561 return I;
562 }
563 }
564 break;
565 }
566 case Instruction::Sub:
567 // If the high-bits of this SUB are not demanded, then it does not demand
568 // the high bits of its LHS or RHS.
569 if (DemandedMask[BitWidth-1] == 0) {
570 // Right fill the mask of bits for this SUB to demand the most
571 // significant bit and all those below it.
572 uint32_t NLZ = DemandedMask.countLeadingZeros();
573 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
574 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
575 LHSKnownZero, LHSKnownOne, Depth+1) ||
576 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
577 LHSKnownZero, LHSKnownOne, Depth+1))
578 return I;
579 }
580
581 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
582 // the known zeros and ones.
583 ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
584
585 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
586 // zero.
587 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
588 APInt I0 = C0->getValue();
589 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
590 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
591 return InsertNewInstWith(Xor, *I);
592 }
593 }
594 break;
595 case Instruction::Shl:
596 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
597 {
598 Value *VarX; ConstantInt *C1;
599 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
600 Instruction *Shr = cast<Instruction>(I->getOperand(0));
601 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
602 KnownZero, KnownOne);
603 if (R)
604 return R;
605 }
606 }
607
608 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
609 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
610
611 // If the shift is NUW/NSW, then it does demand the high bits.
612 ShlOperator *IOp = cast<ShlOperator>(I);
613 if (IOp->hasNoSignedWrap())
614 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
615 else if (IOp->hasNoUnsignedWrap())
616 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
617
618 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
619 KnownZero, KnownOne, Depth+1))
620 return I;
621 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
622 KnownZero <<= ShiftAmt;
623 KnownOne <<= ShiftAmt;
624 // low bits known zero.
625 if (ShiftAmt)
626 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
627 }
628 break;
629 case Instruction::LShr:
630 // For a logical shift right
631 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
633
634 // Unsigned shift right.
635 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
636
637 // If the shift is exact, then it does demand the low bits (and knows that
638 // they are zero).
639 if (cast<LShrOperator>(I)->isExact())
640 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
641
642 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
643 KnownZero, KnownOne, Depth+1))
644 return I;
645 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
646 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
647 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
648 if (ShiftAmt) {
649 // Compute the new bits that are at the top now.
650 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
651 KnownZero |= HighBits; // high bits known zero.
652 }
653 }
654 break;
655 case Instruction::AShr:
656 // If this is an arithmetic shift right and only the low-bit is set, we can
657 // always convert this into a logical shr, even if the shift amount is
658 // variable. The low bit of the shift cannot be an input sign bit unless
659 // the shift amount is >= the size of the datatype, which is undefined.
660 if (DemandedMask == 1) {
661 // Perform the logical shift right.
662 Instruction *NewVal = BinaryOperator::CreateLShr(
663 I->getOperand(0), I->getOperand(1), I->getName());
664 return InsertNewInstWith(NewVal, *I);
665 }
666
667 // If the sign bit is the only bit demanded by this ashr, then there is no
668 // need to do it, the shift doesn't change the high bit.
669 if (DemandedMask.isSignBit())
670 return I->getOperand(0);
671
672 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
673 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
674
675 // Signed shift right.
676 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
677 // If any of the "high bits" are demanded, we should set the sign bit as
678 // demanded.
679 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
680 DemandedMaskIn.setBit(BitWidth-1);
681
682 // If the shift is exact, then it does demand the low bits (and knows that
683 // they are zero).
684 if (cast<AShrOperator>(I)->isExact())
685 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
686
687 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
688 KnownZero, KnownOne, Depth+1))
689 return I;
690 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
691 // Compute the new bits that are at the top now.
692 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
693 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
694 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
695
696 // Handle the sign bits.
697 APInt SignBit(APInt::getSignBit(BitWidth));
698 // Adjust to where it is now in the mask.
699 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
700
701 // If the input sign bit is known to be zero, or if none of the top bits
702 // are demanded, turn this into an unsigned shift right.
703 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
704 (HighBits & ~DemandedMask) == HighBits) {
705 // Perform the logical shift right.
706 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
707 SA, I->getName());
708 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
709 return InsertNewInstWith(NewVal, *I);
710 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
711 KnownOne |= HighBits;
712 }
713 }
714 break;
715 case Instruction::SRem:
716 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
717 // X % -1 demands all the bits because we don't want to introduce
718 // INT_MIN % -1 (== undef) by accident.
719 if (Rem->isAllOnesValue())
720 break;
721 APInt RA = Rem->getValue().abs();
722 if (RA.isPowerOf2()) {
723 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
724 return I->getOperand(0);
725
726 APInt LowBits = RA - 1;
727 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
728 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
729 LHSKnownZero, LHSKnownOne, Depth+1))
730 return I;
731
732 // The low bits of LHS are unchanged by the srem.
733 KnownZero = LHSKnownZero & LowBits;
734 KnownOne = LHSKnownOne & LowBits;
735
736 // If LHS is non-negative or has all low bits zero, then the upper bits
737 // are all zero.
738 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
739 KnownZero |= ~LowBits;
740
741 // If LHS is negative and not all low bits are zero, then the upper bits
742 // are all one.
743 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
744 KnownOne |= ~LowBits;
745
746 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
747 }
748 }
749
750 // The sign bit is the LHS's sign bit, except when the result of the
751 // remainder is zero.
752 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
753 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
754 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
755 // If it's known zero, our sign bit is also zero.
756 if (LHSKnownZero.isNegative())
757 KnownZero |= LHSKnownZero;
758 }
759 break;
760 case Instruction::URem: {
761 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
762 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
763 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
764 KnownZero2, KnownOne2, Depth+1) ||
765 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
766 KnownZero2, KnownOne2, Depth+1))
767 return I;
768
769 unsigned Leaders = KnownZero2.countLeadingOnes();
770 Leaders = std::max(Leaders,
771 KnownZero2.countLeadingOnes());
772 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
773 break;
774 }
775 case Instruction::Call:
776 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
777 switch (II->getIntrinsicID()) {
778 default: break;
779 case Intrinsic::bswap: {
780 // If the only bits demanded come from one byte of the bswap result,
781 // just shift the input byte into position to eliminate the bswap.
782 unsigned NLZ = DemandedMask.countLeadingZeros();
783 unsigned NTZ = DemandedMask.countTrailingZeros();
784
785 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
786 // we need all the bits down to bit 8. Likewise, round NLZ. If we
787 // have 14 leading zeros, round to 8.
788 NLZ &= ~7;
789 NTZ &= ~7;
790 // If we need exactly one byte, we can do this transformation.
791 if (BitWidth-NLZ-NTZ == 8) {
792 unsigned ResultBit = NTZ;
793 unsigned InputBit = BitWidth-NTZ-8;
794
795 // Replace this with either a left or right shift to get the byte into
796 // the right place.
797 Instruction *NewVal;
798 if (InputBit > ResultBit)
799 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
800 ConstantInt::get(I->getType(), InputBit-ResultBit));
801 else
802 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
803 ConstantInt::get(I->getType(), ResultBit-InputBit));
804 NewVal->takeName(I);
805 return InsertNewInstWith(NewVal, *I);
806 }
807
808 // TODO: Could compute known zero/one bits based on the input.
809 break;
810 }
811 case Intrinsic::x86_sse42_crc32_64_8:
812 case Intrinsic::x86_sse42_crc32_64_64:
813 KnownZero = APInt::getHighBitsSet(64, 32);
814 return 0;
815 }
816 }
817 ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
818 break;
819 }
820
821 // If the client is only demanding bits that we know, return the known
822 // constant.
823 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
824 return Constant::getIntegerValue(VTy, KnownOne);
825 return 0;
826 }
827
828 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
829 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
830 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
831 /// of "C2-C1".
832 ///
833 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
834 /// ..., bn}, without considering the specific value X is holding.
835 /// This transformation is legal iff one of following conditions is hold:
836 /// 1) All the bit in S are 0, in this case E1 == E2.
837 /// 2) We don't care those bits in S, per the input DemandedMask.
838 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
839 /// rest bits.
840 ///
841 /// Currently we only test condition 2).
842 ///
843 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
844 /// not successful.
SimplifyShrShlDemandedBits(Instruction * Shr,Instruction * Shl,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne)845 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
846 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
847
848 unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue();
849 unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue();
850
851 KnownOne.clearAllBits();
852 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
853 KnownZero &= DemandedMask;
854
855 if (ShlAmt == 0 || ShrAmt == 0)
856 return 0;
857
858 Value *VarX = Shr->getOperand(0);
859 Type *Ty = VarX->getType();
860
861 APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
862 APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
863
864 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
865 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
866 (BitMask1.ashr(ShrAmt) << ShlAmt);
867
868 if (ShrAmt <= ShlAmt) {
869 BitMask2 <<= (ShlAmt - ShrAmt);
870 } else {
871 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
872 BitMask2.ashr(ShrAmt - ShlAmt);
873 }
874
875 // Check if condition-2 (see the comment to this function) is satified.
876 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
877 if (ShrAmt == ShlAmt)
878 return VarX;
879
880 if (!Shr->hasOneUse())
881 return 0;
882
883 BinaryOperator *New;
884 if (ShrAmt < ShlAmt) {
885 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
886 New = BinaryOperator::CreateShl(VarX, Amt);
887 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
888 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
889 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
890 } else {
891 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
892 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
893 BinaryOperator::CreateAShr(VarX, Amt);
894 if (cast<BinaryOperator>(Shr)->isExact())
895 New->setIsExact(true);
896 }
897
898 return InsertNewInstWith(New, *Shl);
899 }
900
901 return 0;
902 }
903
904 /// SimplifyDemandedVectorElts - The specified value produces a vector with
905 /// any number of elements. DemandedElts contains the set of elements that are
906 /// actually used by the caller. This method analyzes which elements of the
907 /// operand are undef and returns that information in UndefElts.
908 ///
909 /// If the information about demanded elements can be used to simplify the
910 /// operation, the operation is simplified, then the resultant value is
911 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)912 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
913 APInt &UndefElts,
914 unsigned Depth) {
915 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
916 APInt EltMask(APInt::getAllOnesValue(VWidth));
917 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
918
919 if (isa<UndefValue>(V)) {
920 // If the entire vector is undefined, just return this info.
921 UndefElts = EltMask;
922 return 0;
923 }
924
925 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
926 UndefElts = EltMask;
927 return UndefValue::get(V->getType());
928 }
929
930 UndefElts = 0;
931
932 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
933 if (Constant *C = dyn_cast<Constant>(V)) {
934 // Check if this is identity. If so, return 0 since we are not simplifying
935 // anything.
936 if (DemandedElts.isAllOnesValue())
937 return 0;
938
939 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
940 Constant *Undef = UndefValue::get(EltTy);
941
942 SmallVector<Constant*, 16> Elts;
943 for (unsigned i = 0; i != VWidth; ++i) {
944 if (!DemandedElts[i]) { // If not demanded, set to undef.
945 Elts.push_back(Undef);
946 UndefElts.setBit(i);
947 continue;
948 }
949
950 Constant *Elt = C->getAggregateElement(i);
951 if (Elt == 0) return 0;
952
953 if (isa<UndefValue>(Elt)) { // Already undef.
954 Elts.push_back(Undef);
955 UndefElts.setBit(i);
956 } else { // Otherwise, defined.
957 Elts.push_back(Elt);
958 }
959 }
960
961 // If we changed the constant, return it.
962 Constant *NewCV = ConstantVector::get(Elts);
963 return NewCV != C ? NewCV : 0;
964 }
965
966 // Limit search depth.
967 if (Depth == 10)
968 return 0;
969
970 // If multiple users are using the root value, proceed with
971 // simplification conservatively assuming that all elements
972 // are needed.
973 if (!V->hasOneUse()) {
974 // Quit if we find multiple users of a non-root value though.
975 // They'll be handled when it's their turn to be visited by
976 // the main instcombine process.
977 if (Depth != 0)
978 // TODO: Just compute the UndefElts information recursively.
979 return 0;
980
981 // Conservatively assume that all elements are needed.
982 DemandedElts = EltMask;
983 }
984
985 Instruction *I = dyn_cast<Instruction>(V);
986 if (!I) return 0; // Only analyze instructions.
987
988 bool MadeChange = false;
989 APInt UndefElts2(VWidth, 0);
990 Value *TmpV;
991 switch (I->getOpcode()) {
992 default: break;
993
994 case Instruction::InsertElement: {
995 // If this is a variable index, we don't know which element it overwrites.
996 // demand exactly the same input as we produce.
997 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
998 if (Idx == 0) {
999 // Note that we can't propagate undef elt info, because we don't know
1000 // which elt is getting updated.
1001 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1002 UndefElts2, Depth+1);
1003 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1004 break;
1005 }
1006
1007 // If this is inserting an element that isn't demanded, remove this
1008 // insertelement.
1009 unsigned IdxNo = Idx->getZExtValue();
1010 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1011 Worklist.Add(I);
1012 return I->getOperand(0);
1013 }
1014
1015 // Otherwise, the element inserted overwrites whatever was there, so the
1016 // input demanded set is simpler than the output set.
1017 APInt DemandedElts2 = DemandedElts;
1018 DemandedElts2.clearBit(IdxNo);
1019 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1020 UndefElts, Depth+1);
1021 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1022
1023 // The inserted element is defined.
1024 UndefElts.clearBit(IdxNo);
1025 break;
1026 }
1027 case Instruction::ShuffleVector: {
1028 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1029 uint64_t LHSVWidth =
1030 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1031 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1032 for (unsigned i = 0; i < VWidth; i++) {
1033 if (DemandedElts[i]) {
1034 unsigned MaskVal = Shuffle->getMaskValue(i);
1035 if (MaskVal != -1u) {
1036 assert(MaskVal < LHSVWidth * 2 &&
1037 "shufflevector mask index out of range!");
1038 if (MaskVal < LHSVWidth)
1039 LeftDemanded.setBit(MaskVal);
1040 else
1041 RightDemanded.setBit(MaskVal - LHSVWidth);
1042 }
1043 }
1044 }
1045
1046 APInt UndefElts4(LHSVWidth, 0);
1047 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1048 UndefElts4, Depth+1);
1049 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1050
1051 APInt UndefElts3(LHSVWidth, 0);
1052 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1053 UndefElts3, Depth+1);
1054 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1055
1056 bool NewUndefElts = false;
1057 for (unsigned i = 0; i < VWidth; i++) {
1058 unsigned MaskVal = Shuffle->getMaskValue(i);
1059 if (MaskVal == -1u) {
1060 UndefElts.setBit(i);
1061 } else if (!DemandedElts[i]) {
1062 NewUndefElts = true;
1063 UndefElts.setBit(i);
1064 } else if (MaskVal < LHSVWidth) {
1065 if (UndefElts4[MaskVal]) {
1066 NewUndefElts = true;
1067 UndefElts.setBit(i);
1068 }
1069 } else {
1070 if (UndefElts3[MaskVal - LHSVWidth]) {
1071 NewUndefElts = true;
1072 UndefElts.setBit(i);
1073 }
1074 }
1075 }
1076
1077 if (NewUndefElts) {
1078 // Add additional discovered undefs.
1079 SmallVector<Constant*, 16> Elts;
1080 for (unsigned i = 0; i < VWidth; ++i) {
1081 if (UndefElts[i])
1082 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1083 else
1084 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1085 Shuffle->getMaskValue(i)));
1086 }
1087 I->setOperand(2, ConstantVector::get(Elts));
1088 MadeChange = true;
1089 }
1090 break;
1091 }
1092 case Instruction::Select: {
1093 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1094 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1095 for (unsigned i = 0; i < VWidth; i++) {
1096 if (CV->getAggregateElement(i)->isNullValue())
1097 LeftDemanded.clearBit(i);
1098 else
1099 RightDemanded.clearBit(i);
1100 }
1101 }
1102
1103 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1104 UndefElts, Depth+1);
1105 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1106
1107 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1108 UndefElts2, Depth+1);
1109 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1110
1111 // Output elements are undefined if both are undefined.
1112 UndefElts &= UndefElts2;
1113 break;
1114 }
1115 case Instruction::BitCast: {
1116 // Vector->vector casts only.
1117 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1118 if (!VTy) break;
1119 unsigned InVWidth = VTy->getNumElements();
1120 APInt InputDemandedElts(InVWidth, 0);
1121 unsigned Ratio;
1122
1123 if (VWidth == InVWidth) {
1124 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1125 // elements as are demanded of us.
1126 Ratio = 1;
1127 InputDemandedElts = DemandedElts;
1128 } else if (VWidth > InVWidth) {
1129 // Untested so far.
1130 break;
1131
1132 // If there are more elements in the result than there are in the source,
1133 // then an input element is live if any of the corresponding output
1134 // elements are live.
1135 Ratio = VWidth/InVWidth;
1136 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1137 if (DemandedElts[OutIdx])
1138 InputDemandedElts.setBit(OutIdx/Ratio);
1139 }
1140 } else {
1141 // Untested so far.
1142 break;
1143
1144 // If there are more elements in the source than there are in the result,
1145 // then an input element is live if the corresponding output element is
1146 // live.
1147 Ratio = InVWidth/VWidth;
1148 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1149 if (DemandedElts[InIdx/Ratio])
1150 InputDemandedElts.setBit(InIdx);
1151 }
1152
1153 // div/rem demand all inputs, because they don't want divide by zero.
1154 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1155 UndefElts2, Depth+1);
1156 if (TmpV) {
1157 I->setOperand(0, TmpV);
1158 MadeChange = true;
1159 }
1160
1161 UndefElts = UndefElts2;
1162 if (VWidth > InVWidth) {
1163 llvm_unreachable("Unimp");
1164 // If there are more elements in the result than there are in the source,
1165 // then an output element is undef if the corresponding input element is
1166 // undef.
1167 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1168 if (UndefElts2[OutIdx/Ratio])
1169 UndefElts.setBit(OutIdx);
1170 } else if (VWidth < InVWidth) {
1171 llvm_unreachable("Unimp");
1172 // If there are more elements in the source than there are in the result,
1173 // then a result element is undef if all of the corresponding input
1174 // elements are undef.
1175 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1176 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1177 if (!UndefElts2[InIdx]) // Not undef?
1178 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1179 }
1180 break;
1181 }
1182 case Instruction::And:
1183 case Instruction::Or:
1184 case Instruction::Xor:
1185 case Instruction::Add:
1186 case Instruction::Sub:
1187 case Instruction::Mul:
1188 // div/rem demand all inputs, because they don't want divide by zero.
1189 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1190 UndefElts, Depth+1);
1191 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1192 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1193 UndefElts2, Depth+1);
1194 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1195
1196 // Output elements are undefined if both are undefined. Consider things
1197 // like undef&0. The result is known zero, not undef.
1198 UndefElts &= UndefElts2;
1199 break;
1200 case Instruction::FPTrunc:
1201 case Instruction::FPExt:
1202 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1203 UndefElts, Depth+1);
1204 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1205 break;
1206
1207 case Instruction::Call: {
1208 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1209 if (!II) break;
1210 switch (II->getIntrinsicID()) {
1211 default: break;
1212
1213 // Binary vector operations that work column-wise. A dest element is a
1214 // function of the corresponding input elements from the two inputs.
1215 case Intrinsic::x86_sse_sub_ss:
1216 case Intrinsic::x86_sse_mul_ss:
1217 case Intrinsic::x86_sse_min_ss:
1218 case Intrinsic::x86_sse_max_ss:
1219 case Intrinsic::x86_sse2_sub_sd:
1220 case Intrinsic::x86_sse2_mul_sd:
1221 case Intrinsic::x86_sse2_min_sd:
1222 case Intrinsic::x86_sse2_max_sd:
1223 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1224 UndefElts, Depth+1);
1225 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1226 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1227 UndefElts2, Depth+1);
1228 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1229
1230 // If only the low elt is demanded and this is a scalarizable intrinsic,
1231 // scalarize it now.
1232 if (DemandedElts == 1) {
1233 switch (II->getIntrinsicID()) {
1234 default: break;
1235 case Intrinsic::x86_sse_sub_ss:
1236 case Intrinsic::x86_sse_mul_ss:
1237 case Intrinsic::x86_sse2_sub_sd:
1238 case Intrinsic::x86_sse2_mul_sd:
1239 // TODO: Lower MIN/MAX/ABS/etc
1240 Value *LHS = II->getArgOperand(0);
1241 Value *RHS = II->getArgOperand(1);
1242 // Extract the element as scalars.
1243 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1244 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1245 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1246 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1247
1248 switch (II->getIntrinsicID()) {
1249 default: llvm_unreachable("Case stmts out of sync!");
1250 case Intrinsic::x86_sse_sub_ss:
1251 case Intrinsic::x86_sse2_sub_sd:
1252 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1253 II->getName()), *II);
1254 break;
1255 case Intrinsic::x86_sse_mul_ss:
1256 case Intrinsic::x86_sse2_mul_sd:
1257 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1258 II->getName()), *II);
1259 break;
1260 }
1261
1262 Instruction *New =
1263 InsertElementInst::Create(
1264 UndefValue::get(II->getType()), TmpV,
1265 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1266 II->getName());
1267 InsertNewInstWith(New, *II);
1268 return New;
1269 }
1270 }
1271
1272 // Output elements are undefined if both are undefined. Consider things
1273 // like undef&0. The result is known zero, not undef.
1274 UndefElts &= UndefElts2;
1275 break;
1276 }
1277 break;
1278 }
1279 }
1280 return MadeChange ? I : 0;
1281 }
1282