1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// Status: early prototype.
14 ///
15 /// The algorithm of the tool is similar to Memcheck
16 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
17 /// byte of the application memory, poison the shadow of the malloc-ed
18 /// or alloca-ed memory, load the shadow bits on every memory read,
19 /// propagate the shadow bits through some of the arithmetic
20 /// instruction (including MOV), store the shadow bits on every memory
21 /// write, report a bug on some other instructions (e.g. JMP) if the
22 /// associated shadow is poisoned.
23 ///
24 /// But there are differences too. The first and the major one:
25 /// compiler instrumentation instead of binary instrumentation. This
26 /// gives us much better register allocation, possible compiler
27 /// optimizations and a fast start-up. But this brings the major issue
28 /// as well: msan needs to see all program events, including system
29 /// calls and reads/writes in system libraries, so we either need to
30 /// compile *everything* with msan or use a binary translation
31 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
32 /// Another difference from Memcheck is that we use 8 shadow bits per
33 /// byte of application memory and use a direct shadow mapping. This
34 /// greatly simplifies the instrumentation code and avoids races on
35 /// shadow updates (Memcheck is single-threaded so races are not a
36 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
37 /// path storage that uses 8 bits per byte).
38 ///
39 /// The default value of shadow is 0, which means "clean" (not poisoned).
40 ///
41 /// Every module initializer should call __msan_init to ensure that the
42 /// shadow memory is ready. On error, __msan_warning is called. Since
43 /// parameters and return values may be passed via registers, we have a
44 /// specialized thread-local shadow for return values
45 /// (__msan_retval_tls) and parameters (__msan_param_tls).
46 ///
47 /// Origin tracking.
48 ///
49 /// MemorySanitizer can track origins (allocation points) of all uninitialized
50 /// values. This behavior is controlled with a flag (msan-track-origins) and is
51 /// disabled by default.
52 ///
53 /// Origins are 4-byte values created and interpreted by the runtime library.
54 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55 /// of application memory. Propagation of origins is basically a bunch of
56 /// "select" instructions that pick the origin of a dirty argument, if an
57 /// instruction has one.
58 ///
59 /// Every 4 aligned, consecutive bytes of application memory have one origin
60 /// value associated with them. If these bytes contain uninitialized data
61 /// coming from 2 different allocations, the last store wins. Because of this,
62 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
63 /// practice.
64 ///
65 /// Origins are meaningless for fully initialized values, so MemorySanitizer
66 /// avoids storing origin to memory when a fully initialized value is stored.
67 /// This way it avoids needless overwritting origin of the 4-byte region on
68 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
69 //===----------------------------------------------------------------------===//
70
71 #define DEBUG_TYPE "msan"
72
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/ADT/DepthFirstIterator.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/ValueMap.h"
78 #include "llvm/IR/DataLayout.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/IRBuilder.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/IntrinsicInst.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/MDBuilder.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/InstVisitor.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Compiler.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/BlackList.h"
94 #include "llvm/Transforms/Utils/Local.h"
95 #include "llvm/Transforms/Utils/ModuleUtils.h"
96
97 using namespace llvm;
98
99 static const uint64_t kShadowMask32 = 1ULL << 31;
100 static const uint64_t kShadowMask64 = 1ULL << 46;
101 static const uint64_t kOriginOffset32 = 1ULL << 30;
102 static const uint64_t kOriginOffset64 = 1ULL << 45;
103 static const unsigned kMinOriginAlignment = 4;
104 static const unsigned kShadowTLSAlignment = 8;
105
106 /// \brief Track origins of uninitialized values.
107 ///
108 /// Adds a section to MemorySanitizer report that points to the allocation
109 /// (stack or heap) the uninitialized bits came from originally.
110 static cl::opt<bool> ClTrackOrigins("msan-track-origins",
111 cl::desc("Track origins (allocation sites) of poisoned memory"),
112 cl::Hidden, cl::init(false));
113 static cl::opt<bool> ClKeepGoing("msan-keep-going",
114 cl::desc("keep going after reporting a UMR"),
115 cl::Hidden, cl::init(false));
116 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
117 cl::desc("poison uninitialized stack variables"),
118 cl::Hidden, cl::init(true));
119 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
120 cl::desc("poison uninitialized stack variables with a call"),
121 cl::Hidden, cl::init(false));
122 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
123 cl::desc("poison uninitialized stack variables with the given patter"),
124 cl::Hidden, cl::init(0xff));
125
126 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
127 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
128 cl::Hidden, cl::init(true));
129
130 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
131 cl::desc("exact handling of relational integer ICmp"),
132 cl::Hidden, cl::init(false));
133
134 static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
135 cl::desc("store origin for clean (fully initialized) values"),
136 cl::Hidden, cl::init(false));
137
138 // This flag controls whether we check the shadow of the address
139 // operand of load or store. Such bugs are very rare, since load from
140 // a garbage address typically results in SEGV, but still happen
141 // (e.g. only lower bits of address are garbage, or the access happens
142 // early at program startup where malloc-ed memory is more likely to
143 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
144 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
145 cl::desc("report accesses through a pointer which has poisoned shadow"),
146 cl::Hidden, cl::init(true));
147
148 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
149 cl::desc("print out instructions with default strict semantics"),
150 cl::Hidden, cl::init(false));
151
152 static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
153 cl::desc("File containing the list of functions where MemorySanitizer "
154 "should not report bugs"), cl::Hidden);
155
156 namespace {
157
158 /// \brief An instrumentation pass implementing detection of uninitialized
159 /// reads.
160 ///
161 /// MemorySanitizer: instrument the code in module to find
162 /// uninitialized reads.
163 class MemorySanitizer : public FunctionPass {
164 public:
MemorySanitizer(bool TrackOrigins=false,StringRef BlacklistFile=StringRef ())165 MemorySanitizer(bool TrackOrigins = false,
166 StringRef BlacklistFile = StringRef())
167 : FunctionPass(ID),
168 TrackOrigins(TrackOrigins || ClTrackOrigins),
169 TD(0),
170 WarningFn(0),
171 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
172 : BlacklistFile) { }
getPassName() const173 const char *getPassName() const { return "MemorySanitizer"; }
174 bool runOnFunction(Function &F);
175 bool doInitialization(Module &M);
176 static char ID; // Pass identification, replacement for typeid.
177
178 private:
179 void initializeCallbacks(Module &M);
180
181 /// \brief Track origins (allocation points) of uninitialized values.
182 bool TrackOrigins;
183
184 DataLayout *TD;
185 LLVMContext *C;
186 Type *IntptrTy;
187 Type *OriginTy;
188 /// \brief Thread-local shadow storage for function parameters.
189 GlobalVariable *ParamTLS;
190 /// \brief Thread-local origin storage for function parameters.
191 GlobalVariable *ParamOriginTLS;
192 /// \brief Thread-local shadow storage for function return value.
193 GlobalVariable *RetvalTLS;
194 /// \brief Thread-local origin storage for function return value.
195 GlobalVariable *RetvalOriginTLS;
196 /// \brief Thread-local shadow storage for in-register va_arg function
197 /// parameters (x86_64-specific).
198 GlobalVariable *VAArgTLS;
199 /// \brief Thread-local shadow storage for va_arg overflow area
200 /// (x86_64-specific).
201 GlobalVariable *VAArgOverflowSizeTLS;
202 /// \brief Thread-local space used to pass origin value to the UMR reporting
203 /// function.
204 GlobalVariable *OriginTLS;
205
206 /// \brief The run-time callback to print a warning.
207 Value *WarningFn;
208 /// \brief Run-time helper that copies origin info for a memory range.
209 Value *MsanCopyOriginFn;
210 /// \brief Run-time helper that generates a new origin value for a stack
211 /// allocation.
212 Value *MsanSetAllocaOriginFn;
213 /// \brief Run-time helper that poisons stack on function entry.
214 Value *MsanPoisonStackFn;
215 /// \brief MSan runtime replacements for memmove, memcpy and memset.
216 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
217
218 /// \brief Address mask used in application-to-shadow address calculation.
219 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
220 uint64_t ShadowMask;
221 /// \brief Offset of the origin shadow from the "normal" shadow.
222 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
223 uint64_t OriginOffset;
224 /// \brief Branch weights for error reporting.
225 MDNode *ColdCallWeights;
226 /// \brief Branch weights for origin store.
227 MDNode *OriginStoreWeights;
228 /// \bried Path to blacklist file.
229 SmallString<64> BlacklistFile;
230 /// \brief The blacklist.
231 OwningPtr<BlackList> BL;
232 /// \brief An empty volatile inline asm that prevents callback merge.
233 InlineAsm *EmptyAsm;
234
235 friend struct MemorySanitizerVisitor;
236 friend struct VarArgAMD64Helper;
237 };
238 } // namespace
239
240 char MemorySanitizer::ID = 0;
241 INITIALIZE_PASS(MemorySanitizer, "msan",
242 "MemorySanitizer: detects uninitialized reads.",
243 false, false)
244
createMemorySanitizerPass(bool TrackOrigins,StringRef BlacklistFile)245 FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
246 StringRef BlacklistFile) {
247 return new MemorySanitizer(TrackOrigins, BlacklistFile);
248 }
249
250 /// \brief Create a non-const global initialized with the given string.
251 ///
252 /// Creates a writable global for Str so that we can pass it to the
253 /// run-time lib. Runtime uses first 4 bytes of the string to store the
254 /// frame ID, so the string needs to be mutable.
createPrivateNonConstGlobalForString(Module & M,StringRef Str)255 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
256 StringRef Str) {
257 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
258 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
259 GlobalValue::PrivateLinkage, StrConst, "");
260 }
261
262
263 /// \brief Insert extern declaration of runtime-provided functions and globals.
initializeCallbacks(Module & M)264 void MemorySanitizer::initializeCallbacks(Module &M) {
265 // Only do this once.
266 if (WarningFn)
267 return;
268
269 IRBuilder<> IRB(*C);
270 // Create the callback.
271 // FIXME: this function should have "Cold" calling conv,
272 // which is not yet implemented.
273 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
274 : "__msan_warning_noreturn";
275 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
276
277 MsanCopyOriginFn = M.getOrInsertFunction(
278 "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
279 IRB.getInt8PtrTy(), IntptrTy, NULL);
280 MsanSetAllocaOriginFn = M.getOrInsertFunction(
281 "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
282 IRB.getInt8PtrTy(), NULL);
283 MsanPoisonStackFn = M.getOrInsertFunction(
284 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
285 MemmoveFn = M.getOrInsertFunction(
286 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
287 IRB.getInt8PtrTy(), IntptrTy, NULL);
288 MemcpyFn = M.getOrInsertFunction(
289 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
290 IntptrTy, NULL);
291 MemsetFn = M.getOrInsertFunction(
292 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
293 IntptrTy, NULL);
294
295 // Create globals.
296 RetvalTLS = new GlobalVariable(
297 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
298 GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
299 GlobalVariable::GeneralDynamicTLSModel);
300 RetvalOriginTLS = new GlobalVariable(
301 M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
302 "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
303
304 ParamTLS = new GlobalVariable(
305 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
306 GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
307 GlobalVariable::GeneralDynamicTLSModel);
308 ParamOriginTLS = new GlobalVariable(
309 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
310 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
311
312 VAArgTLS = new GlobalVariable(
313 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
314 GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
315 GlobalVariable::GeneralDynamicTLSModel);
316 VAArgOverflowSizeTLS = new GlobalVariable(
317 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
318 "__msan_va_arg_overflow_size_tls", 0,
319 GlobalVariable::GeneralDynamicTLSModel);
320 OriginTLS = new GlobalVariable(
321 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
322 "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
323
324 // We insert an empty inline asm after __msan_report* to avoid callback merge.
325 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
326 StringRef(""), StringRef(""),
327 /*hasSideEffects=*/true);
328 }
329
330 /// \brief Module-level initialization.
331 ///
332 /// inserts a call to __msan_init to the module's constructor list.
doInitialization(Module & M)333 bool MemorySanitizer::doInitialization(Module &M) {
334 TD = getAnalysisIfAvailable<DataLayout>();
335 if (!TD)
336 return false;
337 BL.reset(new BlackList(BlacklistFile));
338 C = &(M.getContext());
339 unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
340 switch (PtrSize) {
341 case 64:
342 ShadowMask = kShadowMask64;
343 OriginOffset = kOriginOffset64;
344 break;
345 case 32:
346 ShadowMask = kShadowMask32;
347 OriginOffset = kOriginOffset32;
348 break;
349 default:
350 report_fatal_error("unsupported pointer size");
351 break;
352 }
353
354 IRBuilder<> IRB(*C);
355 IntptrTy = IRB.getIntPtrTy(TD);
356 OriginTy = IRB.getInt32Ty();
357
358 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
359 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
360
361 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
362 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
363 "__msan_init", IRB.getVoidTy(), NULL)), 0);
364
365 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
366 IRB.getInt32(TrackOrigins), "__msan_track_origins");
367
368 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
369 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
370
371 return true;
372 }
373
374 namespace {
375
376 /// \brief A helper class that handles instrumentation of VarArg
377 /// functions on a particular platform.
378 ///
379 /// Implementations are expected to insert the instrumentation
380 /// necessary to propagate argument shadow through VarArg function
381 /// calls. Visit* methods are called during an InstVisitor pass over
382 /// the function, and should avoid creating new basic blocks. A new
383 /// instance of this class is created for each instrumented function.
384 struct VarArgHelper {
385 /// \brief Visit a CallSite.
386 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
387
388 /// \brief Visit a va_start call.
389 virtual void visitVAStartInst(VAStartInst &I) = 0;
390
391 /// \brief Visit a va_copy call.
392 virtual void visitVACopyInst(VACopyInst &I) = 0;
393
394 /// \brief Finalize function instrumentation.
395 ///
396 /// This method is called after visiting all interesting (see above)
397 /// instructions in a function.
398 virtual void finalizeInstrumentation() = 0;
399
~VarArgHelper__anon99b2d68b0211::VarArgHelper400 virtual ~VarArgHelper() {}
401 };
402
403 struct MemorySanitizerVisitor;
404
405 VarArgHelper*
406 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
407 MemorySanitizerVisitor &Visitor);
408
409 /// This class does all the work for a given function. Store and Load
410 /// instructions store and load corresponding shadow and origin
411 /// values. Most instructions propagate shadow from arguments to their
412 /// return values. Certain instructions (most importantly, BranchInst)
413 /// test their argument shadow and print reports (with a runtime call) if it's
414 /// non-zero.
415 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
416 Function &F;
417 MemorySanitizer &MS;
418 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
419 ValueMap<Value*, Value*> ShadowMap, OriginMap;
420 bool InsertChecks;
421 bool LoadShadow;
422 OwningPtr<VarArgHelper> VAHelper;
423
424 struct ShadowOriginAndInsertPoint {
425 Instruction *Shadow;
426 Instruction *Origin;
427 Instruction *OrigIns;
ShadowOriginAndInsertPoint__anon99b2d68b0211::MemorySanitizerVisitor::ShadowOriginAndInsertPoint428 ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
429 : Shadow(S), Origin(O), OrigIns(I) { }
ShadowOriginAndInsertPoint__anon99b2d68b0211::MemorySanitizerVisitor::ShadowOriginAndInsertPoint430 ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
431 };
432 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
433 SmallVector<Instruction*, 16> StoreList;
434
MemorySanitizerVisitor__anon99b2d68b0211::MemorySanitizerVisitor435 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
436 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
437 LoadShadow = InsertChecks =
438 !MS.BL->isIn(F) &&
439 F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
440 Attribute::SanitizeMemory);
441
442 DEBUG(if (!InsertChecks)
443 dbgs() << "MemorySanitizer is not inserting checks into '"
444 << F.getName() << "'\n");
445 }
446
materializeStores__anon99b2d68b0211::MemorySanitizerVisitor447 void materializeStores() {
448 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
449 StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
450
451 IRBuilder<> IRB(&I);
452 Value *Val = I.getValueOperand();
453 Value *Addr = I.getPointerOperand();
454 Value *Shadow = getShadow(Val);
455 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
456
457 StoreInst *NewSI =
458 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
459 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
460 (void)NewSI;
461
462 if (ClCheckAccessAddress)
463 insertCheck(Addr, &I);
464
465 if (MS.TrackOrigins) {
466 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
467 if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
468 IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
469 Alignment);
470 } else {
471 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
472
473 Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
474 // TODO(eugenis): handle non-zero constant shadow by inserting an
475 // unconditional check (can not simply fail compilation as this could
476 // be in the dead code).
477 if (Cst)
478 continue;
479
480 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
481 getCleanShadow(ConvertedShadow), "_mscmp");
482 Instruction *CheckTerm =
483 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
484 MS.OriginStoreWeights);
485 IRBuilder<> IRBNew(CheckTerm);
486 IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
487 Alignment);
488 }
489 }
490 }
491 }
492
materializeChecks__anon99b2d68b0211::MemorySanitizerVisitor493 void materializeChecks() {
494 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
495 Instruction *Shadow = InstrumentationList[i].Shadow;
496 Instruction *OrigIns = InstrumentationList[i].OrigIns;
497 IRBuilder<> IRB(OrigIns);
498 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
499 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
500 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
501 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
502 getCleanShadow(ConvertedShadow), "_mscmp");
503 Instruction *CheckTerm =
504 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
505 /* Unreachable */ !ClKeepGoing,
506 MS.ColdCallWeights);
507
508 IRB.SetInsertPoint(CheckTerm);
509 if (MS.TrackOrigins) {
510 Instruction *Origin = InstrumentationList[i].Origin;
511 IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
512 MS.OriginTLS);
513 }
514 CallInst *Call = IRB.CreateCall(MS.WarningFn);
515 Call->setDebugLoc(OrigIns->getDebugLoc());
516 IRB.CreateCall(MS.EmptyAsm);
517 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
518 }
519 DEBUG(dbgs() << "DONE:\n" << F);
520 }
521
522 /// \brief Add MemorySanitizer instrumentation to a function.
runOnFunction__anon99b2d68b0211::MemorySanitizerVisitor523 bool runOnFunction() {
524 MS.initializeCallbacks(*F.getParent());
525 if (!MS.TD) return false;
526
527 // In the presence of unreachable blocks, we may see Phi nodes with
528 // incoming nodes from such blocks. Since InstVisitor skips unreachable
529 // blocks, such nodes will not have any shadow value associated with them.
530 // It's easier to remove unreachable blocks than deal with missing shadow.
531 removeUnreachableBlocks(F);
532
533 // Iterate all BBs in depth-first order and create shadow instructions
534 // for all instructions (where applicable).
535 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
536 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
537 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
538 BasicBlock *BB = *DI;
539 visit(*BB);
540 }
541
542 // Finalize PHI nodes.
543 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
544 PHINode *PN = ShadowPHINodes[i];
545 PHINode *PNS = cast<PHINode>(getShadow(PN));
546 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
547 size_t NumValues = PN->getNumIncomingValues();
548 for (size_t v = 0; v < NumValues; v++) {
549 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
550 if (PNO)
551 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
552 }
553 }
554
555 VAHelper->finalizeInstrumentation();
556
557 // Delayed instrumentation of StoreInst.
558 // This may add new checks to be inserted later.
559 materializeStores();
560
561 // Insert shadow value checks.
562 materializeChecks();
563
564 return true;
565 }
566
567 /// \brief Compute the shadow type that corresponds to a given Value.
getShadowTy__anon99b2d68b0211::MemorySanitizerVisitor568 Type *getShadowTy(Value *V) {
569 return getShadowTy(V->getType());
570 }
571
572 /// \brief Compute the shadow type that corresponds to a given Type.
getShadowTy__anon99b2d68b0211::MemorySanitizerVisitor573 Type *getShadowTy(Type *OrigTy) {
574 if (!OrigTy->isSized()) {
575 return 0;
576 }
577 // For integer type, shadow is the same as the original type.
578 // This may return weird-sized types like i1.
579 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
580 return IT;
581 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
582 uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
583 return VectorType::get(IntegerType::get(*MS.C, EltSize),
584 VT->getNumElements());
585 }
586 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
587 SmallVector<Type*, 4> Elements;
588 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
589 Elements.push_back(getShadowTy(ST->getElementType(i)));
590 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
591 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
592 return Res;
593 }
594 uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
595 return IntegerType::get(*MS.C, TypeSize);
596 }
597
598 /// \brief Flatten a vector type.
getShadowTyNoVec__anon99b2d68b0211::MemorySanitizerVisitor599 Type *getShadowTyNoVec(Type *ty) {
600 if (VectorType *vt = dyn_cast<VectorType>(ty))
601 return IntegerType::get(*MS.C, vt->getBitWidth());
602 return ty;
603 }
604
605 /// \brief Convert a shadow value to it's flattened variant.
convertToShadowTyNoVec__anon99b2d68b0211::MemorySanitizerVisitor606 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
607 Type *Ty = V->getType();
608 Type *NoVecTy = getShadowTyNoVec(Ty);
609 if (Ty == NoVecTy) return V;
610 return IRB.CreateBitCast(V, NoVecTy);
611 }
612
613 /// \brief Compute the shadow address that corresponds to a given application
614 /// address.
615 ///
616 /// Shadow = Addr & ~ShadowMask.
getShadowPtr__anon99b2d68b0211::MemorySanitizerVisitor617 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
618 IRBuilder<> &IRB) {
619 Value *ShadowLong =
620 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
621 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
622 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
623 }
624
625 /// \brief Compute the origin address that corresponds to a given application
626 /// address.
627 ///
628 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
getOriginPtr__anon99b2d68b0211::MemorySanitizerVisitor629 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
630 Value *ShadowLong =
631 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
632 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
633 Value *Add =
634 IRB.CreateAdd(ShadowLong,
635 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
636 Value *SecondAnd =
637 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
638 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
639 }
640
641 /// \brief Compute the shadow address for a given function argument.
642 ///
643 /// Shadow = ParamTLS+ArgOffset.
getShadowPtrForArgument__anon99b2d68b0211::MemorySanitizerVisitor644 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
645 int ArgOffset) {
646 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
647 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
648 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
649 "_msarg");
650 }
651
652 /// \brief Compute the origin address for a given function argument.
getOriginPtrForArgument__anon99b2d68b0211::MemorySanitizerVisitor653 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
654 int ArgOffset) {
655 if (!MS.TrackOrigins) return 0;
656 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
657 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
658 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
659 "_msarg_o");
660 }
661
662 /// \brief Compute the shadow address for a retval.
getShadowPtrForRetval__anon99b2d68b0211::MemorySanitizerVisitor663 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
664 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
665 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
666 "_msret");
667 }
668
669 /// \brief Compute the origin address for a retval.
getOriginPtrForRetval__anon99b2d68b0211::MemorySanitizerVisitor670 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
671 // We keep a single origin for the entire retval. Might be too optimistic.
672 return MS.RetvalOriginTLS;
673 }
674
675 /// \brief Set SV to be the shadow value for V.
setShadow__anon99b2d68b0211::MemorySanitizerVisitor676 void setShadow(Value *V, Value *SV) {
677 assert(!ShadowMap.count(V) && "Values may only have one shadow");
678 ShadowMap[V] = SV;
679 }
680
681 /// \brief Set Origin to be the origin value for V.
setOrigin__anon99b2d68b0211::MemorySanitizerVisitor682 void setOrigin(Value *V, Value *Origin) {
683 if (!MS.TrackOrigins) return;
684 assert(!OriginMap.count(V) && "Values may only have one origin");
685 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
686 OriginMap[V] = Origin;
687 }
688
689 /// \brief Create a clean shadow value for a given value.
690 ///
691 /// Clean shadow (all zeroes) means all bits of the value are defined
692 /// (initialized).
getCleanShadow__anon99b2d68b0211::MemorySanitizerVisitor693 Value *getCleanShadow(Value *V) {
694 Type *ShadowTy = getShadowTy(V);
695 if (!ShadowTy)
696 return 0;
697 return Constant::getNullValue(ShadowTy);
698 }
699
700 /// \brief Create a dirty shadow of a given shadow type.
getPoisonedShadow__anon99b2d68b0211::MemorySanitizerVisitor701 Constant *getPoisonedShadow(Type *ShadowTy) {
702 assert(ShadowTy);
703 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
704 return Constant::getAllOnesValue(ShadowTy);
705 StructType *ST = cast<StructType>(ShadowTy);
706 SmallVector<Constant *, 4> Vals;
707 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
708 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
709 return ConstantStruct::get(ST, Vals);
710 }
711
712 /// \brief Create a clean (zero) origin.
getCleanOrigin__anon99b2d68b0211::MemorySanitizerVisitor713 Value *getCleanOrigin() {
714 return Constant::getNullValue(MS.OriginTy);
715 }
716
717 /// \brief Get the shadow value for a given Value.
718 ///
719 /// This function either returns the value set earlier with setShadow,
720 /// or extracts if from ParamTLS (for function arguments).
getShadow__anon99b2d68b0211::MemorySanitizerVisitor721 Value *getShadow(Value *V) {
722 if (Instruction *I = dyn_cast<Instruction>(V)) {
723 // For instructions the shadow is already stored in the map.
724 Value *Shadow = ShadowMap[V];
725 if (!Shadow) {
726 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
727 (void)I;
728 assert(Shadow && "No shadow for a value");
729 }
730 return Shadow;
731 }
732 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
733 Value *AllOnes = getPoisonedShadow(getShadowTy(V));
734 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
735 (void)U;
736 return AllOnes;
737 }
738 if (Argument *A = dyn_cast<Argument>(V)) {
739 // For arguments we compute the shadow on demand and store it in the map.
740 Value **ShadowPtr = &ShadowMap[V];
741 if (*ShadowPtr)
742 return *ShadowPtr;
743 Function *F = A->getParent();
744 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
745 unsigned ArgOffset = 0;
746 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
747 AI != AE; ++AI) {
748 if (!AI->getType()->isSized()) {
749 DEBUG(dbgs() << "Arg is not sized\n");
750 continue;
751 }
752 unsigned Size = AI->hasByValAttr()
753 ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
754 : MS.TD->getTypeAllocSize(AI->getType());
755 if (A == AI) {
756 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
757 if (AI->hasByValAttr()) {
758 // ByVal pointer itself has clean shadow. We copy the actual
759 // argument shadow to the underlying memory.
760 Value *Cpy = EntryIRB.CreateMemCpy(
761 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
762 Base, Size, AI->getParamAlignment());
763 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
764 (void)Cpy;
765 *ShadowPtr = getCleanShadow(V);
766 } else {
767 *ShadowPtr = EntryIRB.CreateLoad(Base);
768 }
769 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
770 **ShadowPtr << "\n");
771 if (MS.TrackOrigins) {
772 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
773 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
774 }
775 }
776 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
777 }
778 assert(*ShadowPtr && "Could not find shadow for an argument");
779 return *ShadowPtr;
780 }
781 // For everything else the shadow is zero.
782 return getCleanShadow(V);
783 }
784
785 /// \brief Get the shadow for i-th argument of the instruction I.
getShadow__anon99b2d68b0211::MemorySanitizerVisitor786 Value *getShadow(Instruction *I, int i) {
787 return getShadow(I->getOperand(i));
788 }
789
790 /// \brief Get the origin for a value.
getOrigin__anon99b2d68b0211::MemorySanitizerVisitor791 Value *getOrigin(Value *V) {
792 if (!MS.TrackOrigins) return 0;
793 if (isa<Instruction>(V) || isa<Argument>(V)) {
794 Value *Origin = OriginMap[V];
795 if (!Origin) {
796 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
797 Origin = getCleanOrigin();
798 }
799 return Origin;
800 }
801 return getCleanOrigin();
802 }
803
804 /// \brief Get the origin for i-th argument of the instruction I.
getOrigin__anon99b2d68b0211::MemorySanitizerVisitor805 Value *getOrigin(Instruction *I, int i) {
806 return getOrigin(I->getOperand(i));
807 }
808
809 /// \brief Remember the place where a shadow check should be inserted.
810 ///
811 /// This location will be later instrumented with a check that will print a
812 /// UMR warning in runtime if the value is not fully defined.
insertCheck__anon99b2d68b0211::MemorySanitizerVisitor813 void insertCheck(Value *Val, Instruction *OrigIns) {
814 assert(Val);
815 if (!InsertChecks) return;
816 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
817 if (!Shadow) return;
818 #ifndef NDEBUG
819 Type *ShadowTy = Shadow->getType();
820 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
821 "Can only insert checks for integer and vector shadow types");
822 #endif
823 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
824 InstrumentationList.push_back(
825 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
826 }
827
828 // ------------------- Visitors.
829
830 /// \brief Instrument LoadInst
831 ///
832 /// Loads the corresponding shadow and (optionally) origin.
833 /// Optionally, checks that the load address is fully defined.
visitLoadInst__anon99b2d68b0211::MemorySanitizerVisitor834 void visitLoadInst(LoadInst &I) {
835 assert(I.getType()->isSized() && "Load type must have size");
836 IRBuilder<> IRB(&I);
837 Type *ShadowTy = getShadowTy(&I);
838 Value *Addr = I.getPointerOperand();
839 if (LoadShadow) {
840 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
841 setShadow(&I,
842 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
843 } else {
844 setShadow(&I, getCleanShadow(&I));
845 }
846
847 if (ClCheckAccessAddress)
848 insertCheck(I.getPointerOperand(), &I);
849
850 if (MS.TrackOrigins) {
851 if (LoadShadow) {
852 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
853 setOrigin(&I,
854 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
855 } else {
856 setOrigin(&I, getCleanOrigin());
857 }
858 }
859 }
860
861 /// \brief Instrument StoreInst
862 ///
863 /// Stores the corresponding shadow and (optionally) origin.
864 /// Optionally, checks that the store address is fully defined.
visitStoreInst__anon99b2d68b0211::MemorySanitizerVisitor865 void visitStoreInst(StoreInst &I) {
866 StoreList.push_back(&I);
867 }
868
869 // Vector manipulation.
visitExtractElementInst__anon99b2d68b0211::MemorySanitizerVisitor870 void visitExtractElementInst(ExtractElementInst &I) {
871 insertCheck(I.getOperand(1), &I);
872 IRBuilder<> IRB(&I);
873 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
874 "_msprop"));
875 setOrigin(&I, getOrigin(&I, 0));
876 }
877
visitInsertElementInst__anon99b2d68b0211::MemorySanitizerVisitor878 void visitInsertElementInst(InsertElementInst &I) {
879 insertCheck(I.getOperand(2), &I);
880 IRBuilder<> IRB(&I);
881 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
882 I.getOperand(2), "_msprop"));
883 setOriginForNaryOp(I);
884 }
885
visitShuffleVectorInst__anon99b2d68b0211::MemorySanitizerVisitor886 void visitShuffleVectorInst(ShuffleVectorInst &I) {
887 insertCheck(I.getOperand(2), &I);
888 IRBuilder<> IRB(&I);
889 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
890 I.getOperand(2), "_msprop"));
891 setOriginForNaryOp(I);
892 }
893
894 // Casts.
visitSExtInst__anon99b2d68b0211::MemorySanitizerVisitor895 void visitSExtInst(SExtInst &I) {
896 IRBuilder<> IRB(&I);
897 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
898 setOrigin(&I, getOrigin(&I, 0));
899 }
900
visitZExtInst__anon99b2d68b0211::MemorySanitizerVisitor901 void visitZExtInst(ZExtInst &I) {
902 IRBuilder<> IRB(&I);
903 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
904 setOrigin(&I, getOrigin(&I, 0));
905 }
906
visitTruncInst__anon99b2d68b0211::MemorySanitizerVisitor907 void visitTruncInst(TruncInst &I) {
908 IRBuilder<> IRB(&I);
909 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
910 setOrigin(&I, getOrigin(&I, 0));
911 }
912
visitBitCastInst__anon99b2d68b0211::MemorySanitizerVisitor913 void visitBitCastInst(BitCastInst &I) {
914 IRBuilder<> IRB(&I);
915 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
916 setOrigin(&I, getOrigin(&I, 0));
917 }
918
visitPtrToIntInst__anon99b2d68b0211::MemorySanitizerVisitor919 void visitPtrToIntInst(PtrToIntInst &I) {
920 IRBuilder<> IRB(&I);
921 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
922 "_msprop_ptrtoint"));
923 setOrigin(&I, getOrigin(&I, 0));
924 }
925
visitIntToPtrInst__anon99b2d68b0211::MemorySanitizerVisitor926 void visitIntToPtrInst(IntToPtrInst &I) {
927 IRBuilder<> IRB(&I);
928 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
929 "_msprop_inttoptr"));
930 setOrigin(&I, getOrigin(&I, 0));
931 }
932
visitFPToSIInst__anon99b2d68b0211::MemorySanitizerVisitor933 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
visitFPToUIInst__anon99b2d68b0211::MemorySanitizerVisitor934 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
visitSIToFPInst__anon99b2d68b0211::MemorySanitizerVisitor935 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
visitUIToFPInst__anon99b2d68b0211::MemorySanitizerVisitor936 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
visitFPExtInst__anon99b2d68b0211::MemorySanitizerVisitor937 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
visitFPTruncInst__anon99b2d68b0211::MemorySanitizerVisitor938 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
939
940 /// \brief Propagate shadow for bitwise AND.
941 ///
942 /// This code is exact, i.e. if, for example, a bit in the left argument
943 /// is defined and 0, then neither the value not definedness of the
944 /// corresponding bit in B don't affect the resulting shadow.
visitAnd__anon99b2d68b0211::MemorySanitizerVisitor945 void visitAnd(BinaryOperator &I) {
946 IRBuilder<> IRB(&I);
947 // "And" of 0 and a poisoned value results in unpoisoned value.
948 // 1&1 => 1; 0&1 => 0; p&1 => p;
949 // 1&0 => 0; 0&0 => 0; p&0 => 0;
950 // 1&p => p; 0&p => 0; p&p => p;
951 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
952 Value *S1 = getShadow(&I, 0);
953 Value *S2 = getShadow(&I, 1);
954 Value *V1 = I.getOperand(0);
955 Value *V2 = I.getOperand(1);
956 if (V1->getType() != S1->getType()) {
957 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
958 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
959 }
960 Value *S1S2 = IRB.CreateAnd(S1, S2);
961 Value *V1S2 = IRB.CreateAnd(V1, S2);
962 Value *S1V2 = IRB.CreateAnd(S1, V2);
963 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
964 setOriginForNaryOp(I);
965 }
966
visitOr__anon99b2d68b0211::MemorySanitizerVisitor967 void visitOr(BinaryOperator &I) {
968 IRBuilder<> IRB(&I);
969 // "Or" of 1 and a poisoned value results in unpoisoned value.
970 // 1|1 => 1; 0|1 => 1; p|1 => 1;
971 // 1|0 => 1; 0|0 => 0; p|0 => p;
972 // 1|p => 1; 0|p => p; p|p => p;
973 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
974 Value *S1 = getShadow(&I, 0);
975 Value *S2 = getShadow(&I, 1);
976 Value *V1 = IRB.CreateNot(I.getOperand(0));
977 Value *V2 = IRB.CreateNot(I.getOperand(1));
978 if (V1->getType() != S1->getType()) {
979 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
980 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
981 }
982 Value *S1S2 = IRB.CreateAnd(S1, S2);
983 Value *V1S2 = IRB.CreateAnd(V1, S2);
984 Value *S1V2 = IRB.CreateAnd(S1, V2);
985 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
986 setOriginForNaryOp(I);
987 }
988
989 /// \brief Default propagation of shadow and/or origin.
990 ///
991 /// This class implements the general case of shadow propagation, used in all
992 /// cases where we don't know and/or don't care about what the operation
993 /// actually does. It converts all input shadow values to a common type
994 /// (extending or truncating as necessary), and bitwise OR's them.
995 ///
996 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
997 /// fully initialized), and less prone to false positives.
998 ///
999 /// This class also implements the general case of origin propagation. For a
1000 /// Nary operation, result origin is set to the origin of an argument that is
1001 /// not entirely initialized. If there is more than one such arguments, the
1002 /// rightmost of them is picked. It does not matter which one is picked if all
1003 /// arguments are initialized.
1004 template <bool CombineShadow>
1005 class Combiner {
1006 Value *Shadow;
1007 Value *Origin;
1008 IRBuilder<> &IRB;
1009 MemorySanitizerVisitor *MSV;
1010
1011 public:
Combiner(MemorySanitizerVisitor * MSV,IRBuilder<> & IRB)1012 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1013 Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
1014
1015 /// \brief Add a pair of shadow and origin values to the mix.
Add(Value * OpShadow,Value * OpOrigin)1016 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1017 if (CombineShadow) {
1018 assert(OpShadow);
1019 if (!Shadow)
1020 Shadow = OpShadow;
1021 else {
1022 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1023 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1024 }
1025 }
1026
1027 if (MSV->MS.TrackOrigins) {
1028 assert(OpOrigin);
1029 if (!Origin) {
1030 Origin = OpOrigin;
1031 } else {
1032 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1033 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1034 MSV->getCleanShadow(FlatShadow));
1035 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1036 }
1037 }
1038 return *this;
1039 }
1040
1041 /// \brief Add an application value to the mix.
Add(Value * V)1042 Combiner &Add(Value *V) {
1043 Value *OpShadow = MSV->getShadow(V);
1044 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
1045 return Add(OpShadow, OpOrigin);
1046 }
1047
1048 /// \brief Set the current combined values as the given instruction's shadow
1049 /// and origin.
Done(Instruction * I)1050 void Done(Instruction *I) {
1051 if (CombineShadow) {
1052 assert(Shadow);
1053 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1054 MSV->setShadow(I, Shadow);
1055 }
1056 if (MSV->MS.TrackOrigins) {
1057 assert(Origin);
1058 MSV->setOrigin(I, Origin);
1059 }
1060 }
1061 };
1062
1063 typedef Combiner<true> ShadowAndOriginCombiner;
1064 typedef Combiner<false> OriginCombiner;
1065
1066 /// \brief Propagate origin for arbitrary operation.
setOriginForNaryOp__anon99b2d68b0211::MemorySanitizerVisitor1067 void setOriginForNaryOp(Instruction &I) {
1068 if (!MS.TrackOrigins) return;
1069 IRBuilder<> IRB(&I);
1070 OriginCombiner OC(this, IRB);
1071 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1072 OC.Add(OI->get());
1073 OC.Done(&I);
1074 }
1075
VectorOrPrimitiveTypeSizeInBits__anon99b2d68b0211::MemorySanitizerVisitor1076 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1077 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1078 "Vector of pointers is not a valid shadow type");
1079 return Ty->isVectorTy() ?
1080 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1081 Ty->getPrimitiveSizeInBits();
1082 }
1083
1084 /// \brief Cast between two shadow types, extending or truncating as
1085 /// necessary.
CreateShadowCast__anon99b2d68b0211::MemorySanitizerVisitor1086 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
1087 Type *srcTy = V->getType();
1088 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1089 return IRB.CreateIntCast(V, dstTy, false);
1090 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1091 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1092 return IRB.CreateIntCast(V, dstTy, false);
1093 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1094 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1095 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1096 Value *V2 =
1097 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
1098 return IRB.CreateBitCast(V2, dstTy);
1099 // TODO: handle struct types.
1100 }
1101
1102 /// \brief Propagate shadow for arbitrary operation.
handleShadowOr__anon99b2d68b0211::MemorySanitizerVisitor1103 void handleShadowOr(Instruction &I) {
1104 IRBuilder<> IRB(&I);
1105 ShadowAndOriginCombiner SC(this, IRB);
1106 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1107 SC.Add(OI->get());
1108 SC.Done(&I);
1109 }
1110
visitFAdd__anon99b2d68b0211::MemorySanitizerVisitor1111 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
visitFSub__anon99b2d68b0211::MemorySanitizerVisitor1112 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
visitFMul__anon99b2d68b0211::MemorySanitizerVisitor1113 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
visitAdd__anon99b2d68b0211::MemorySanitizerVisitor1114 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
visitSub__anon99b2d68b0211::MemorySanitizerVisitor1115 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
visitXor__anon99b2d68b0211::MemorySanitizerVisitor1116 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
visitMul__anon99b2d68b0211::MemorySanitizerVisitor1117 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
1118
handleDiv__anon99b2d68b0211::MemorySanitizerVisitor1119 void handleDiv(Instruction &I) {
1120 IRBuilder<> IRB(&I);
1121 // Strict on the second argument.
1122 insertCheck(I.getOperand(1), &I);
1123 setShadow(&I, getShadow(&I, 0));
1124 setOrigin(&I, getOrigin(&I, 0));
1125 }
1126
visitUDiv__anon99b2d68b0211::MemorySanitizerVisitor1127 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
visitSDiv__anon99b2d68b0211::MemorySanitizerVisitor1128 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
visitFDiv__anon99b2d68b0211::MemorySanitizerVisitor1129 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
visitURem__anon99b2d68b0211::MemorySanitizerVisitor1130 void visitURem(BinaryOperator &I) { handleDiv(I); }
visitSRem__anon99b2d68b0211::MemorySanitizerVisitor1131 void visitSRem(BinaryOperator &I) { handleDiv(I); }
visitFRem__anon99b2d68b0211::MemorySanitizerVisitor1132 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1133
1134 /// \brief Instrument == and != comparisons.
1135 ///
1136 /// Sometimes the comparison result is known even if some of the bits of the
1137 /// arguments are not.
handleEqualityComparison__anon99b2d68b0211::MemorySanitizerVisitor1138 void handleEqualityComparison(ICmpInst &I) {
1139 IRBuilder<> IRB(&I);
1140 Value *A = I.getOperand(0);
1141 Value *B = I.getOperand(1);
1142 Value *Sa = getShadow(A);
1143 Value *Sb = getShadow(B);
1144
1145 // Get rid of pointers and vectors of pointers.
1146 // For ints (and vectors of ints), types of A and Sa match,
1147 // and this is a no-op.
1148 A = IRB.CreatePointerCast(A, Sa->getType());
1149 B = IRB.CreatePointerCast(B, Sb->getType());
1150
1151 // A == B <==> (C = A^B) == 0
1152 // A != B <==> (C = A^B) != 0
1153 // Sc = Sa | Sb
1154 Value *C = IRB.CreateXor(A, B);
1155 Value *Sc = IRB.CreateOr(Sa, Sb);
1156 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1157 // Result is defined if one of the following is true
1158 // * there is a defined 1 bit in C
1159 // * C is fully defined
1160 // Si = !(C & ~Sc) && Sc
1161 Value *Zero = Constant::getNullValue(Sc->getType());
1162 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1163 Value *Si =
1164 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1165 IRB.CreateICmpEQ(
1166 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1167 Si->setName("_msprop_icmp");
1168 setShadow(&I, Si);
1169 setOriginForNaryOp(I);
1170 }
1171
1172 /// \brief Build the lowest possible value of V, taking into account V's
1173 /// uninitialized bits.
getLowestPossibleValue__anon99b2d68b0211::MemorySanitizerVisitor1174 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1175 bool isSigned) {
1176 if (isSigned) {
1177 // Split shadow into sign bit and other bits.
1178 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1179 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1180 // Maximise the undefined shadow bit, minimize other undefined bits.
1181 return
1182 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1183 } else {
1184 // Minimize undefined bits.
1185 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1186 }
1187 }
1188
1189 /// \brief Build the highest possible value of V, taking into account V's
1190 /// uninitialized bits.
getHighestPossibleValue__anon99b2d68b0211::MemorySanitizerVisitor1191 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1192 bool isSigned) {
1193 if (isSigned) {
1194 // Split shadow into sign bit and other bits.
1195 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1196 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1197 // Minimise the undefined shadow bit, maximise other undefined bits.
1198 return
1199 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1200 } else {
1201 // Maximize undefined bits.
1202 return IRB.CreateOr(A, Sa);
1203 }
1204 }
1205
1206 /// \brief Instrument relational comparisons.
1207 ///
1208 /// This function does exact shadow propagation for all relational
1209 /// comparisons of integers, pointers and vectors of those.
1210 /// FIXME: output seems suboptimal when one of the operands is a constant
handleRelationalComparisonExact__anon99b2d68b0211::MemorySanitizerVisitor1211 void handleRelationalComparisonExact(ICmpInst &I) {
1212 IRBuilder<> IRB(&I);
1213 Value *A = I.getOperand(0);
1214 Value *B = I.getOperand(1);
1215 Value *Sa = getShadow(A);
1216 Value *Sb = getShadow(B);
1217
1218 // Get rid of pointers and vectors of pointers.
1219 // For ints (and vectors of ints), types of A and Sa match,
1220 // and this is a no-op.
1221 A = IRB.CreatePointerCast(A, Sa->getType());
1222 B = IRB.CreatePointerCast(B, Sb->getType());
1223
1224 // Let [a0, a1] be the interval of possible values of A, taking into account
1225 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1226 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1227 bool IsSigned = I.isSigned();
1228 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1229 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1230 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1231 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1232 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1233 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1234 Value *Si = IRB.CreateXor(S1, S2);
1235 setShadow(&I, Si);
1236 setOriginForNaryOp(I);
1237 }
1238
1239 /// \brief Instrument signed relational comparisons.
1240 ///
1241 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1242 /// propagating the highest bit of the shadow. Everything else is delegated
1243 /// to handleShadowOr().
handleSignedRelationalComparison__anon99b2d68b0211::MemorySanitizerVisitor1244 void handleSignedRelationalComparison(ICmpInst &I) {
1245 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1246 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1247 Value* op = NULL;
1248 CmpInst::Predicate pre = I.getPredicate();
1249 if (constOp0 && constOp0->isNullValue() &&
1250 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1251 op = I.getOperand(1);
1252 } else if (constOp1 && constOp1->isNullValue() &&
1253 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1254 op = I.getOperand(0);
1255 }
1256 if (op) {
1257 IRBuilder<> IRB(&I);
1258 Value* Shadow =
1259 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1260 setShadow(&I, Shadow);
1261 setOrigin(&I, getOrigin(op));
1262 } else {
1263 handleShadowOr(I);
1264 }
1265 }
1266
visitICmpInst__anon99b2d68b0211::MemorySanitizerVisitor1267 void visitICmpInst(ICmpInst &I) {
1268 if (!ClHandleICmp) {
1269 handleShadowOr(I);
1270 return;
1271 }
1272 if (I.isEquality()) {
1273 handleEqualityComparison(I);
1274 return;
1275 }
1276
1277 assert(I.isRelational());
1278 if (ClHandleICmpExact) {
1279 handleRelationalComparisonExact(I);
1280 return;
1281 }
1282 if (I.isSigned()) {
1283 handleSignedRelationalComparison(I);
1284 return;
1285 }
1286
1287 assert(I.isUnsigned());
1288 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1289 handleRelationalComparisonExact(I);
1290 return;
1291 }
1292
1293 handleShadowOr(I);
1294 }
1295
visitFCmpInst__anon99b2d68b0211::MemorySanitizerVisitor1296 void visitFCmpInst(FCmpInst &I) {
1297 handleShadowOr(I);
1298 }
1299
handleShift__anon99b2d68b0211::MemorySanitizerVisitor1300 void handleShift(BinaryOperator &I) {
1301 IRBuilder<> IRB(&I);
1302 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1303 // Otherwise perform the same shift on S1.
1304 Value *S1 = getShadow(&I, 0);
1305 Value *S2 = getShadow(&I, 1);
1306 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1307 S2->getType());
1308 Value *V2 = I.getOperand(1);
1309 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1310 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1311 setOriginForNaryOp(I);
1312 }
1313
visitShl__anon99b2d68b0211::MemorySanitizerVisitor1314 void visitShl(BinaryOperator &I) { handleShift(I); }
visitAShr__anon99b2d68b0211::MemorySanitizerVisitor1315 void visitAShr(BinaryOperator &I) { handleShift(I); }
visitLShr__anon99b2d68b0211::MemorySanitizerVisitor1316 void visitLShr(BinaryOperator &I) { handleShift(I); }
1317
1318 /// \brief Instrument llvm.memmove
1319 ///
1320 /// At this point we don't know if llvm.memmove will be inlined or not.
1321 /// If we don't instrument it and it gets inlined,
1322 /// our interceptor will not kick in and we will lose the memmove.
1323 /// If we instrument the call here, but it does not get inlined,
1324 /// we will memove the shadow twice: which is bad in case
1325 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1326 ///
1327 /// Similar situation exists for memcpy and memset.
visitMemMoveInst__anon99b2d68b0211::MemorySanitizerVisitor1328 void visitMemMoveInst(MemMoveInst &I) {
1329 IRBuilder<> IRB(&I);
1330 IRB.CreateCall3(
1331 MS.MemmoveFn,
1332 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1333 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1334 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1335 I.eraseFromParent();
1336 }
1337
1338 // Similar to memmove: avoid copying shadow twice.
1339 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1340 // FIXME: consider doing manual inline for small constant sizes and proper
1341 // alignment.
visitMemCpyInst__anon99b2d68b0211::MemorySanitizerVisitor1342 void visitMemCpyInst(MemCpyInst &I) {
1343 IRBuilder<> IRB(&I);
1344 IRB.CreateCall3(
1345 MS.MemcpyFn,
1346 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1347 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1348 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1349 I.eraseFromParent();
1350 }
1351
1352 // Same as memcpy.
visitMemSetInst__anon99b2d68b0211::MemorySanitizerVisitor1353 void visitMemSetInst(MemSetInst &I) {
1354 IRBuilder<> IRB(&I);
1355 IRB.CreateCall3(
1356 MS.MemsetFn,
1357 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1358 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1359 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1360 I.eraseFromParent();
1361 }
1362
visitVAStartInst__anon99b2d68b0211::MemorySanitizerVisitor1363 void visitVAStartInst(VAStartInst &I) {
1364 VAHelper->visitVAStartInst(I);
1365 }
1366
visitVACopyInst__anon99b2d68b0211::MemorySanitizerVisitor1367 void visitVACopyInst(VACopyInst &I) {
1368 VAHelper->visitVACopyInst(I);
1369 }
1370
1371 enum IntrinsicKind {
1372 IK_DoesNotAccessMemory,
1373 IK_OnlyReadsMemory,
1374 IK_WritesMemory
1375 };
1376
getIntrinsicKind__anon99b2d68b0211::MemorySanitizerVisitor1377 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1378 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1379 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1380 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1381 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1382 const int UnknownModRefBehavior = IK_WritesMemory;
1383 #define GET_INTRINSIC_MODREF_BEHAVIOR
1384 #define ModRefBehavior IntrinsicKind
1385 #include "llvm/IR/Intrinsics.gen"
1386 #undef ModRefBehavior
1387 #undef GET_INTRINSIC_MODREF_BEHAVIOR
1388 }
1389
1390 /// \brief Handle vector store-like intrinsics.
1391 ///
1392 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1393 /// has 1 pointer argument and 1 vector argument, returns void.
handleVectorStoreIntrinsic__anon99b2d68b0211::MemorySanitizerVisitor1394 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1395 IRBuilder<> IRB(&I);
1396 Value* Addr = I.getArgOperand(0);
1397 Value *Shadow = getShadow(&I, 1);
1398 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1399
1400 // We don't know the pointer alignment (could be unaligned SSE store!).
1401 // Have to assume to worst case.
1402 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1403
1404 if (ClCheckAccessAddress)
1405 insertCheck(Addr, &I);
1406
1407 // FIXME: use ClStoreCleanOrigin
1408 // FIXME: factor out common code from materializeStores
1409 if (MS.TrackOrigins)
1410 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1411 return true;
1412 }
1413
1414 /// \brief Handle vector load-like intrinsics.
1415 ///
1416 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1417 /// has 1 pointer argument, returns a vector.
handleVectorLoadIntrinsic__anon99b2d68b0211::MemorySanitizerVisitor1418 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1419 IRBuilder<> IRB(&I);
1420 Value *Addr = I.getArgOperand(0);
1421
1422 Type *ShadowTy = getShadowTy(&I);
1423 if (LoadShadow) {
1424 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1425 // We don't know the pointer alignment (could be unaligned SSE load!).
1426 // Have to assume to worst case.
1427 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1428 } else {
1429 setShadow(&I, getCleanShadow(&I));
1430 }
1431
1432
1433 if (ClCheckAccessAddress)
1434 insertCheck(Addr, &I);
1435
1436 if (MS.TrackOrigins) {
1437 if (LoadShadow)
1438 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1439 else
1440 setOrigin(&I, getCleanOrigin());
1441 }
1442 return true;
1443 }
1444
1445 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1446 ///
1447 /// Instrument intrinsics with any number of arguments of the same type,
1448 /// equal to the return type. The type should be simple (no aggregates or
1449 /// pointers; vectors are fine).
1450 /// Caller guarantees that this intrinsic does not access memory.
maybeHandleSimpleNomemIntrinsic__anon99b2d68b0211::MemorySanitizerVisitor1451 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1452 Type *RetTy = I.getType();
1453 if (!(RetTy->isIntOrIntVectorTy() ||
1454 RetTy->isFPOrFPVectorTy() ||
1455 RetTy->isX86_MMXTy()))
1456 return false;
1457
1458 unsigned NumArgOperands = I.getNumArgOperands();
1459
1460 for (unsigned i = 0; i < NumArgOperands; ++i) {
1461 Type *Ty = I.getArgOperand(i)->getType();
1462 if (Ty != RetTy)
1463 return false;
1464 }
1465
1466 IRBuilder<> IRB(&I);
1467 ShadowAndOriginCombiner SC(this, IRB);
1468 for (unsigned i = 0; i < NumArgOperands; ++i)
1469 SC.Add(I.getArgOperand(i));
1470 SC.Done(&I);
1471
1472 return true;
1473 }
1474
1475 /// \brief Heuristically instrument unknown intrinsics.
1476 ///
1477 /// The main purpose of this code is to do something reasonable with all
1478 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1479 /// We recognize several classes of intrinsics by their argument types and
1480 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1481 /// sure that we know what the intrinsic does.
1482 ///
1483 /// We special-case intrinsics where this approach fails. See llvm.bswap
1484 /// handling as an example of that.
handleUnknownIntrinsic__anon99b2d68b0211::MemorySanitizerVisitor1485 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1486 unsigned NumArgOperands = I.getNumArgOperands();
1487 if (NumArgOperands == 0)
1488 return false;
1489
1490 Intrinsic::ID iid = I.getIntrinsicID();
1491 IntrinsicKind IK = getIntrinsicKind(iid);
1492 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1493 bool WritesMemory = IK == IK_WritesMemory;
1494 assert(!(OnlyReadsMemory && WritesMemory));
1495
1496 if (NumArgOperands == 2 &&
1497 I.getArgOperand(0)->getType()->isPointerTy() &&
1498 I.getArgOperand(1)->getType()->isVectorTy() &&
1499 I.getType()->isVoidTy() &&
1500 WritesMemory) {
1501 // This looks like a vector store.
1502 return handleVectorStoreIntrinsic(I);
1503 }
1504
1505 if (NumArgOperands == 1 &&
1506 I.getArgOperand(0)->getType()->isPointerTy() &&
1507 I.getType()->isVectorTy() &&
1508 OnlyReadsMemory) {
1509 // This looks like a vector load.
1510 return handleVectorLoadIntrinsic(I);
1511 }
1512
1513 if (!OnlyReadsMemory && !WritesMemory)
1514 if (maybeHandleSimpleNomemIntrinsic(I))
1515 return true;
1516
1517 // FIXME: detect and handle SSE maskstore/maskload
1518 return false;
1519 }
1520
handleBswap__anon99b2d68b0211::MemorySanitizerVisitor1521 void handleBswap(IntrinsicInst &I) {
1522 IRBuilder<> IRB(&I);
1523 Value *Op = I.getArgOperand(0);
1524 Type *OpType = Op->getType();
1525 Function *BswapFunc = Intrinsic::getDeclaration(
1526 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1527 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1528 setOrigin(&I, getOrigin(Op));
1529 }
1530
visitIntrinsicInst__anon99b2d68b0211::MemorySanitizerVisitor1531 void visitIntrinsicInst(IntrinsicInst &I) {
1532 switch (I.getIntrinsicID()) {
1533 case llvm::Intrinsic::bswap:
1534 handleBswap(I);
1535 break;
1536 default:
1537 if (!handleUnknownIntrinsic(I))
1538 visitInstruction(I);
1539 break;
1540 }
1541 }
1542
visitCallSite__anon99b2d68b0211::MemorySanitizerVisitor1543 void visitCallSite(CallSite CS) {
1544 Instruction &I = *CS.getInstruction();
1545 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
1546 if (CS.isCall()) {
1547 CallInst *Call = cast<CallInst>(&I);
1548
1549 // For inline asm, do the usual thing: check argument shadow and mark all
1550 // outputs as clean. Note that any side effects of the inline asm that are
1551 // not immediately visible in its constraints are not handled.
1552 if (Call->isInlineAsm()) {
1553 visitInstruction(I);
1554 return;
1555 }
1556
1557 // Allow only tail calls with the same types, otherwise
1558 // we may have a false positive: shadow for a non-void RetVal
1559 // will get propagated to a void RetVal.
1560 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
1561 Call->setTailCall(false);
1562
1563 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
1564
1565 // We are going to insert code that relies on the fact that the callee
1566 // will become a non-readonly function after it is instrumented by us. To
1567 // prevent this code from being optimized out, mark that function
1568 // non-readonly in advance.
1569 if (Function *Func = Call->getCalledFunction()) {
1570 // Clear out readonly/readnone attributes.
1571 AttrBuilder B;
1572 B.addAttribute(Attribute::ReadOnly)
1573 .addAttribute(Attribute::ReadNone);
1574 Func->removeAttributes(AttributeSet::FunctionIndex,
1575 AttributeSet::get(Func->getContext(),
1576 AttributeSet::FunctionIndex,
1577 B));
1578 }
1579 }
1580 IRBuilder<> IRB(&I);
1581 unsigned ArgOffset = 0;
1582 DEBUG(dbgs() << " CallSite: " << I << "\n");
1583 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1584 ArgIt != End; ++ArgIt) {
1585 Value *A = *ArgIt;
1586 unsigned i = ArgIt - CS.arg_begin();
1587 if (!A->getType()->isSized()) {
1588 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
1589 continue;
1590 }
1591 unsigned Size = 0;
1592 Value *Store = 0;
1593 // Compute the Shadow for arg even if it is ByVal, because
1594 // in that case getShadow() will copy the actual arg shadow to
1595 // __msan_param_tls.
1596 Value *ArgShadow = getShadow(A);
1597 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
1598 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
1599 " Shadow: " << *ArgShadow << "\n");
1600 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
1601 assert(A->getType()->isPointerTy() &&
1602 "ByVal argument is not a pointer!");
1603 Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
1604 unsigned Alignment = CS.getParamAlignment(i + 1);
1605 Store = IRB.CreateMemCpy(ArgShadowBase,
1606 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
1607 Size, Alignment);
1608 } else {
1609 Size = MS.TD->getTypeAllocSize(A->getType());
1610 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
1611 kShadowTLSAlignment);
1612 }
1613 if (MS.TrackOrigins)
1614 IRB.CreateStore(getOrigin(A),
1615 getOriginPtrForArgument(A, IRB, ArgOffset));
1616 (void)Store;
1617 assert(Size != 0 && Store != 0);
1618 DEBUG(dbgs() << " Param:" << *Store << "\n");
1619 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
1620 }
1621 DEBUG(dbgs() << " done with call args\n");
1622
1623 FunctionType *FT =
1624 cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
1625 if (FT->isVarArg()) {
1626 VAHelper->visitCallSite(CS, IRB);
1627 }
1628
1629 // Now, get the shadow for the RetVal.
1630 if (!I.getType()->isSized()) return;
1631 IRBuilder<> IRBBefore(&I);
1632 // Untill we have full dynamic coverage, make sure the retval shadow is 0.
1633 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
1634 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
1635 Instruction *NextInsn = 0;
1636 if (CS.isCall()) {
1637 NextInsn = I.getNextNode();
1638 } else {
1639 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
1640 if (!NormalDest->getSinglePredecessor()) {
1641 // FIXME: this case is tricky, so we are just conservative here.
1642 // Perhaps we need to split the edge between this BB and NormalDest,
1643 // but a naive attempt to use SplitEdge leads to a crash.
1644 setShadow(&I, getCleanShadow(&I));
1645 setOrigin(&I, getCleanOrigin());
1646 return;
1647 }
1648 NextInsn = NormalDest->getFirstInsertionPt();
1649 assert(NextInsn &&
1650 "Could not find insertion point for retval shadow load");
1651 }
1652 IRBuilder<> IRBAfter(NextInsn);
1653 Value *RetvalShadow =
1654 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
1655 kShadowTLSAlignment, "_msret");
1656 setShadow(&I, RetvalShadow);
1657 if (MS.TrackOrigins)
1658 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
1659 }
1660
visitReturnInst__anon99b2d68b0211::MemorySanitizerVisitor1661 void visitReturnInst(ReturnInst &I) {
1662 IRBuilder<> IRB(&I);
1663 if (Value *RetVal = I.getReturnValue()) {
1664 // Set the shadow for the RetVal.
1665 Value *Shadow = getShadow(RetVal);
1666 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
1667 DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
1668 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
1669 if (MS.TrackOrigins)
1670 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
1671 }
1672 }
1673
visitPHINode__anon99b2d68b0211::MemorySanitizerVisitor1674 void visitPHINode(PHINode &I) {
1675 IRBuilder<> IRB(&I);
1676 ShadowPHINodes.push_back(&I);
1677 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
1678 "_msphi_s"));
1679 if (MS.TrackOrigins)
1680 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
1681 "_msphi_o"));
1682 }
1683
visitAllocaInst__anon99b2d68b0211::MemorySanitizerVisitor1684 void visitAllocaInst(AllocaInst &I) {
1685 setShadow(&I, getCleanShadow(&I));
1686 if (!ClPoisonStack) return;
1687 IRBuilder<> IRB(I.getNextNode());
1688 uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
1689 if (ClPoisonStackWithCall) {
1690 IRB.CreateCall2(MS.MsanPoisonStackFn,
1691 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1692 ConstantInt::get(MS.IntptrTy, Size));
1693 } else {
1694 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
1695 IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
1696 Size, I.getAlignment());
1697 }
1698
1699 if (MS.TrackOrigins) {
1700 setOrigin(&I, getCleanOrigin());
1701 SmallString<2048> StackDescriptionStorage;
1702 raw_svector_ostream StackDescription(StackDescriptionStorage);
1703 // We create a string with a description of the stack allocation and
1704 // pass it into __msan_set_alloca_origin.
1705 // It will be printed by the run-time if stack-originated UMR is found.
1706 // The first 4 bytes of the string are set to '----' and will be replaced
1707 // by __msan_va_arg_overflow_size_tls at the first call.
1708 StackDescription << "----" << I.getName() << "@" << F.getName();
1709 Value *Descr =
1710 createPrivateNonConstGlobalForString(*F.getParent(),
1711 StackDescription.str());
1712 IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
1713 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
1714 ConstantInt::get(MS.IntptrTy, Size),
1715 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
1716 }
1717 }
1718
visitSelectInst__anon99b2d68b0211::MemorySanitizerVisitor1719 void visitSelectInst(SelectInst& I) {
1720 IRBuilder<> IRB(&I);
1721 setShadow(&I, IRB.CreateSelect(I.getCondition(),
1722 getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
1723 "_msprop"));
1724 if (MS.TrackOrigins) {
1725 // Origins are always i32, so any vector conditions must be flattened.
1726 // FIXME: consider tracking vector origins for app vectors?
1727 Value *Cond = I.getCondition();
1728 if (Cond->getType()->isVectorTy()) {
1729 Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
1730 Cond = IRB.CreateICmpNE(ConvertedShadow,
1731 getCleanShadow(ConvertedShadow), "_mso_select");
1732 }
1733 setOrigin(&I, IRB.CreateSelect(Cond,
1734 getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
1735 }
1736 }
1737
visitLandingPadInst__anon99b2d68b0211::MemorySanitizerVisitor1738 void visitLandingPadInst(LandingPadInst &I) {
1739 // Do nothing.
1740 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
1741 setShadow(&I, getCleanShadow(&I));
1742 setOrigin(&I, getCleanOrigin());
1743 }
1744
visitGetElementPtrInst__anon99b2d68b0211::MemorySanitizerVisitor1745 void visitGetElementPtrInst(GetElementPtrInst &I) {
1746 handleShadowOr(I);
1747 }
1748
visitExtractValueInst__anon99b2d68b0211::MemorySanitizerVisitor1749 void visitExtractValueInst(ExtractValueInst &I) {
1750 IRBuilder<> IRB(&I);
1751 Value *Agg = I.getAggregateOperand();
1752 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
1753 Value *AggShadow = getShadow(Agg);
1754 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1755 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
1756 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
1757 setShadow(&I, ResShadow);
1758 setOrigin(&I, getCleanOrigin());
1759 }
1760
visitInsertValueInst__anon99b2d68b0211::MemorySanitizerVisitor1761 void visitInsertValueInst(InsertValueInst &I) {
1762 IRBuilder<> IRB(&I);
1763 DEBUG(dbgs() << "InsertValue: " << I << "\n");
1764 Value *AggShadow = getShadow(I.getAggregateOperand());
1765 Value *InsShadow = getShadow(I.getInsertedValueOperand());
1766 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
1767 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
1768 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
1769 DEBUG(dbgs() << " Res: " << *Res << "\n");
1770 setShadow(&I, Res);
1771 setOrigin(&I, getCleanOrigin());
1772 }
1773
dumpInst__anon99b2d68b0211::MemorySanitizerVisitor1774 void dumpInst(Instruction &I) {
1775 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1776 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
1777 } else {
1778 errs() << "ZZZ " << I.getOpcodeName() << "\n";
1779 }
1780 errs() << "QQQ " << I << "\n";
1781 }
1782
visitResumeInst__anon99b2d68b0211::MemorySanitizerVisitor1783 void visitResumeInst(ResumeInst &I) {
1784 DEBUG(dbgs() << "Resume: " << I << "\n");
1785 // Nothing to do here.
1786 }
1787
visitInstruction__anon99b2d68b0211::MemorySanitizerVisitor1788 void visitInstruction(Instruction &I) {
1789 // Everything else: stop propagating and check for poisoned shadow.
1790 if (ClDumpStrictInstructions)
1791 dumpInst(I);
1792 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
1793 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
1794 insertCheck(I.getOperand(i), &I);
1795 setShadow(&I, getCleanShadow(&I));
1796 setOrigin(&I, getCleanOrigin());
1797 }
1798 };
1799
1800 /// \brief AMD64-specific implementation of VarArgHelper.
1801 struct VarArgAMD64Helper : public VarArgHelper {
1802 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
1803 // See a comment in visitCallSite for more details.
1804 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
1805 static const unsigned AMD64FpEndOffset = 176;
1806
1807 Function &F;
1808 MemorySanitizer &MS;
1809 MemorySanitizerVisitor &MSV;
1810 Value *VAArgTLSCopy;
1811 Value *VAArgOverflowSize;
1812
1813 SmallVector<CallInst*, 16> VAStartInstrumentationList;
1814
VarArgAMD64Helper__anon99b2d68b0211::VarArgAMD64Helper1815 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
1816 MemorySanitizerVisitor &MSV)
1817 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
1818
1819 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
1820
classifyArgument__anon99b2d68b0211::VarArgAMD64Helper1821 ArgKind classifyArgument(Value* arg) {
1822 // A very rough approximation of X86_64 argument classification rules.
1823 Type *T = arg->getType();
1824 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
1825 return AK_FloatingPoint;
1826 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
1827 return AK_GeneralPurpose;
1828 if (T->isPointerTy())
1829 return AK_GeneralPurpose;
1830 return AK_Memory;
1831 }
1832
1833 // For VarArg functions, store the argument shadow in an ABI-specific format
1834 // that corresponds to va_list layout.
1835 // We do this because Clang lowers va_arg in the frontend, and this pass
1836 // only sees the low level code that deals with va_list internals.
1837 // A much easier alternative (provided that Clang emits va_arg instructions)
1838 // would have been to associate each live instance of va_list with a copy of
1839 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
1840 // order.
visitCallSite__anon99b2d68b0211::VarArgAMD64Helper1841 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
1842 unsigned GpOffset = 0;
1843 unsigned FpOffset = AMD64GpEndOffset;
1844 unsigned OverflowOffset = AMD64FpEndOffset;
1845 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
1846 ArgIt != End; ++ArgIt) {
1847 Value *A = *ArgIt;
1848 ArgKind AK = classifyArgument(A);
1849 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
1850 AK = AK_Memory;
1851 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
1852 AK = AK_Memory;
1853 Value *Base;
1854 switch (AK) {
1855 case AK_GeneralPurpose:
1856 Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
1857 GpOffset += 8;
1858 break;
1859 case AK_FloatingPoint:
1860 Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
1861 FpOffset += 16;
1862 break;
1863 case AK_Memory:
1864 uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
1865 Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
1866 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
1867 }
1868 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
1869 }
1870 Constant *OverflowSize =
1871 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
1872 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
1873 }
1874
1875 /// \brief Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anon99b2d68b0211::VarArgAMD64Helper1876 Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
1877 int ArgOffset) {
1878 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
1879 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1880 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
1881 "_msarg");
1882 }
1883
visitVAStartInst__anon99b2d68b0211::VarArgAMD64Helper1884 void visitVAStartInst(VAStartInst &I) {
1885 IRBuilder<> IRB(&I);
1886 VAStartInstrumentationList.push_back(&I);
1887 Value *VAListTag = I.getArgOperand(0);
1888 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1889
1890 // Unpoison the whole __va_list_tag.
1891 // FIXME: magic ABI constants.
1892 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
1893 /* size */24, /* alignment */8, false);
1894 }
1895
visitVACopyInst__anon99b2d68b0211::VarArgAMD64Helper1896 void visitVACopyInst(VACopyInst &I) {
1897 IRBuilder<> IRB(&I);
1898 Value *VAListTag = I.getArgOperand(0);
1899 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
1900
1901 // Unpoison the whole __va_list_tag.
1902 // FIXME: magic ABI constants.
1903 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
1904 /* size */24, /* alignment */8, false);
1905 }
1906
finalizeInstrumentation__anon99b2d68b0211::VarArgAMD64Helper1907 void finalizeInstrumentation() {
1908 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
1909 "finalizeInstrumentation called twice");
1910 if (!VAStartInstrumentationList.empty()) {
1911 // If there is a va_start in this function, make a backup copy of
1912 // va_arg_tls somewhere in the function entry block.
1913 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1914 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
1915 Value *CopySize =
1916 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
1917 VAArgOverflowSize);
1918 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
1919 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
1920 }
1921
1922 // Instrument va_start.
1923 // Copy va_list shadow from the backup copy of the TLS contents.
1924 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
1925 CallInst *OrigInst = VAStartInstrumentationList[i];
1926 IRBuilder<> IRB(OrigInst->getNextNode());
1927 Value *VAListTag = OrigInst->getArgOperand(0);
1928
1929 Value *RegSaveAreaPtrPtr =
1930 IRB.CreateIntToPtr(
1931 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1932 ConstantInt::get(MS.IntptrTy, 16)),
1933 Type::getInt64PtrTy(*MS.C));
1934 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
1935 Value *RegSaveAreaShadowPtr =
1936 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
1937 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
1938 AMD64FpEndOffset, 16);
1939
1940 Value *OverflowArgAreaPtrPtr =
1941 IRB.CreateIntToPtr(
1942 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
1943 ConstantInt::get(MS.IntptrTy, 8)),
1944 Type::getInt64PtrTy(*MS.C));
1945 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
1946 Value *OverflowArgAreaShadowPtr =
1947 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
1948 Value *SrcPtr =
1949 getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
1950 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
1951 }
1952 }
1953 };
1954
CreateVarArgHelper(Function & Func,MemorySanitizer & Msan,MemorySanitizerVisitor & Visitor)1955 VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
1956 MemorySanitizerVisitor &Visitor) {
1957 return new VarArgAMD64Helper(Func, Msan, Visitor);
1958 }
1959
1960 } // namespace
1961
runOnFunction(Function & F)1962 bool MemorySanitizer::runOnFunction(Function &F) {
1963 MemorySanitizerVisitor Visitor(F, *this);
1964
1965 // Clear out readonly/readnone attributes.
1966 AttrBuilder B;
1967 B.addAttribute(Attribute::ReadOnly)
1968 .addAttribute(Attribute::ReadNone);
1969 F.removeAttributes(AttributeSet::FunctionIndex,
1970 AttributeSet::get(F.getContext(),
1971 AttributeSet::FunctionIndex, B));
1972
1973 return Visitor.runOnFunction();
1974 }
1975