1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 // 1. The exit condition for the loop is canonicalized to compare the
17 // induction value against the exit value. This turns loops like:
18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 // 2. Any use outside of the loop of an expression derived from the indvar
20 // is changed to compute the derived value outside of the loop, eliminating
21 // the dependence on the exit value of the induction variable. If the only
22 // purpose of the loop is to compute the exit value of some derived
23 // expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #define DEBUG_TYPE "indvars"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/LoopPass.h"
35 #include "llvm/Analysis/ScalarEvolutionExpander.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CFG.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetLibraryInfo.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 using namespace llvm;
52
53 STATISTIC(NumWidened , "Number of indvars widened");
54 STATISTIC(NumReplaced , "Number of exit values replaced");
55 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
56 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
57 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
58
59 // Trip count verification can be enabled by default under NDEBUG if we
60 // implement a strong expression equivalence checker in SCEV. Until then, we
61 // use the verify-indvars flag, which may assert in some cases.
62 static cl::opt<bool> VerifyIndvars(
63 "verify-indvars", cl::Hidden,
64 cl::desc("Verify the ScalarEvolution result after running indvars"));
65
66 namespace {
67 class IndVarSimplify : public LoopPass {
68 LoopInfo *LI;
69 ScalarEvolution *SE;
70 DominatorTree *DT;
71 DataLayout *TD;
72 TargetLibraryInfo *TLI;
73
74 SmallVector<WeakVH, 16> DeadInsts;
75 bool Changed;
76 public:
77
78 static char ID; // Pass identification, replacement for typeid
IndVarSimplify()79 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
80 Changed(false) {
81 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
82 }
83
84 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
85
getAnalysisUsage(AnalysisUsage & AU) const86 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.addRequired<DominatorTree>();
88 AU.addRequired<LoopInfo>();
89 AU.addRequired<ScalarEvolution>();
90 AU.addRequiredID(LoopSimplifyID);
91 AU.addRequiredID(LCSSAID);
92 AU.addPreserved<ScalarEvolution>();
93 AU.addPreservedID(LoopSimplifyID);
94 AU.addPreservedID(LCSSAID);
95 AU.setPreservesCFG();
96 }
97
98 private:
releaseMemory()99 virtual void releaseMemory() {
100 DeadInsts.clear();
101 }
102
103 bool isValidRewrite(Value *FromVal, Value *ToVal);
104
105 void HandleFloatingPointIV(Loop *L, PHINode *PH);
106 void RewriteNonIntegerIVs(Loop *L);
107
108 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
109
110 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111
112 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113 PHINode *IndVar, SCEVExpander &Rewriter);
114
115 void SinkUnusedInvariants(Loop *L);
116 };
117 }
118
119 char IndVarSimplify::ID = 0;
120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
121 "Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)122 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
123 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
126 INITIALIZE_PASS_DEPENDENCY(LCSSA)
127 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
128 "Induction Variable Simplification", false, false)
129
130 Pass *llvm::createIndVarSimplifyPass() {
131 return new IndVarSimplify();
132 }
133
134 /// isValidRewrite - Return true if the SCEV expansion generated by the
135 /// rewriter can replace the original value. SCEV guarantees that it
136 /// produces the same value, but the way it is produced may be illegal IR.
137 /// Ideally, this function will only be called for verification.
isValidRewrite(Value * FromVal,Value * ToVal)138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139 // If an SCEV expression subsumed multiple pointers, its expansion could
140 // reassociate the GEP changing the base pointer. This is illegal because the
141 // final address produced by a GEP chain must be inbounds relative to its
142 // underlying object. Otherwise basic alias analysis, among other things,
143 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144 // producing an expression involving multiple pointers. Until then, we must
145 // bail out here.
146 //
147 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148 // because it understands lcssa phis while SCEV does not.
149 Value *FromPtr = FromVal;
150 Value *ToPtr = ToVal;
151 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152 FromPtr = GEP->getPointerOperand();
153 }
154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155 ToPtr = GEP->getPointerOperand();
156 }
157 if (FromPtr != FromVal || ToPtr != ToVal) {
158 // Quickly check the common case
159 if (FromPtr == ToPtr)
160 return true;
161
162 // SCEV may have rewritten an expression that produces the GEP's pointer
163 // operand. That's ok as long as the pointer operand has the same base
164 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165 // base of a recurrence. This handles the case in which SCEV expansion
166 // converts a pointer type recurrence into a nonrecurrent pointer base
167 // indexed by an integer recurrence.
168
169 // If the GEP base pointer is a vector of pointers, abort.
170 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171 return false;
172
173 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175 if (FromBase == ToBase)
176 return true;
177
178 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179 << *FromBase << " != " << *ToBase << "\n");
180
181 return false;
182 }
183 return true;
184 }
185
186 /// Determine the insertion point for this user. By default, insert immediately
187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189 /// common dominator for the incoming blocks.
getInsertPointForUses(Instruction * User,Value * Def,DominatorTree * DT)190 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
191 DominatorTree *DT) {
192 PHINode *PHI = dyn_cast<PHINode>(User);
193 if (!PHI)
194 return User;
195
196 Instruction *InsertPt = 0;
197 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198 if (PHI->getIncomingValue(i) != Def)
199 continue;
200
201 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202 if (!InsertPt) {
203 InsertPt = InsertBB->getTerminator();
204 continue;
205 }
206 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207 InsertPt = InsertBB->getTerminator();
208 }
209 assert(InsertPt && "Missing phi operand");
210 assert((!isa<Instruction>(Def) ||
211 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
212 "def does not dominate all uses");
213 return InsertPt;
214 }
215
216 //===----------------------------------------------------------------------===//
217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218 //===----------------------------------------------------------------------===//
219
220 /// ConvertToSInt - Convert APF to an integer, if possible.
ConvertToSInt(const APFloat & APF,int64_t & IntVal)221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222 bool isExact = false;
223 // See if we can convert this to an int64_t
224 uint64_t UIntVal;
225 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226 &isExact) != APFloat::opOK || !isExact)
227 return false;
228 IntVal = UIntVal;
229 return true;
230 }
231
232 /// HandleFloatingPointIV - If the loop has floating induction variable
233 /// then insert corresponding integer induction variable if possible.
234 /// For example,
235 /// for(double i = 0; i < 10000; ++i)
236 /// bar(i)
237 /// is converted into
238 /// for(int i = 0; i < 10000; ++i)
239 /// bar((double)i);
240 ///
HandleFloatingPointIV(Loop * L,PHINode * PN)241 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243 unsigned BackEdge = IncomingEdge^1;
244
245 // Check incoming value.
246 ConstantFP *InitValueVal =
247 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
248
249 int64_t InitValue;
250 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251 return;
252
253 // Check IV increment. Reject this PN if increment operation is not
254 // an add or increment value can not be represented by an integer.
255 BinaryOperator *Incr =
256 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
258
259 // If this is not an add of the PHI with a constantfp, or if the constant fp
260 // is not an integer, bail out.
261 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262 int64_t IncValue;
263 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265 return;
266
267 // Check Incr uses. One user is PN and the other user is an exit condition
268 // used by the conditional terminator.
269 Value::use_iterator IncrUse = Incr->use_begin();
270 Instruction *U1 = cast<Instruction>(*IncrUse++);
271 if (IncrUse == Incr->use_end()) return;
272 Instruction *U2 = cast<Instruction>(*IncrUse++);
273 if (IncrUse != Incr->use_end()) return;
274
275 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
276 // only used by a branch, we can't transform it.
277 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278 if (!Compare)
279 Compare = dyn_cast<FCmpInst>(U2);
280 if (Compare == 0 || !Compare->hasOneUse() ||
281 !isa<BranchInst>(Compare->use_back()))
282 return;
283
284 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286 // We need to verify that the branch actually controls the iteration count
287 // of the loop. If not, the new IV can overflow and no one will notice.
288 // The branch block must be in the loop and one of the successors must be out
289 // of the loop.
290 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291 if (!L->contains(TheBr->getParent()) ||
292 (L->contains(TheBr->getSuccessor(0)) &&
293 L->contains(TheBr->getSuccessor(1))))
294 return;
295
296
297 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298 // transform it.
299 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300 int64_t ExitValue;
301 if (ExitValueVal == 0 ||
302 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303 return;
304
305 // Find new predicate for integer comparison.
306 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307 switch (Compare->getPredicate()) {
308 default: return; // Unknown comparison.
309 case CmpInst::FCMP_OEQ:
310 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311 case CmpInst::FCMP_ONE:
312 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313 case CmpInst::FCMP_OGT:
314 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315 case CmpInst::FCMP_OGE:
316 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317 case CmpInst::FCMP_OLT:
318 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319 case CmpInst::FCMP_OLE:
320 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
321 }
322
323 // We convert the floating point induction variable to a signed i32 value if
324 // we can. This is only safe if the comparison will not overflow in a way
325 // that won't be trapped by the integer equivalent operations. Check for this
326 // now.
327 // TODO: We could use i64 if it is native and the range requires it.
328
329 // The start/stride/exit values must all fit in signed i32.
330 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331 return;
332
333 // If not actually striding (add x, 0.0), avoid touching the code.
334 if (IncValue == 0)
335 return;
336
337 // Positive and negative strides have different safety conditions.
338 if (IncValue > 0) {
339 // If we have a positive stride, we require the init to be less than the
340 // exit value.
341 if (InitValue >= ExitValue)
342 return;
343
344 uint32_t Range = uint32_t(ExitValue-InitValue);
345 // Check for infinite loop, either:
346 // while (i <= Exit) or until (i > Exit)
347 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
348 if (++Range == 0) return; // Range overflows.
349 }
350
351 unsigned Leftover = Range % uint32_t(IncValue);
352
353 // If this is an equality comparison, we require that the strided value
354 // exactly land on the exit value, otherwise the IV condition will wrap
355 // around and do things the fp IV wouldn't.
356 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357 Leftover != 0)
358 return;
359
360 // If the stride would wrap around the i32 before exiting, we can't
361 // transform the IV.
362 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363 return;
364
365 } else {
366 // If we have a negative stride, we require the init to be greater than the
367 // exit value.
368 if (InitValue <= ExitValue)
369 return;
370
371 uint32_t Range = uint32_t(InitValue-ExitValue);
372 // Check for infinite loop, either:
373 // while (i >= Exit) or until (i < Exit)
374 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
375 if (++Range == 0) return; // Range overflows.
376 }
377
378 unsigned Leftover = Range % uint32_t(-IncValue);
379
380 // If this is an equality comparison, we require that the strided value
381 // exactly land on the exit value, otherwise the IV condition will wrap
382 // around and do things the fp IV wouldn't.
383 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384 Leftover != 0)
385 return;
386
387 // If the stride would wrap around the i32 before exiting, we can't
388 // transform the IV.
389 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390 return;
391 }
392
393 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
394
395 // Insert new integer induction variable.
396 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398 PN->getIncomingBlock(IncomingEdge));
399
400 Value *NewAdd =
401 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402 Incr->getName()+".int", Incr);
403 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
404
405 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406 ConstantInt::get(Int32Ty, ExitValue),
407 Compare->getName());
408
409 // In the following deletions, PN may become dead and may be deleted.
410 // Use a WeakVH to observe whether this happens.
411 WeakVH WeakPH = PN;
412
413 // Delete the old floating point exit comparison. The branch starts using the
414 // new comparison.
415 NewCompare->takeName(Compare);
416 Compare->replaceAllUsesWith(NewCompare);
417 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
418
419 // Delete the old floating point increment.
420 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
421 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
422
423 // If the FP induction variable still has uses, this is because something else
424 // in the loop uses its value. In order to canonicalize the induction
425 // variable, we chose to eliminate the IV and rewrite it in terms of an
426 // int->fp cast.
427 //
428 // We give preference to sitofp over uitofp because it is faster on most
429 // platforms.
430 if (WeakPH) {
431 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
432 PN->getParent()->getFirstInsertionPt());
433 PN->replaceAllUsesWith(Conv);
434 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
435 }
436 Changed = true;
437 }
438
RewriteNonIntegerIVs(Loop * L)439 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440 // First step. Check to see if there are any floating-point recurrences.
441 // If there are, change them into integer recurrences, permitting analysis by
442 // the SCEV routines.
443 //
444 BasicBlock *Header = L->getHeader();
445
446 SmallVector<WeakVH, 8> PHIs;
447 for (BasicBlock::iterator I = Header->begin();
448 PHINode *PN = dyn_cast<PHINode>(I); ++I)
449 PHIs.push_back(PN);
450
451 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453 HandleFloatingPointIV(L, PN);
454
455 // If the loop previously had floating-point IV, ScalarEvolution
456 // may not have been able to compute a trip count. Now that we've done some
457 // re-writing, the trip count may be computable.
458 if (Changed)
459 SE->forgetLoop(L);
460 }
461
462 //===----------------------------------------------------------------------===//
463 // RewriteLoopExitValues - Optimize IV users outside the loop.
464 // As a side effect, reduces the amount of IV processing within the loop.
465 //===----------------------------------------------------------------------===//
466
467 /// RewriteLoopExitValues - Check to see if this loop has a computable
468 /// loop-invariant execution count. If so, this means that we can compute the
469 /// final value of any expressions that are recurrent in the loop, and
470 /// substitute the exit values from the loop into any instructions outside of
471 /// the loop that use the final values of the current expressions.
472 ///
473 /// This is mostly redundant with the regular IndVarSimplify activities that
474 /// happen later, except that it's more powerful in some cases, because it's
475 /// able to brute-force evaluate arbitrary instructions as long as they have
476 /// constant operands at the beginning of the loop.
RewriteLoopExitValues(Loop * L,SCEVExpander & Rewriter)477 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
478 // Verify the input to the pass in already in LCSSA form.
479 assert(L->isLCSSAForm(*DT));
480
481 SmallVector<BasicBlock*, 8> ExitBlocks;
482 L->getUniqueExitBlocks(ExitBlocks);
483
484 // Find all values that are computed inside the loop, but used outside of it.
485 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
486 // the exit blocks of the loop to find them.
487 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488 BasicBlock *ExitBB = ExitBlocks[i];
489
490 // If there are no PHI nodes in this exit block, then no values defined
491 // inside the loop are used on this path, skip it.
492 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493 if (!PN) continue;
494
495 unsigned NumPreds = PN->getNumIncomingValues();
496
497 // Iterate over all of the PHI nodes.
498 BasicBlock::iterator BBI = ExitBB->begin();
499 while ((PN = dyn_cast<PHINode>(BBI++))) {
500 if (PN->use_empty())
501 continue; // dead use, don't replace it
502
503 // SCEV only supports integer expressions for now.
504 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505 continue;
506
507 // It's necessary to tell ScalarEvolution about this explicitly so that
508 // it can walk the def-use list and forget all SCEVs, as it may not be
509 // watching the PHI itself. Once the new exit value is in place, there
510 // may not be a def-use connection between the loop and every instruction
511 // which got a SCEVAddRecExpr for that loop.
512 SE->forgetValue(PN);
513
514 // Iterate over all of the values in all the PHI nodes.
515 for (unsigned i = 0; i != NumPreds; ++i) {
516 // If the value being merged in is not integer or is not defined
517 // in the loop, skip it.
518 Value *InVal = PN->getIncomingValue(i);
519 if (!isa<Instruction>(InVal))
520 continue;
521
522 // If this pred is for a subloop, not L itself, skip it.
523 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
524 continue; // The Block is in a subloop, skip it.
525
526 // Check that InVal is defined in the loop.
527 Instruction *Inst = cast<Instruction>(InVal);
528 if (!L->contains(Inst))
529 continue;
530
531 // Okay, this instruction has a user outside of the current loop
532 // and varies predictably *inside* the loop. Evaluate the value it
533 // contains when the loop exits, if possible.
534 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
535 if (!SE->isLoopInvariant(ExitValue, L))
536 continue;
537
538 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
539
540 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
541 << " LoopVal = " << *Inst << "\n");
542
543 if (!isValidRewrite(Inst, ExitVal)) {
544 DeadInsts.push_back(ExitVal);
545 continue;
546 }
547 Changed = true;
548 ++NumReplaced;
549
550 PN->setIncomingValue(i, ExitVal);
551
552 // If this instruction is dead now, delete it. Don't do it now to avoid
553 // invalidating iterators.
554 if (isInstructionTriviallyDead(Inst, TLI))
555 DeadInsts.push_back(Inst);
556
557 if (NumPreds == 1) {
558 // Completely replace a single-pred PHI. This is safe, because the
559 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
560 // node anymore.
561 PN->replaceAllUsesWith(ExitVal);
562 PN->eraseFromParent();
563 }
564 }
565 if (NumPreds != 1) {
566 // Clone the PHI and delete the original one. This lets IVUsers and
567 // any other maps purge the original user from their records.
568 PHINode *NewPN = cast<PHINode>(PN->clone());
569 NewPN->takeName(PN);
570 NewPN->insertBefore(PN);
571 PN->replaceAllUsesWith(NewPN);
572 PN->eraseFromParent();
573 }
574 }
575 }
576
577 // The insertion point instruction may have been deleted; clear it out
578 // so that the rewriter doesn't trip over it later.
579 Rewriter.clearInsertPoint();
580 }
581
582 //===----------------------------------------------------------------------===//
583 // IV Widening - Extend the width of an IV to cover its widest uses.
584 //===----------------------------------------------------------------------===//
585
586 namespace {
587 // Collect information about induction variables that are used by sign/zero
588 // extend operations. This information is recorded by CollectExtend and
589 // provides the input to WidenIV.
590 struct WideIVInfo {
591 PHINode *NarrowIV;
592 Type *WidestNativeType; // Widest integer type created [sz]ext
593 bool IsSigned; // Was an sext user seen before a zext?
594
WideIVInfo__anon1297fbec0211::WideIVInfo595 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
596 };
597
598 class WideIVVisitor : public IVVisitor {
599 ScalarEvolution *SE;
600 const DataLayout *TD;
601
602 public:
603 WideIVInfo WI;
604
WideIVVisitor(PHINode * NarrowIV,ScalarEvolution * SCEV,const DataLayout * TData)605 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
606 const DataLayout *TData) :
607 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
608
609 // Implement the interface used by simplifyUsersOfIV.
610 virtual void visitCast(CastInst *Cast);
611 };
612 }
613
614 /// visitCast - Update information about the induction variable that is
615 /// extended by this sign or zero extend operation. This is used to determine
616 /// the final width of the IV before actually widening it.
visitCast(CastInst * Cast)617 void WideIVVisitor::visitCast(CastInst *Cast) {
618 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
619 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
620 return;
621
622 Type *Ty = Cast->getType();
623 uint64_t Width = SE->getTypeSizeInBits(Ty);
624 if (TD && !TD->isLegalInteger(Width))
625 return;
626
627 if (!WI.WidestNativeType) {
628 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
629 WI.IsSigned = IsSigned;
630 return;
631 }
632
633 // We extend the IV to satisfy the sign of its first user, arbitrarily.
634 if (WI.IsSigned != IsSigned)
635 return;
636
637 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
638 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
639 }
640
641 namespace {
642
643 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
644 /// WideIV that computes the same value as the Narrow IV def. This avoids
645 /// caching Use* pointers.
646 struct NarrowIVDefUse {
647 Instruction *NarrowDef;
648 Instruction *NarrowUse;
649 Instruction *WideDef;
650
NarrowIVDefUse__anon1297fbec0311::NarrowIVDefUse651 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
652
NarrowIVDefUse__anon1297fbec0311::NarrowIVDefUse653 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
654 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
655 };
656
657 /// WidenIV - The goal of this transform is to remove sign and zero extends
658 /// without creating any new induction variables. To do this, it creates a new
659 /// phi of the wider type and redirects all users, either removing extends or
660 /// inserting truncs whenever we stop propagating the type.
661 ///
662 class WidenIV {
663 // Parameters
664 PHINode *OrigPhi;
665 Type *WideType;
666 bool IsSigned;
667
668 // Context
669 LoopInfo *LI;
670 Loop *L;
671 ScalarEvolution *SE;
672 DominatorTree *DT;
673
674 // Result
675 PHINode *WidePhi;
676 Instruction *WideInc;
677 const SCEV *WideIncExpr;
678 SmallVectorImpl<WeakVH> &DeadInsts;
679
680 SmallPtrSet<Instruction*,16> Widened;
681 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
682
683 public:
WidenIV(const WideIVInfo & WI,LoopInfo * LInfo,ScalarEvolution * SEv,DominatorTree * DTree,SmallVectorImpl<WeakVH> & DI)684 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
685 ScalarEvolution *SEv, DominatorTree *DTree,
686 SmallVectorImpl<WeakVH> &DI) :
687 OrigPhi(WI.NarrowIV),
688 WideType(WI.WidestNativeType),
689 IsSigned(WI.IsSigned),
690 LI(LInfo),
691 L(LI->getLoopFor(OrigPhi->getParent())),
692 SE(SEv),
693 DT(DTree),
694 WidePhi(0),
695 WideInc(0),
696 WideIncExpr(0),
697 DeadInsts(DI) {
698 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
699 }
700
701 PHINode *CreateWideIV(SCEVExpander &Rewriter);
702
703 protected:
704 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
705 Instruction *Use);
706
707 Instruction *CloneIVUser(NarrowIVDefUse DU);
708
709 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
710
711 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
712
713 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
714
715 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
716 };
717 } // anonymous namespace
718
719 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
720 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
721 /// gratuitous for this purpose.
isLoopInvariant(Value * V,const Loop * L,const DominatorTree * DT)722 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
723 Instruction *Inst = dyn_cast<Instruction>(V);
724 if (!Inst)
725 return true;
726
727 return DT->properlyDominates(Inst->getParent(), L->getHeader());
728 }
729
getExtend(Value * NarrowOper,Type * WideType,bool IsSigned,Instruction * Use)730 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
731 Instruction *Use) {
732 // Set the debug location and conservative insertion point.
733 IRBuilder<> Builder(Use);
734 // Hoist the insertion point into loop preheaders as far as possible.
735 for (const Loop *L = LI->getLoopFor(Use->getParent());
736 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
737 L = L->getParentLoop())
738 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
739
740 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
741 Builder.CreateZExt(NarrowOper, WideType);
742 }
743
744 /// CloneIVUser - Instantiate a wide operation to replace a narrow
745 /// operation. This only needs to handle operations that can evaluation to
746 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
CloneIVUser(NarrowIVDefUse DU)747 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
748 unsigned Opcode = DU.NarrowUse->getOpcode();
749 switch (Opcode) {
750 default:
751 return 0;
752 case Instruction::Add:
753 case Instruction::Mul:
754 case Instruction::UDiv:
755 case Instruction::Sub:
756 case Instruction::And:
757 case Instruction::Or:
758 case Instruction::Xor:
759 case Instruction::Shl:
760 case Instruction::LShr:
761 case Instruction::AShr:
762 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
763
764 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
765 // anything about the narrow operand yet so must insert a [sz]ext. It is
766 // probably loop invariant and will be folded or hoisted. If it actually
767 // comes from a widened IV, it should be removed during a future call to
768 // WidenIVUse.
769 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
770 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
771 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
772 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
773
774 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
775 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
776 LHS, RHS,
777 NarrowBO->getName());
778 IRBuilder<> Builder(DU.NarrowUse);
779 Builder.Insert(WideBO);
780 if (const OverflowingBinaryOperator *OBO =
781 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
782 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
783 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
784 }
785 return WideBO;
786 }
787 }
788
789 /// No-wrap operations can transfer sign extension of their result to their
790 /// operands. Generate the SCEV value for the widened operation without
791 /// actually modifying the IR yet. If the expression after extending the
792 /// operands is an AddRec for this loop, return it.
GetExtendedOperandRecurrence(NarrowIVDefUse DU)793 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
794 // Handle the common case of add<nsw/nuw>
795 if (DU.NarrowUse->getOpcode() != Instruction::Add)
796 return 0;
797
798 // One operand (NarrowDef) has already been extended to WideDef. Now determine
799 // if extending the other will lead to a recurrence.
800 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
801 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
802
803 const SCEV *ExtendOperExpr = 0;
804 const OverflowingBinaryOperator *OBO =
805 cast<OverflowingBinaryOperator>(DU.NarrowUse);
806 if (IsSigned && OBO->hasNoSignedWrap())
807 ExtendOperExpr = SE->getSignExtendExpr(
808 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
809 else if(!IsSigned && OBO->hasNoUnsignedWrap())
810 ExtendOperExpr = SE->getZeroExtendExpr(
811 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
812 else
813 return 0;
814
815 // When creating this AddExpr, don't apply the current operations NSW or NUW
816 // flags. This instruction may be guarded by control flow that the no-wrap
817 // behavior depends on. Non-control-equivalent instructions can be mapped to
818 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
819 // semantics to those operations.
820 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
821 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
822
823 if (!AddRec || AddRec->getLoop() != L)
824 return 0;
825 return AddRec;
826 }
827
828 /// GetWideRecurrence - Is this instruction potentially interesting from
829 /// IVUsers' perspective after widening it's type? In other words, can the
830 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
831 /// recurrence on the same loop. If so, return the sign or zero extended
832 /// recurrence. Otherwise return NULL.
GetWideRecurrence(Instruction * NarrowUse)833 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
834 if (!SE->isSCEVable(NarrowUse->getType()))
835 return 0;
836
837 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
838 if (SE->getTypeSizeInBits(NarrowExpr->getType())
839 >= SE->getTypeSizeInBits(WideType)) {
840 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
841 // index. So don't follow this use.
842 return 0;
843 }
844
845 const SCEV *WideExpr = IsSigned ?
846 SE->getSignExtendExpr(NarrowExpr, WideType) :
847 SE->getZeroExtendExpr(NarrowExpr, WideType);
848 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
849 if (!AddRec || AddRec->getLoop() != L)
850 return 0;
851 return AddRec;
852 }
853
854 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
855 /// widened. If so, return the wide clone of the user.
WidenIVUse(NarrowIVDefUse DU,SCEVExpander & Rewriter)856 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
857
858 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
859 if (isa<PHINode>(DU.NarrowUse) &&
860 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
861 return 0;
862
863 // Our raison d'etre! Eliminate sign and zero extension.
864 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
865 Value *NewDef = DU.WideDef;
866 if (DU.NarrowUse->getType() != WideType) {
867 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
868 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
869 if (CastWidth < IVWidth) {
870 // The cast isn't as wide as the IV, so insert a Trunc.
871 IRBuilder<> Builder(DU.NarrowUse);
872 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
873 }
874 else {
875 // A wider extend was hidden behind a narrower one. This may induce
876 // another round of IV widening in which the intermediate IV becomes
877 // dead. It should be very rare.
878 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
879 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
880 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
881 NewDef = DU.NarrowUse;
882 }
883 }
884 if (NewDef != DU.NarrowUse) {
885 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
886 << " replaced by " << *DU.WideDef << "\n");
887 ++NumElimExt;
888 DU.NarrowUse->replaceAllUsesWith(NewDef);
889 DeadInsts.push_back(DU.NarrowUse);
890 }
891 // Now that the extend is gone, we want to expose it's uses for potential
892 // further simplification. We don't need to directly inform SimplifyIVUsers
893 // of the new users, because their parent IV will be processed later as a
894 // new loop phi. If we preserved IVUsers analysis, we would also want to
895 // push the uses of WideDef here.
896
897 // No further widening is needed. The deceased [sz]ext had done it for us.
898 return 0;
899 }
900
901 // Does this user itself evaluate to a recurrence after widening?
902 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
903 if (!WideAddRec) {
904 WideAddRec = GetExtendedOperandRecurrence(DU);
905 }
906 if (!WideAddRec) {
907 // This user does not evaluate to a recurence after widening, so don't
908 // follow it. Instead insert a Trunc to kill off the original use,
909 // eventually isolating the original narrow IV so it can be removed.
910 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
911 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
912 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
913 return 0;
914 }
915 // Assume block terminators cannot evaluate to a recurrence. We can't to
916 // insert a Trunc after a terminator if there happens to be a critical edge.
917 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
918 "SCEV is not expected to evaluate a block terminator");
919
920 // Reuse the IV increment that SCEVExpander created as long as it dominates
921 // NarrowUse.
922 Instruction *WideUse = 0;
923 if (WideAddRec == WideIncExpr
924 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
925 WideUse = WideInc;
926 else {
927 WideUse = CloneIVUser(DU);
928 if (!WideUse)
929 return 0;
930 }
931 // Evaluation of WideAddRec ensured that the narrow expression could be
932 // extended outside the loop without overflow. This suggests that the wide use
933 // evaluates to the same expression as the extended narrow use, but doesn't
934 // absolutely guarantee it. Hence the following failsafe check. In rare cases
935 // where it fails, we simply throw away the newly created wide use.
936 if (WideAddRec != SE->getSCEV(WideUse)) {
937 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
938 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
939 DeadInsts.push_back(WideUse);
940 return 0;
941 }
942
943 // Returning WideUse pushes it on the worklist.
944 return WideUse;
945 }
946
947 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
948 ///
pushNarrowIVUsers(Instruction * NarrowDef,Instruction * WideDef)949 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
950 for (Value::use_iterator UI = NarrowDef->use_begin(),
951 UE = NarrowDef->use_end(); UI != UE; ++UI) {
952 Instruction *NarrowUse = cast<Instruction>(*UI);
953
954 // Handle data flow merges and bizarre phi cycles.
955 if (!Widened.insert(NarrowUse))
956 continue;
957
958 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
959 }
960 }
961
962 /// CreateWideIV - Process a single induction variable. First use the
963 /// SCEVExpander to create a wide induction variable that evaluates to the same
964 /// recurrence as the original narrow IV. Then use a worklist to forward
965 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
966 /// interesting IV users, the narrow IV will be isolated for removal by
967 /// DeleteDeadPHIs.
968 ///
969 /// It would be simpler to delete uses as they are processed, but we must avoid
970 /// invalidating SCEV expressions.
971 ///
CreateWideIV(SCEVExpander & Rewriter)972 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
973 // Is this phi an induction variable?
974 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
975 if (!AddRec)
976 return NULL;
977
978 // Widen the induction variable expression.
979 const SCEV *WideIVExpr = IsSigned ?
980 SE->getSignExtendExpr(AddRec, WideType) :
981 SE->getZeroExtendExpr(AddRec, WideType);
982
983 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
984 "Expect the new IV expression to preserve its type");
985
986 // Can the IV be extended outside the loop without overflow?
987 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
988 if (!AddRec || AddRec->getLoop() != L)
989 return NULL;
990
991 // An AddRec must have loop-invariant operands. Since this AddRec is
992 // materialized by a loop header phi, the expression cannot have any post-loop
993 // operands, so they must dominate the loop header.
994 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
995 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
996 && "Loop header phi recurrence inputs do not dominate the loop");
997
998 // The rewriter provides a value for the desired IV expression. This may
999 // either find an existing phi or materialize a new one. Either way, we
1000 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1001 // of the phi-SCC dominates the loop entry.
1002 Instruction *InsertPt = L->getHeader()->begin();
1003 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1004
1005 // Remembering the WideIV increment generated by SCEVExpander allows
1006 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1007 // employ a general reuse mechanism because the call above is the only call to
1008 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1009 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1010 WideInc =
1011 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1012 WideIncExpr = SE->getSCEV(WideInc);
1013 }
1014
1015 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1016 ++NumWidened;
1017
1018 // Traverse the def-use chain using a worklist starting at the original IV.
1019 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1020
1021 Widened.insert(OrigPhi);
1022 pushNarrowIVUsers(OrigPhi, WidePhi);
1023
1024 while (!NarrowIVUsers.empty()) {
1025 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1026
1027 // Process a def-use edge. This may replace the use, so don't hold a
1028 // use_iterator across it.
1029 Instruction *WideUse = WidenIVUse(DU, Rewriter);
1030
1031 // Follow all def-use edges from the previous narrow use.
1032 if (WideUse)
1033 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1034
1035 // WidenIVUse may have removed the def-use edge.
1036 if (DU.NarrowDef->use_empty())
1037 DeadInsts.push_back(DU.NarrowDef);
1038 }
1039 return WidePhi;
1040 }
1041
1042 //===----------------------------------------------------------------------===//
1043 // Simplification of IV users based on SCEV evaluation.
1044 //===----------------------------------------------------------------------===//
1045
1046
1047 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1048 /// users. Each successive simplification may push more users which may
1049 /// themselves be candidates for simplification.
1050 ///
1051 /// Sign/Zero extend elimination is interleaved with IV simplification.
1052 ///
SimplifyAndExtend(Loop * L,SCEVExpander & Rewriter,LPPassManager & LPM)1053 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1054 SCEVExpander &Rewriter,
1055 LPPassManager &LPM) {
1056 SmallVector<WideIVInfo, 8> WideIVs;
1057
1058 SmallVector<PHINode*, 8> LoopPhis;
1059 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1060 LoopPhis.push_back(cast<PHINode>(I));
1061 }
1062 // Each round of simplification iterates through the SimplifyIVUsers worklist
1063 // for all current phis, then determines whether any IVs can be
1064 // widened. Widening adds new phis to LoopPhis, inducing another round of
1065 // simplification on the wide IVs.
1066 while (!LoopPhis.empty()) {
1067 // Evaluate as many IV expressions as possible before widening any IVs. This
1068 // forces SCEV to set no-wrap flags before evaluating sign/zero
1069 // extension. The first time SCEV attempts to normalize sign/zero extension,
1070 // the result becomes final. So for the most predictable results, we delay
1071 // evaluation of sign/zero extend evaluation until needed, and avoid running
1072 // other SCEV based analysis prior to SimplifyAndExtend.
1073 do {
1074 PHINode *CurrIV = LoopPhis.pop_back_val();
1075
1076 // Information about sign/zero extensions of CurrIV.
1077 WideIVVisitor WIV(CurrIV, SE, TD);
1078
1079 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1080
1081 if (WIV.WI.WidestNativeType) {
1082 WideIVs.push_back(WIV.WI);
1083 }
1084 } while(!LoopPhis.empty());
1085
1086 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1087 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1088 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1089 Changed = true;
1090 LoopPhis.push_back(WidePhi);
1091 }
1092 }
1093 }
1094 }
1095
1096 //===----------------------------------------------------------------------===//
1097 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1098 //===----------------------------------------------------------------------===//
1099
1100 /// Check for expressions that ScalarEvolution generates to compute
1101 /// BackedgeTakenInfo. If these expressions have not been reduced, then
1102 /// expanding them may incur additional cost (albeit in the loop preheader).
isHighCostExpansion(const SCEV * S,BranchInst * BI,SmallPtrSet<const SCEV *,8> & Processed,ScalarEvolution * SE)1103 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1104 SmallPtrSet<const SCEV*, 8> &Processed,
1105 ScalarEvolution *SE) {
1106 if (!Processed.insert(S))
1107 return false;
1108
1109 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1110 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1111 // precise expression, rather than a UDiv from the user's code. If we can't
1112 // find a UDiv in the code with some simple searching, assume the former and
1113 // forego rewriting the loop.
1114 if (isa<SCEVUDivExpr>(S)) {
1115 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1116 if (!OrigCond) return true;
1117 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1118 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1119 if (R != S) {
1120 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1121 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1122 if (L != S)
1123 return true;
1124 }
1125 }
1126
1127 // Recurse past add expressions, which commonly occur in the
1128 // BackedgeTakenCount. They may already exist in program code, and if not,
1129 // they are not too expensive rematerialize.
1130 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1131 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1132 I != E; ++I) {
1133 if (isHighCostExpansion(*I, BI, Processed, SE))
1134 return true;
1135 }
1136 return false;
1137 }
1138
1139 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1140 // the exit condition.
1141 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1142 return true;
1143
1144 // If we haven't recognized an expensive SCEV pattern, assume it's an
1145 // expression produced by program code.
1146 return false;
1147 }
1148
1149 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1150 /// count expression can be safely and cheaply expanded into an instruction
1151 /// sequence that can be used by LinearFunctionTestReplace.
1152 ///
1153 /// TODO: This fails for pointer-type loop counters with greater than one byte
1154 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1155 /// we could skip this check in the case that the LFTR loop counter (chosen by
1156 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1157 /// the loop test to an inequality test by checking the target data's alignment
1158 /// of element types (given that the initial pointer value originates from or is
1159 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1160 /// However, we don't yet have a strong motivation for converting loop tests
1161 /// into inequality tests.
canExpandBackedgeTakenCount(Loop * L,ScalarEvolution * SE)1162 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1163 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1164 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1165 BackedgeTakenCount->isZero())
1166 return false;
1167
1168 if (!L->getExitingBlock())
1169 return false;
1170
1171 // Can't rewrite non-branch yet.
1172 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1173 if (!BI)
1174 return false;
1175
1176 SmallPtrSet<const SCEV*, 8> Processed;
1177 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1178 return false;
1179
1180 return true;
1181 }
1182
1183 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1184 /// invariant value to the phi.
getLoopPhiForCounter(Value * IncV,Loop * L,DominatorTree * DT)1185 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1186 Instruction *IncI = dyn_cast<Instruction>(IncV);
1187 if (!IncI)
1188 return 0;
1189
1190 switch (IncI->getOpcode()) {
1191 case Instruction::Add:
1192 case Instruction::Sub:
1193 break;
1194 case Instruction::GetElementPtr:
1195 // An IV counter must preserve its type.
1196 if (IncI->getNumOperands() == 2)
1197 break;
1198 default:
1199 return 0;
1200 }
1201
1202 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1203 if (Phi && Phi->getParent() == L->getHeader()) {
1204 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1205 return Phi;
1206 return 0;
1207 }
1208 if (IncI->getOpcode() == Instruction::GetElementPtr)
1209 return 0;
1210
1211 // Allow add/sub to be commuted.
1212 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1213 if (Phi && Phi->getParent() == L->getHeader()) {
1214 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1215 return Phi;
1216 }
1217 return 0;
1218 }
1219
1220 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
getLoopTest(Loop * L)1221 static ICmpInst *getLoopTest(Loop *L) {
1222 assert(L->getExitingBlock() && "expected loop exit");
1223
1224 BasicBlock *LatchBlock = L->getLoopLatch();
1225 // Don't bother with LFTR if the loop is not properly simplified.
1226 if (!LatchBlock)
1227 return 0;
1228
1229 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1230 assert(BI && "expected exit branch");
1231
1232 return dyn_cast<ICmpInst>(BI->getCondition());
1233 }
1234
1235 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1236 /// that the current exit test is already sufficiently canonical.
needsLFTR(Loop * L,DominatorTree * DT)1237 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1238 // Do LFTR to simplify the exit condition to an ICMP.
1239 ICmpInst *Cond = getLoopTest(L);
1240 if (!Cond)
1241 return true;
1242
1243 // Do LFTR to simplify the exit ICMP to EQ/NE
1244 ICmpInst::Predicate Pred = Cond->getPredicate();
1245 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1246 return true;
1247
1248 // Look for a loop invariant RHS
1249 Value *LHS = Cond->getOperand(0);
1250 Value *RHS = Cond->getOperand(1);
1251 if (!isLoopInvariant(RHS, L, DT)) {
1252 if (!isLoopInvariant(LHS, L, DT))
1253 return true;
1254 std::swap(LHS, RHS);
1255 }
1256 // Look for a simple IV counter LHS
1257 PHINode *Phi = dyn_cast<PHINode>(LHS);
1258 if (!Phi)
1259 Phi = getLoopPhiForCounter(LHS, L, DT);
1260
1261 if (!Phi)
1262 return true;
1263
1264 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1265 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1266 if (Idx < 0)
1267 return true;
1268
1269 // Do LFTR if the exit condition's IV is *not* a simple counter.
1270 Value *IncV = Phi->getIncomingValue(Idx);
1271 return Phi != getLoopPhiForCounter(IncV, L, DT);
1272 }
1273
1274 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1275 /// down to checking that all operands are constant and listing instructions
1276 /// that may hide undef.
hasConcreteDefImpl(Value * V,SmallPtrSet<Value *,8> & Visited,unsigned Depth)1277 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1278 unsigned Depth) {
1279 if (isa<Constant>(V))
1280 return !isa<UndefValue>(V);
1281
1282 if (Depth >= 6)
1283 return false;
1284
1285 // Conservatively handle non-constant non-instructions. For example, Arguments
1286 // may be undef.
1287 Instruction *I = dyn_cast<Instruction>(V);
1288 if (!I)
1289 return false;
1290
1291 // Load and return values may be undef.
1292 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1293 return false;
1294
1295 // Optimistically handle other instructions.
1296 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1297 if (!Visited.insert(*OI))
1298 continue;
1299 if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1300 return false;
1301 }
1302 return true;
1303 }
1304
1305 /// Return true if the given value is concrete. We must prove that undef can
1306 /// never reach it.
1307 ///
1308 /// TODO: If we decide that this is a good approach to checking for undef, we
1309 /// may factor it into a common location.
hasConcreteDef(Value * V)1310 static bool hasConcreteDef(Value *V) {
1311 SmallPtrSet<Value*, 8> Visited;
1312 Visited.insert(V);
1313 return hasConcreteDefImpl(V, Visited, 0);
1314 }
1315
1316 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1317 /// be rewritten) loop exit test.
AlmostDeadIV(PHINode * Phi,BasicBlock * LatchBlock,Value * Cond)1318 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1319 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1320 Value *IncV = Phi->getIncomingValue(LatchIdx);
1321
1322 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1323 UI != UE; ++UI) {
1324 if (*UI != Cond && *UI != IncV) return false;
1325 }
1326
1327 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1328 UI != UE; ++UI) {
1329 if (*UI != Cond && *UI != Phi) return false;
1330 }
1331 return true;
1332 }
1333
1334 /// FindLoopCounter - Find an affine IV in canonical form.
1335 ///
1336 /// BECount may be an i8* pointer type. The pointer difference is already
1337 /// valid count without scaling the address stride, so it remains a pointer
1338 /// expression as far as SCEV is concerned.
1339 ///
1340 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1341 ///
1342 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1343 ///
1344 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1345 /// This is difficult in general for SCEV because of potential overflow. But we
1346 /// could at least handle constant BECounts.
1347 static PHINode *
FindLoopCounter(Loop * L,const SCEV * BECount,ScalarEvolution * SE,DominatorTree * DT,const DataLayout * TD)1348 FindLoopCounter(Loop *L, const SCEV *BECount,
1349 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
1350 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1351
1352 Value *Cond =
1353 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1354
1355 // Loop over all of the PHI nodes, looking for a simple counter.
1356 PHINode *BestPhi = 0;
1357 const SCEV *BestInit = 0;
1358 BasicBlock *LatchBlock = L->getLoopLatch();
1359 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1360
1361 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1362 PHINode *Phi = cast<PHINode>(I);
1363 if (!SE->isSCEVable(Phi->getType()))
1364 continue;
1365
1366 // Avoid comparing an integer IV against a pointer Limit.
1367 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1368 continue;
1369
1370 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1371 if (!AR || AR->getLoop() != L || !AR->isAffine())
1372 continue;
1373
1374 // AR may be a pointer type, while BECount is an integer type.
1375 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1376 // AR may not be a narrower type, or we may never exit.
1377 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1378 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1379 continue;
1380
1381 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1382 if (!Step || !Step->isOne())
1383 continue;
1384
1385 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1386 Value *IncV = Phi->getIncomingValue(LatchIdx);
1387 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1388 continue;
1389
1390 // Avoid reusing a potentially undef value to compute other values that may
1391 // have originally had a concrete definition.
1392 if (!hasConcreteDef(Phi)) {
1393 // We explicitly allow unknown phis as long as they are already used by
1394 // the loop test. In this case we assume that performing LFTR could not
1395 // increase the number of undef users.
1396 if (ICmpInst *Cond = getLoopTest(L)) {
1397 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1398 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1399 continue;
1400 }
1401 }
1402 }
1403 const SCEV *Init = AR->getStart();
1404
1405 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1406 // Don't force a live loop counter if another IV can be used.
1407 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1408 continue;
1409
1410 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1411 // also prefers integer to pointer IVs.
1412 if (BestInit->isZero() != Init->isZero()) {
1413 if (BestInit->isZero())
1414 continue;
1415 }
1416 // If two IVs both count from zero or both count from nonzero then the
1417 // narrower is likely a dead phi that has been widened. Use the wider phi
1418 // to allow the other to be eliminated.
1419 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1420 continue;
1421 }
1422 BestPhi = Phi;
1423 BestInit = Init;
1424 }
1425 return BestPhi;
1426 }
1427
1428 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1429 /// holds the RHS of the new loop test.
genLoopLimit(PHINode * IndVar,const SCEV * IVCount,Loop * L,SCEVExpander & Rewriter,ScalarEvolution * SE)1430 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1431 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1432 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1433 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1434 const SCEV *IVInit = AR->getStart();
1435
1436 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1437 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1438 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1439 // the existing GEPs whenever possible.
1440 if (IndVar->getType()->isPointerTy()
1441 && !IVCount->getType()->isPointerTy()) {
1442
1443 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1444 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1445
1446 // Expand the code for the iteration count.
1447 assert(SE->isLoopInvariant(IVOffset, L) &&
1448 "Computed iteration count is not loop invariant!");
1449 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1450 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1451
1452 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1453 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1454 // We could handle pointer IVs other than i8*, but we need to compensate for
1455 // gep index scaling. See canExpandBackedgeTakenCount comments.
1456 assert(SE->getSizeOfExpr(
1457 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1458 && "unit stride pointer IV must be i8*");
1459
1460 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1461 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1462 }
1463 else {
1464 // In any other case, convert both IVInit and IVCount to integers before
1465 // comparing. This may result in SCEV expension of pointers, but in practice
1466 // SCEV will fold the pointer arithmetic away as such:
1467 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1468 //
1469 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1470 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1471 // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1472 // of case #2.
1473
1474 const SCEV *IVLimit = 0;
1475 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1476 // For non-zero Start, compute IVCount here.
1477 if (AR->getStart()->isZero())
1478 IVLimit = IVCount;
1479 else {
1480 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1481 const SCEV *IVInit = AR->getStart();
1482
1483 // For integer IVs, truncate the IV before computing IVInit + BECount.
1484 if (SE->getTypeSizeInBits(IVInit->getType())
1485 > SE->getTypeSizeInBits(IVCount->getType()))
1486 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1487
1488 IVLimit = SE->getAddExpr(IVInit, IVCount);
1489 }
1490 // Expand the code for the iteration count.
1491 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1492 IRBuilder<> Builder(BI);
1493 assert(SE->isLoopInvariant(IVLimit, L) &&
1494 "Computed iteration count is not loop invariant!");
1495 // Ensure that we generate the same type as IndVar, or a smaller integer
1496 // type. In the presence of null pointer values, we have an integer type
1497 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1498 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1499 IndVar->getType() : IVCount->getType();
1500 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1501 }
1502 }
1503
1504 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1505 /// loop to be a canonical != comparison against the incremented loop induction
1506 /// variable. This pass is able to rewrite the exit tests of any loop where the
1507 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1508 /// is actually a much broader range than just linear tests.
1509 Value *IndVarSimplify::
LinearFunctionTestReplace(Loop * L,const SCEV * BackedgeTakenCount,PHINode * IndVar,SCEVExpander & Rewriter)1510 LinearFunctionTestReplace(Loop *L,
1511 const SCEV *BackedgeTakenCount,
1512 PHINode *IndVar,
1513 SCEVExpander &Rewriter) {
1514 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1515
1516 // LFTR can ignore IV overflow and truncate to the width of
1517 // BECount. This avoids materializing the add(zext(add)) expression.
1518 Type *CntTy = BackedgeTakenCount->getType();
1519
1520 const SCEV *IVCount = BackedgeTakenCount;
1521
1522 // If the exiting block is the same as the backedge block, we prefer to
1523 // compare against the post-incremented value, otherwise we must compare
1524 // against the preincremented value.
1525 Value *CmpIndVar;
1526 if (L->getExitingBlock() == L->getLoopLatch()) {
1527 // Add one to the "backedge-taken" count to get the trip count.
1528 // If this addition may overflow, we have to be more pessimistic and
1529 // cast the induction variable before doing the add.
1530 const SCEV *N =
1531 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1532 if (CntTy == IVCount->getType())
1533 IVCount = N;
1534 else {
1535 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1536 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1537 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1538 // No overflow. Cast the sum.
1539 IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1540 } else {
1541 // Potential overflow. Cast before doing the add.
1542 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1543 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1544 }
1545 }
1546 // The BackedgeTaken expression contains the number of times that the
1547 // backedge branches to the loop header. This is one less than the
1548 // number of times the loop executes, so use the incremented indvar.
1549 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1550 } else {
1551 // We must use the preincremented value...
1552 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1553 CmpIndVar = IndVar;
1554 }
1555
1556 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1557 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1558 && "genLoopLimit missed a cast");
1559
1560 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1561 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1562 ICmpInst::Predicate P;
1563 if (L->contains(BI->getSuccessor(0)))
1564 P = ICmpInst::ICMP_NE;
1565 else
1566 P = ICmpInst::ICMP_EQ;
1567
1568 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1569 << " LHS:" << *CmpIndVar << '\n'
1570 << " op:\t"
1571 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1572 << " RHS:\t" << *ExitCnt << "\n"
1573 << " IVCount:\t" << *IVCount << "\n");
1574
1575 IRBuilder<> Builder(BI);
1576 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1577 > SE->getTypeSizeInBits(ExitCnt->getType())) {
1578 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1579 "lftr.wideiv");
1580 }
1581
1582 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1583 Value *OrigCond = BI->getCondition();
1584 // It's tempting to use replaceAllUsesWith here to fully replace the old
1585 // comparison, but that's not immediately safe, since users of the old
1586 // comparison may not be dominated by the new comparison. Instead, just
1587 // update the branch to use the new comparison; in the common case this
1588 // will make old comparison dead.
1589 BI->setCondition(Cond);
1590 DeadInsts.push_back(OrigCond);
1591
1592 ++NumLFTR;
1593 Changed = true;
1594 return Cond;
1595 }
1596
1597 //===----------------------------------------------------------------------===//
1598 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1599 //===----------------------------------------------------------------------===//
1600
1601 /// If there's a single exit block, sink any loop-invariant values that
1602 /// were defined in the preheader but not used inside the loop into the
1603 /// exit block to reduce register pressure in the loop.
SinkUnusedInvariants(Loop * L)1604 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1605 BasicBlock *ExitBlock = L->getExitBlock();
1606 if (!ExitBlock) return;
1607
1608 BasicBlock *Preheader = L->getLoopPreheader();
1609 if (!Preheader) return;
1610
1611 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1612 BasicBlock::iterator I = Preheader->getTerminator();
1613 while (I != Preheader->begin()) {
1614 --I;
1615 // New instructions were inserted at the end of the preheader.
1616 if (isa<PHINode>(I))
1617 break;
1618
1619 // Don't move instructions which might have side effects, since the side
1620 // effects need to complete before instructions inside the loop. Also don't
1621 // move instructions which might read memory, since the loop may modify
1622 // memory. Note that it's okay if the instruction might have undefined
1623 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1624 // block.
1625 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1626 continue;
1627
1628 // Skip debug info intrinsics.
1629 if (isa<DbgInfoIntrinsic>(I))
1630 continue;
1631
1632 // Skip landingpad instructions.
1633 if (isa<LandingPadInst>(I))
1634 continue;
1635
1636 // Don't sink alloca: we never want to sink static alloca's out of the
1637 // entry block, and correctly sinking dynamic alloca's requires
1638 // checks for stacksave/stackrestore intrinsics.
1639 // FIXME: Refactor this check somehow?
1640 if (isa<AllocaInst>(I))
1641 continue;
1642
1643 // Determine if there is a use in or before the loop (direct or
1644 // otherwise).
1645 bool UsedInLoop = false;
1646 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1647 UI != UE; ++UI) {
1648 User *U = *UI;
1649 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1650 if (PHINode *P = dyn_cast<PHINode>(U)) {
1651 unsigned i =
1652 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1653 UseBB = P->getIncomingBlock(i);
1654 }
1655 if (UseBB == Preheader || L->contains(UseBB)) {
1656 UsedInLoop = true;
1657 break;
1658 }
1659 }
1660
1661 // If there is, the def must remain in the preheader.
1662 if (UsedInLoop)
1663 continue;
1664
1665 // Otherwise, sink it to the exit block.
1666 Instruction *ToMove = I;
1667 bool Done = false;
1668
1669 if (I != Preheader->begin()) {
1670 // Skip debug info intrinsics.
1671 do {
1672 --I;
1673 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1674
1675 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1676 Done = true;
1677 } else {
1678 Done = true;
1679 }
1680
1681 ToMove->moveBefore(InsertPt);
1682 if (Done) break;
1683 InsertPt = ToMove;
1684 }
1685 }
1686
1687 //===----------------------------------------------------------------------===//
1688 // IndVarSimplify driver. Manage several subpasses of IV simplification.
1689 //===----------------------------------------------------------------------===//
1690
runOnLoop(Loop * L,LPPassManager & LPM)1691 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1692 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1693 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1694 // canonicalization can be a pessimization without LSR to "clean up"
1695 // afterwards.
1696 // - We depend on having a preheader; in particular,
1697 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1698 // and we're in trouble if we can't find the induction variable even when
1699 // we've manually inserted one.
1700 if (!L->isLoopSimplifyForm())
1701 return false;
1702
1703 LI = &getAnalysis<LoopInfo>();
1704 SE = &getAnalysis<ScalarEvolution>();
1705 DT = &getAnalysis<DominatorTree>();
1706 TD = getAnalysisIfAvailable<DataLayout>();
1707 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1708
1709 DeadInsts.clear();
1710 Changed = false;
1711
1712 // If there are any floating-point recurrences, attempt to
1713 // transform them to use integer recurrences.
1714 RewriteNonIntegerIVs(L);
1715
1716 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1717
1718 // Create a rewriter object which we'll use to transform the code with.
1719 SCEVExpander Rewriter(*SE, "indvars");
1720 #ifndef NDEBUG
1721 Rewriter.setDebugType(DEBUG_TYPE);
1722 #endif
1723
1724 // Eliminate redundant IV users.
1725 //
1726 // Simplification works best when run before other consumers of SCEV. We
1727 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1728 // other expressions involving loop IVs have been evaluated. This helps SCEV
1729 // set no-wrap flags before normalizing sign/zero extension.
1730 Rewriter.disableCanonicalMode();
1731 SimplifyAndExtend(L, Rewriter, LPM);
1732
1733 // Check to see if this loop has a computable loop-invariant execution count.
1734 // If so, this means that we can compute the final value of any expressions
1735 // that are recurrent in the loop, and substitute the exit values from the
1736 // loop into any instructions outside of the loop that use the final values of
1737 // the current expressions.
1738 //
1739 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1740 RewriteLoopExitValues(L, Rewriter);
1741
1742 // Eliminate redundant IV cycles.
1743 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1744
1745 // If we have a trip count expression, rewrite the loop's exit condition
1746 // using it. We can currently only handle loops with a single exit.
1747 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1748 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1749 if (IndVar) {
1750 // Check preconditions for proper SCEVExpander operation. SCEV does not
1751 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1752 // pass that uses the SCEVExpander must do it. This does not work well for
1753 // loop passes because SCEVExpander makes assumptions about all loops, while
1754 // LoopPassManager only forces the current loop to be simplified.
1755 //
1756 // FIXME: SCEV expansion has no way to bail out, so the caller must
1757 // explicitly check any assumptions made by SCEV. Brittle.
1758 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1759 if (!AR || AR->getLoop()->getLoopPreheader())
1760 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1761 Rewriter);
1762 }
1763 }
1764 // Clear the rewriter cache, because values that are in the rewriter's cache
1765 // can be deleted in the loop below, causing the AssertingVH in the cache to
1766 // trigger.
1767 Rewriter.clear();
1768
1769 // Now that we're done iterating through lists, clean up any instructions
1770 // which are now dead.
1771 while (!DeadInsts.empty())
1772 if (Instruction *Inst =
1773 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1774 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1775
1776 // The Rewriter may not be used from this point on.
1777
1778 // Loop-invariant instructions in the preheader that aren't used in the
1779 // loop may be sunk below the loop to reduce register pressure.
1780 SinkUnusedInvariants(L);
1781
1782 // Clean up dead instructions.
1783 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1784 // Check a post-condition.
1785 assert(L->isLCSSAForm(*DT) &&
1786 "Indvars did not leave the loop in lcssa form!");
1787
1788 // Verify that LFTR, and any other change have not interfered with SCEV's
1789 // ability to compute trip count.
1790 #ifndef NDEBUG
1791 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1792 SE->forgetLoop(L);
1793 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1794 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1795 SE->getTypeSizeInBits(NewBECount->getType()))
1796 NewBECount = SE->getTruncateOrNoop(NewBECount,
1797 BackedgeTakenCount->getType());
1798 else
1799 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1800 NewBECount->getType());
1801 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1802 }
1803 #endif
1804
1805 return Changed;
1806 }
1807