• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 //   memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 //   fpowi
22 // Future integer operation idioms to recognize:
23 //   ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set.  It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop.  This would handle things like:
31 //   void foo(_Complex float *P)
32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33 //
34 // We should enhance this to handle negative strides through memory.
35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
36 // forward iteration through memory, which is generally better for cache
37 // behavior.  Negative strides *do* happen for memset/memcpy loops.
38 //
39 // This could recognize common matrix multiplies and dot product idioms and
40 // replace them with calls to BLAS (if linked in??).
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #define DEBUG_TYPE "loop-idiom"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Analysis/AliasAnalysis.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/ScalarEvolutionExpander.h"
50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetLibraryInfo.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 using namespace llvm;
62 
63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65 
66 namespace {
67 
68   class LoopIdiomRecognize;
69 
70   /// This class defines some utility functions for loop idiom recognization.
71   class LIRUtil {
72   public:
73     /// Return true iff the block contains nothing but an uncondition branch
74     /// (aka goto instruction).
75     static bool isAlmostEmpty(BasicBlock *);
76 
getBranch(BasicBlock * BB)77     static BranchInst *getBranch(BasicBlock *BB) {
78       return dyn_cast<BranchInst>(BB->getTerminator());
79     }
80 
81     /// Return the condition of the branch terminating the given basic block.
82     static Value *getBrCondtion(BasicBlock *);
83 
84     /// Derive the precondition block (i.e the block that guards the loop
85     /// preheader) from the given preheader.
86     static BasicBlock *getPrecondBb(BasicBlock *PreHead);
87   };
88 
89   /// This class is to recoginize idioms of population-count conducted in
90   /// a noncountable loop. Currently it only recognizes this pattern:
91   /// \code
92   ///   while(x) {cnt++; ...; x &= x - 1; ...}
93   /// \endcode
94   class NclPopcountRecognize {
95     LoopIdiomRecognize &LIR;
96     Loop *CurLoop;
97     BasicBlock *PreCondBB;
98 
99     typedef IRBuilder<> IRBuilderTy;
100 
101   public:
102     explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
103     bool recognize();
104 
105   private:
106     /// Take a glimpse of the loop to see if we need to go ahead recoginizing
107     /// the idiom.
108     bool preliminaryScreen();
109 
110     /// Check if the given conditional branch is based on the comparison
111     /// beween a variable and zero, and if the variable is non-zero, the
112     /// control yeilds to the loop entry. If the branch matches the behavior,
113     /// the variable involved in the comparion is returned. This function will
114     /// be called to see if the precondition and postcondition of the loop
115     /// are in desirable form.
116     Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
117 
118     /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
119     /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
120     /// is set to the corresponding phi node. 3) \p Var is set to the value
121     /// whose population bits are being counted.
122     bool detectIdiom
123       (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
124 
125     /// Insert ctpop intrinsic function and some obviously dead instructions.
126     void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
127 
128     /// Create llvm.ctpop.* intrinsic function.
129     CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
130   };
131 
132   class LoopIdiomRecognize : public LoopPass {
133     Loop *CurLoop;
134     const DataLayout *TD;
135     DominatorTree *DT;
136     ScalarEvolution *SE;
137     TargetLibraryInfo *TLI;
138     const TargetTransformInfo *TTI;
139   public:
140     static char ID;
LoopIdiomRecognize()141     explicit LoopIdiomRecognize() : LoopPass(ID) {
142       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
143       TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
144     }
145 
146     bool runOnLoop(Loop *L, LPPassManager &LPM);
147     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
148                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
149 
150     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
151     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
152 
153     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
154                                  unsigned StoreAlignment,
155                                  Value *SplatValue, Instruction *TheStore,
156                                  const SCEVAddRecExpr *Ev,
157                                  const SCEV *BECount);
158     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
159                                     const SCEVAddRecExpr *StoreEv,
160                                     const SCEVAddRecExpr *LoadEv,
161                                     const SCEV *BECount);
162 
163     /// This transformation requires natural loop information & requires that
164     /// loop preheaders be inserted into the CFG.
165     ///
getAnalysisUsage(AnalysisUsage & AU) const166     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167       AU.addRequired<LoopInfo>();
168       AU.addPreserved<LoopInfo>();
169       AU.addRequiredID(LoopSimplifyID);
170       AU.addPreservedID(LoopSimplifyID);
171       AU.addRequiredID(LCSSAID);
172       AU.addPreservedID(LCSSAID);
173       AU.addRequired<AliasAnalysis>();
174       AU.addPreserved<AliasAnalysis>();
175       AU.addRequired<ScalarEvolution>();
176       AU.addPreserved<ScalarEvolution>();
177       AU.addPreserved<DominatorTree>();
178       AU.addRequired<DominatorTree>();
179       AU.addRequired<TargetLibraryInfo>();
180       AU.addRequired<TargetTransformInfo>();
181     }
182 
getDataLayout()183     const DataLayout *getDataLayout() {
184       return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
185     }
186 
getDominatorTree()187     DominatorTree *getDominatorTree() {
188       return DT ? DT : (DT=&getAnalysis<DominatorTree>());
189     }
190 
getScalarEvolution()191     ScalarEvolution *getScalarEvolution() {
192       return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
193     }
194 
getTargetLibraryInfo()195     TargetLibraryInfo *getTargetLibraryInfo() {
196       return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
197     }
198 
getTargetTransformInfo()199     const TargetTransformInfo *getTargetTransformInfo() {
200       return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
201     }
202 
getLoop() const203     Loop *getLoop() const { return CurLoop; }
204 
205   private:
206     bool runOnNoncountableLoop();
207     bool runOnCountableLoop();
208   };
209 }
210 
211 char LoopIdiomRecognize::ID = 0;
212 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
213                       false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)214 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
215 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
216 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
217 INITIALIZE_PASS_DEPENDENCY(LCSSA)
218 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
219 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
220 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
221 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
222 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
223                     false, false)
224 
225 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
226 
227 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
228 /// and zero out all the operands of this instruction.  If any of them become
229 /// dead, delete them and the computation tree that feeds them.
230 ///
deleteDeadInstruction(Instruction * I,ScalarEvolution & SE,const TargetLibraryInfo * TLI)231 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
232                                   const TargetLibraryInfo *TLI) {
233   SmallVector<Instruction*, 32> NowDeadInsts;
234 
235   NowDeadInsts.push_back(I);
236 
237   // Before we touch this instruction, remove it from SE!
238   do {
239     Instruction *DeadInst = NowDeadInsts.pop_back_val();
240 
241     // This instruction is dead, zap it, in stages.  Start by removing it from
242     // SCEV.
243     SE.forgetValue(DeadInst);
244 
245     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
246       Value *Op = DeadInst->getOperand(op);
247       DeadInst->setOperand(op, 0);
248 
249       // If this operand just became dead, add it to the NowDeadInsts list.
250       if (!Op->use_empty()) continue;
251 
252       if (Instruction *OpI = dyn_cast<Instruction>(Op))
253         if (isInstructionTriviallyDead(OpI, TLI))
254           NowDeadInsts.push_back(OpI);
255     }
256 
257     DeadInst->eraseFromParent();
258 
259   } while (!NowDeadInsts.empty());
260 }
261 
262 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
263 /// delete it and any recursively used instructions.
deleteIfDeadInstruction(Value * V,ScalarEvolution & SE,const TargetLibraryInfo * TLI)264 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
265                                     const TargetLibraryInfo *TLI) {
266   if (Instruction *I = dyn_cast<Instruction>(V))
267     if (isInstructionTriviallyDead(I, TLI))
268       deleteDeadInstruction(I, SE, TLI);
269 }
270 
271 //===----------------------------------------------------------------------===//
272 //
273 //          Implementation of LIRUtil
274 //
275 //===----------------------------------------------------------------------===//
276 
277 // This fucntion will return true iff the given block contains nothing but goto.
278 // A typical usage of this function is to check if the preheader fucntion is
279 // "almost" empty such that generated intrinsic function can be moved across
280 // preheader and to be placed at the end of the preconditiona block without
281 // concerning of breaking data dependence.
isAlmostEmpty(BasicBlock * BB)282 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
283   if (BranchInst *Br = getBranch(BB)) {
284     return Br->isUnconditional() && BB->size() == 1;
285   }
286   return false;
287 }
288 
getBrCondtion(BasicBlock * BB)289 Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
290   BranchInst *Br = getBranch(BB);
291   return Br ? Br->getCondition() : 0;
292 }
293 
getPrecondBb(BasicBlock * PreHead)294 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
295   if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
296     BranchInst *Br = getBranch(BB);
297     return Br && Br->isConditional() ? BB : 0;
298   }
299   return 0;
300 }
301 
302 //===----------------------------------------------------------------------===//
303 //
304 //          Implementation of NclPopcountRecognize
305 //
306 //===----------------------------------------------------------------------===//
307 
NclPopcountRecognize(LoopIdiomRecognize & TheLIR)308 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
309   LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
310 }
311 
preliminaryScreen()312 bool NclPopcountRecognize::preliminaryScreen() {
313   const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
314   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
315     return false;
316 
317   // Counting population are usually conducted by few arithmetic instrutions.
318   // Such instructions can be easilly "absorbed" by vacant slots in a
319   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
320   // in a compact loop.
321 
322   // Give up if the loop has multiple blocks or multiple backedges.
323   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
324     return false;
325 
326   BasicBlock *LoopBody = *(CurLoop->block_begin());
327   if (LoopBody->size() >= 20) {
328     // The loop is too big, bail out.
329     return false;
330   }
331 
332   // It should have a preheader containing nothing but a goto instruction.
333   BasicBlock *PreHead = CurLoop->getLoopPreheader();
334   if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
335     return false;
336 
337   // It should have a precondition block where the generated popcount instrinsic
338   // function will be inserted.
339   PreCondBB = LIRUtil::getPrecondBb(PreHead);
340   if (!PreCondBB)
341     return false;
342 
343   return true;
344 }
345 
matchCondition(BranchInst * Br,BasicBlock * LoopEntry) const346 Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
347                                              BasicBlock *LoopEntry) const {
348   if (!Br || !Br->isConditional())
349     return 0;
350 
351   ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
352   if (!Cond)
353     return 0;
354 
355   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
356   if (!CmpZero || !CmpZero->isZero())
357     return 0;
358 
359   ICmpInst::Predicate Pred = Cond->getPredicate();
360   if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
361       (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
362     return Cond->getOperand(0);
363 
364   return 0;
365 }
366 
detectIdiom(Instruction * & CntInst,PHINode * & CntPhi,Value * & Var) const367 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
368                                        PHINode *&CntPhi,
369                                        Value *&Var) const {
370   // Following code tries to detect this idiom:
371   //
372   //    if (x0 != 0)
373   //      goto loop-exit // the precondition of the loop
374   //    cnt0 = init-val;
375   //    do {
376   //       x1 = phi (x0, x2);
377   //       cnt1 = phi(cnt0, cnt2);
378   //
379   //       cnt2 = cnt1 + 1;
380   //        ...
381   //       x2 = x1 & (x1 - 1);
382   //        ...
383   //    } while(x != 0);
384   //
385   // loop-exit:
386   //
387 
388   // step 1: Check to see if the look-back branch match this pattern:
389   //    "if (a!=0) goto loop-entry".
390   BasicBlock *LoopEntry;
391   Instruction *DefX2, *CountInst;
392   Value *VarX1, *VarX0;
393   PHINode *PhiX, *CountPhi;
394 
395   DefX2 = CountInst = 0;
396   VarX1 = VarX0 = 0;
397   PhiX = CountPhi = 0;
398   LoopEntry = *(CurLoop->block_begin());
399 
400   // step 1: Check if the loop-back branch is in desirable form.
401   {
402     if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
403       DefX2 = dyn_cast<Instruction>(T);
404     else
405       return false;
406   }
407 
408   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
409   {
410     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
411       return false;
412 
413     BinaryOperator *SubOneOp;
414 
415     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
416       VarX1 = DefX2->getOperand(1);
417     else {
418       VarX1 = DefX2->getOperand(0);
419       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
420     }
421     if (!SubOneOp)
422       return false;
423 
424     Instruction *SubInst = cast<Instruction>(SubOneOp);
425     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
426     if (!Dec ||
427         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
428           (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
429       return false;
430     }
431   }
432 
433   // step 3: Check the recurrence of variable X
434   {
435     PhiX = dyn_cast<PHINode>(VarX1);
436     if (!PhiX ||
437         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
438       return false;
439     }
440   }
441 
442   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
443   {
444     CountInst = NULL;
445     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
446            IterE = LoopEntry->end(); Iter != IterE; Iter++) {
447       Instruction *Inst = Iter;
448       if (Inst->getOpcode() != Instruction::Add)
449         continue;
450 
451       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
452       if (!Inc || !Inc->isOne())
453         continue;
454 
455       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
456       if (!Phi || Phi->getParent() != LoopEntry)
457         continue;
458 
459       // Check if the result of the instruction is live of the loop.
460       bool LiveOutLoop = false;
461       for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
462              I != E;  I++) {
463         if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
464           LiveOutLoop = true; break;
465         }
466       }
467 
468       if (LiveOutLoop) {
469         CountInst = Inst;
470         CountPhi = Phi;
471         break;
472       }
473     }
474 
475     if (!CountInst)
476       return false;
477   }
478 
479   // step 5: check if the precondition is in this form:
480   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
481   {
482     BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
483     Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
484     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
485       return false;
486 
487     CntInst = CountInst;
488     CntPhi = CountPhi;
489     Var = T;
490   }
491 
492   return true;
493 }
494 
transform(Instruction * CntInst,PHINode * CntPhi,Value * Var)495 void NclPopcountRecognize::transform(Instruction *CntInst,
496                                      PHINode *CntPhi, Value *Var) {
497 
498   ScalarEvolution *SE = LIR.getScalarEvolution();
499   TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
500   BasicBlock *PreHead = CurLoop->getLoopPreheader();
501   BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
502   const DebugLoc DL = CntInst->getDebugLoc();
503 
504   // Assuming before transformation, the loop is following:
505   //  if (x) // the precondition
506   //     do { cnt++; x &= x - 1; } while(x);
507 
508   // Step 1: Insert the ctpop instruction at the end of the precondition block
509   IRBuilderTy Builder(PreCondBr);
510   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
511   {
512     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
513     NewCount = PopCntZext =
514       Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
515 
516     if (NewCount != PopCnt)
517       (cast<Instruction>(NewCount))->setDebugLoc(DL);
518 
519     // TripCnt is exactly the number of iterations the loop has
520     TripCnt = NewCount;
521 
522     // If the popoulation counter's initial value is not zero, insert Add Inst.
523     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
524     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
525     if (!InitConst || !InitConst->isZero()) {
526       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
527       (cast<Instruction>(NewCount))->setDebugLoc(DL);
528     }
529   }
530 
531   // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
532   //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
533   //   function would be partial dead code, and downstream passes will drag
534   //   it back from the precondition block to the preheader.
535   {
536     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
537 
538     Value *Opnd0 = PopCntZext;
539     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
540     if (PreCond->getOperand(0) != Var)
541       std::swap(Opnd0, Opnd1);
542 
543     ICmpInst *NewPreCond =
544       cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
545     PreCond->replaceAllUsesWith(NewPreCond);
546 
547     deleteDeadInstruction(PreCond, *SE, TLI);
548   }
549 
550   // Step 3: Note that the population count is exactly the trip count of the
551   // loop in question, which enble us to to convert the loop from noncountable
552   // loop into a countable one. The benefit is twofold:
553   //
554   //  - If the loop only counts population, the entire loop become dead after
555   //    the transformation. It is lots easier to prove a countable loop dead
556   //    than to prove a noncountable one. (In some C dialects, a infite loop
557   //    isn't dead even if it computes nothing useful. In general, DCE needs
558   //    to prove a noncountable loop finite before safely delete it.)
559   //
560   //  - If the loop also performs something else, it remains alive.
561   //    Since it is transformed to countable form, it can be aggressively
562   //    optimized by some optimizations which are in general not applicable
563   //    to a noncountable loop.
564   //
565   // After this step, this loop (conceptually) would look like following:
566   //   newcnt = __builtin_ctpop(x);
567   //   t = newcnt;
568   //   if (x)
569   //     do { cnt++; x &= x-1; t--) } while (t > 0);
570   BasicBlock *Body = *(CurLoop->block_begin());
571   {
572     BranchInst *LbBr = LIRUtil::getBranch(Body);
573     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
574     Type *Ty = TripCnt->getType();
575 
576     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
577 
578     Builder.SetInsertPoint(LbCond);
579     Value *Opnd1 = cast<Value>(TcPhi);
580     Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
581     Instruction *TcDec =
582       cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
583 
584     TcPhi->addIncoming(TripCnt, PreHead);
585     TcPhi->addIncoming(TcDec, Body);
586 
587     CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
588       CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
589     LbCond->setPredicate(Pred);
590     LbCond->setOperand(0, TcDec);
591     LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
592   }
593 
594   // Step 4: All the references to the original population counter outside
595   //  the loop are replaced with the NewCount -- the value returned from
596   //  __builtin_ctpop().
597   {
598     SmallVector<Value *, 4> CntUses;
599     for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
600          I != E; I++) {
601       if (cast<Instruction>(*I)->getParent() != Body)
602         CntUses.push_back(*I);
603     }
604     for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
605       (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
606     }
607   }
608 
609   // step 5: Forget the "non-computable" trip-count SCEV associated with the
610   //   loop. The loop would otherwise not be deleted even if it becomes empty.
611   SE->forgetLoop(CurLoop);
612 }
613 
createPopcntIntrinsic(IRBuilderTy & IRBuilder,Value * Val,DebugLoc DL)614 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
615                                                       Value *Val, DebugLoc DL) {
616   Value *Ops[] = { Val };
617   Type *Tys[] = { Val->getType() };
618 
619   Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
620   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
621   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
622   CI->setDebugLoc(DL);
623 
624   return CI;
625 }
626 
627 /// recognize - detect population count idiom in a non-countable loop. If
628 ///   detected, transform the relevant code to popcount intrinsic function
629 ///   call, and return true; otherwise, return false.
recognize()630 bool NclPopcountRecognize::recognize() {
631 
632   if (!LIR.getTargetTransformInfo())
633     return false;
634 
635   LIR.getScalarEvolution();
636 
637   if (!preliminaryScreen())
638     return false;
639 
640   Instruction *CntInst;
641   PHINode *CntPhi;
642   Value *Val;
643   if (!detectIdiom(CntInst, CntPhi, Val))
644     return false;
645 
646   transform(CntInst, CntPhi, Val);
647   return true;
648 }
649 
650 //===----------------------------------------------------------------------===//
651 //
652 //          Implementation of LoopIdiomRecognize
653 //
654 //===----------------------------------------------------------------------===//
655 
runOnCountableLoop()656 bool LoopIdiomRecognize::runOnCountableLoop() {
657   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
658   if (isa<SCEVCouldNotCompute>(BECount)) return false;
659 
660   // If this loop executes exactly one time, then it should be peeled, not
661   // optimized by this pass.
662   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
663     if (BECst->getValue()->getValue() == 0)
664       return false;
665 
666   // We require target data for now.
667   if (!getDataLayout())
668     return false;
669 
670   // set DT
671   (void)getDominatorTree();
672 
673   LoopInfo &LI = getAnalysis<LoopInfo>();
674   TLI = &getAnalysis<TargetLibraryInfo>();
675 
676   // set TLI
677   (void)getTargetLibraryInfo();
678 
679   SmallVector<BasicBlock*, 8> ExitBlocks;
680   CurLoop->getUniqueExitBlocks(ExitBlocks);
681 
682   DEBUG(dbgs() << "loop-idiom Scanning: F["
683                << CurLoop->getHeader()->getParent()->getName()
684                << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
685 
686   bool MadeChange = false;
687   // Scan all the blocks in the loop that are not in subloops.
688   for (Loop::block_iterator BI = CurLoop->block_begin(),
689          E = CurLoop->block_end(); BI != E; ++BI) {
690     // Ignore blocks in subloops.
691     if (LI.getLoopFor(*BI) != CurLoop)
692       continue;
693 
694     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
695   }
696   return MadeChange;
697 }
698 
runOnNoncountableLoop()699 bool LoopIdiomRecognize::runOnNoncountableLoop() {
700   NclPopcountRecognize Popcount(*this);
701   if (Popcount.recognize())
702     return true;
703 
704   return false;
705 }
706 
runOnLoop(Loop * L,LPPassManager & LPM)707 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
708   CurLoop = L;
709 
710   // If the loop could not be converted to canonical form, it must have an
711   // indirectbr in it, just give up.
712   if (!L->getLoopPreheader())
713     return false;
714 
715   // Disable loop idiom recognition if the function's name is a common idiom.
716   StringRef Name = L->getHeader()->getParent()->getName();
717   if (Name == "memset" || Name == "memcpy")
718     return false;
719 
720   SE = &getAnalysis<ScalarEvolution>();
721   if (SE->hasLoopInvariantBackedgeTakenCount(L))
722     return runOnCountableLoop();
723   return runOnNoncountableLoop();
724 }
725 
726 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
727 /// with the specified backedge count.  This block is known to be in the current
728 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)729 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
730                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
731   // We can only promote stores in this block if they are unconditionally
732   // executed in the loop.  For a block to be unconditionally executed, it has
733   // to dominate all the exit blocks of the loop.  Verify this now.
734   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
735     if (!DT->dominates(BB, ExitBlocks[i]))
736       return false;
737 
738   bool MadeChange = false;
739   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
740     Instruction *Inst = I++;
741     // Look for store instructions, which may be optimized to memset/memcpy.
742     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
743       WeakVH InstPtr(I);
744       if (!processLoopStore(SI, BECount)) continue;
745       MadeChange = true;
746 
747       // If processing the store invalidated our iterator, start over from the
748       // top of the block.
749       if (InstPtr == 0)
750         I = BB->begin();
751       continue;
752     }
753 
754     // Look for memset instructions, which may be optimized to a larger memset.
755     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
756       WeakVH InstPtr(I);
757       if (!processLoopMemSet(MSI, BECount)) continue;
758       MadeChange = true;
759 
760       // If processing the memset invalidated our iterator, start over from the
761       // top of the block.
762       if (InstPtr == 0)
763         I = BB->begin();
764       continue;
765     }
766   }
767 
768   return MadeChange;
769 }
770 
771 
772 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
processLoopStore(StoreInst * SI,const SCEV * BECount)773 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
774   if (!SI->isSimple()) return false;
775 
776   Value *StoredVal = SI->getValueOperand();
777   Value *StorePtr = SI->getPointerOperand();
778 
779   // Reject stores that are so large that they overflow an unsigned.
780   uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
781   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
782     return false;
783 
784   // See if the pointer expression is an AddRec like {base,+,1} on the current
785   // loop, which indicates a strided store.  If we have something else, it's a
786   // random store we can't handle.
787   const SCEVAddRecExpr *StoreEv =
788     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
789   if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
790     return false;
791 
792   // Check to see if the stride matches the size of the store.  If so, then we
793   // know that every byte is touched in the loop.
794   unsigned StoreSize = (unsigned)SizeInBits >> 3;
795   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
796 
797   if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
798     // TODO: Could also handle negative stride here someday, that will require
799     // the validity check in mayLoopAccessLocation to be updated though.
800     // Enable this to print exact negative strides.
801     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
802       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
803       dbgs() << "BB: " << *SI->getParent();
804     }
805 
806     return false;
807   }
808 
809   // See if we can optimize just this store in isolation.
810   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
811                               StoredVal, SI, StoreEv, BECount))
812     return true;
813 
814   // If the stored value is a strided load in the same loop with the same stride
815   // this this may be transformable into a memcpy.  This kicks in for stuff like
816   //   for (i) A[i] = B[i];
817   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
818     const SCEVAddRecExpr *LoadEv =
819       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
820     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
821         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
822       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
823         return true;
824   }
825   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
826 
827   return false;
828 }
829 
830 /// processLoopMemSet - See if this memset can be promoted to a large memset.
831 bool LoopIdiomRecognize::
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)832 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
833   // We can only handle non-volatile memsets with a constant size.
834   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
835 
836   // If we're not allowed to hack on memset, we fail.
837   if (!TLI->has(LibFunc::memset))
838     return false;
839 
840   Value *Pointer = MSI->getDest();
841 
842   // See if the pointer expression is an AddRec like {base,+,1} on the current
843   // loop, which indicates a strided store.  If we have something else, it's a
844   // random store we can't handle.
845   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
846   if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
847     return false;
848 
849   // Reject memsets that are so large that they overflow an unsigned.
850   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
851   if ((SizeInBytes >> 32) != 0)
852     return false;
853 
854   // Check to see if the stride matches the size of the memset.  If so, then we
855   // know that every byte is touched in the loop.
856   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
857 
858   // TODO: Could also handle negative stride here someday, that will require the
859   // validity check in mayLoopAccessLocation to be updated though.
860   if (Stride == 0 || MSI->getLength() != Stride->getValue())
861     return false;
862 
863   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
864                                  MSI->getAlignment(), MSI->getValue(),
865                                  MSI, Ev, BECount);
866 }
867 
868 
869 /// mayLoopAccessLocation - Return true if the specified loop might access the
870 /// specified pointer location, which is a loop-strided access.  The 'Access'
871 /// argument specifies what the verboten forms of access are (read or write).
mayLoopAccessLocation(Value * Ptr,AliasAnalysis::ModRefResult Access,Loop * L,const SCEV * BECount,unsigned StoreSize,AliasAnalysis & AA,Instruction * IgnoredStore)872 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
873                                   Loop *L, const SCEV *BECount,
874                                   unsigned StoreSize, AliasAnalysis &AA,
875                                   Instruction *IgnoredStore) {
876   // Get the location that may be stored across the loop.  Since the access is
877   // strided positively through memory, we say that the modified location starts
878   // at the pointer and has infinite size.
879   uint64_t AccessSize = AliasAnalysis::UnknownSize;
880 
881   // If the loop iterates a fixed number of times, we can refine the access size
882   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
883   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
884     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
885 
886   // TODO: For this to be really effective, we have to dive into the pointer
887   // operand in the store.  Store to &A[i] of 100 will always return may alias
888   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
889   // which will then no-alias a store to &A[100].
890   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
891 
892   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
893        ++BI)
894     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
895       if (&*I != IgnoredStore &&
896           (AA.getModRefInfo(I, StoreLoc) & Access))
897         return true;
898 
899   return false;
900 }
901 
902 /// getMemSetPatternValue - If a strided store of the specified value is safe to
903 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
904 /// be passed in.  Otherwise, return null.
905 ///
906 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
907 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout & TD)908 static Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
909   // If the value isn't a constant, we can't promote it to being in a constant
910   // array.  We could theoretically do a store to an alloca or something, but
911   // that doesn't seem worthwhile.
912   Constant *C = dyn_cast<Constant>(V);
913   if (C == 0) return 0;
914 
915   // Only handle simple values that are a power of two bytes in size.
916   uint64_t Size = TD.getTypeSizeInBits(V->getType());
917   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
918     return 0;
919 
920   // Don't care enough about darwin/ppc to implement this.
921   if (TD.isBigEndian())
922     return 0;
923 
924   // Convert to size in bytes.
925   Size /= 8;
926 
927   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
928   // if the top and bottom are the same (e.g. for vectors and large integers).
929   if (Size > 16) return 0;
930 
931   // If the constant is exactly 16 bytes, just use it.
932   if (Size == 16) return C;
933 
934   // Otherwise, we'll use an array of the constants.
935   unsigned ArraySize = 16/Size;
936   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
937   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
938 }
939 
940 
941 /// processLoopStridedStore - We see a strided store of some value.  If we can
942 /// transform this into a memset or memset_pattern in the loop preheader, do so.
943 bool LoopIdiomRecognize::
processLoopStridedStore(Value * DestPtr,unsigned StoreSize,unsigned StoreAlignment,Value * StoredVal,Instruction * TheStore,const SCEVAddRecExpr * Ev,const SCEV * BECount)944 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
945                         unsigned StoreAlignment, Value *StoredVal,
946                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
947                         const SCEV *BECount) {
948 
949   // If the stored value is a byte-wise value (like i32 -1), then it may be
950   // turned into a memset of i8 -1, assuming that all the consecutive bytes
951   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
952   // but it can be turned into memset_pattern if the target supports it.
953   Value *SplatValue = isBytewiseValue(StoredVal);
954   Constant *PatternValue = 0;
955 
956   // If we're allowed to form a memset, and the stored value would be acceptable
957   // for memset, use it.
958   if (SplatValue && TLI->has(LibFunc::memset) &&
959       // Verify that the stored value is loop invariant.  If not, we can't
960       // promote the memset.
961       CurLoop->isLoopInvariant(SplatValue)) {
962     // Keep and use SplatValue.
963     PatternValue = 0;
964   } else if (TLI->has(LibFunc::memset_pattern16) &&
965              (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
966     // It looks like we can use PatternValue!
967     SplatValue = 0;
968   } else {
969     // Otherwise, this isn't an idiom we can transform.  For example, we can't
970     // do anything with a 3-byte store.
971     return false;
972   }
973 
974   // The trip count of the loop and the base pointer of the addrec SCEV is
975   // guaranteed to be loop invariant, which means that it should dominate the
976   // header.  This allows us to insert code for it in the preheader.
977   BasicBlock *Preheader = CurLoop->getLoopPreheader();
978   IRBuilder<> Builder(Preheader->getTerminator());
979   SCEVExpander Expander(*SE, "loop-idiom");
980 
981   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
982   // this into a memset in the loop preheader now if we want.  However, this
983   // would be unsafe to do if there is anything else in the loop that may read
984   // or write to the aliased location.  Check for any overlap by generating the
985   // base pointer and checking the region.
986   unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
987   Value *BasePtr =
988     Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
989                            Preheader->getTerminator());
990 
991 
992   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
993                             CurLoop, BECount,
994                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
995     Expander.clear();
996     // If we generated new code for the base pointer, clean up.
997     deleteIfDeadInstruction(BasePtr, *SE, TLI);
998     return false;
999   }
1000 
1001   // Okay, everything looks good, insert the memset.
1002 
1003   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1004   // pointer size if it isn't already.
1005   Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
1006   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1007 
1008   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1009                                          SCEV::FlagNUW);
1010   if (StoreSize != 1)
1011     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1012                                SCEV::FlagNUW);
1013 
1014   Value *NumBytes =
1015     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1016 
1017   CallInst *NewCall;
1018   if (SplatValue)
1019     NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
1020   else {
1021     Module *M = TheStore->getParent()->getParent()->getParent();
1022     Value *MSP = M->getOrInsertFunction("memset_pattern16",
1023                                         Builder.getVoidTy(),
1024                                         Builder.getInt8PtrTy(),
1025                                         Builder.getInt8PtrTy(), IntPtr,
1026                                         (void*)0);
1027 
1028     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1029     // an constant array of 16-bytes.  Plop the value into a mergable global.
1030     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1031                                             GlobalValue::InternalLinkage,
1032                                             PatternValue, ".memset_pattern");
1033     GV->setUnnamedAddr(true); // Ok to merge these.
1034     GV->setAlignment(16);
1035     Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
1036     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
1037   }
1038 
1039   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1040                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
1041   NewCall->setDebugLoc(TheStore->getDebugLoc());
1042 
1043   // Okay, the memset has been formed.  Zap the original store and anything that
1044   // feeds into it.
1045   deleteDeadInstruction(TheStore, *SE, TLI);
1046   ++NumMemSet;
1047   return true;
1048 }
1049 
1050 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
1051 /// same-strided load.
1052 bool LoopIdiomRecognize::
processLoopStoreOfLoopLoad(StoreInst * SI,unsigned StoreSize,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)1053 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
1054                            const SCEVAddRecExpr *StoreEv,
1055                            const SCEVAddRecExpr *LoadEv,
1056                            const SCEV *BECount) {
1057   // If we're not allowed to form memcpy, we fail.
1058   if (!TLI->has(LibFunc::memcpy))
1059     return false;
1060 
1061   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1062 
1063   // The trip count of the loop and the base pointer of the addrec SCEV is
1064   // guaranteed to be loop invariant, which means that it should dominate the
1065   // header.  This allows us to insert code for it in the preheader.
1066   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1067   IRBuilder<> Builder(Preheader->getTerminator());
1068   SCEVExpander Expander(*SE, "loop-idiom");
1069 
1070   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1071   // this into a memcpy in the loop preheader now if we want.  However, this
1072   // would be unsafe to do if there is anything else in the loop that may read
1073   // or write the memory region we're storing to.  This includes the load that
1074   // feeds the stores.  Check for an alias by generating the base address and
1075   // checking everything.
1076   Value *StoreBasePtr =
1077     Expander.expandCodeFor(StoreEv->getStart(),
1078                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
1079                            Preheader->getTerminator());
1080 
1081   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
1082                             CurLoop, BECount, StoreSize,
1083                             getAnalysis<AliasAnalysis>(), SI)) {
1084     Expander.clear();
1085     // If we generated new code for the base pointer, clean up.
1086     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1087     return false;
1088   }
1089 
1090   // For a memcpy, we have to make sure that the input array is not being
1091   // mutated by the loop.
1092   Value *LoadBasePtr =
1093     Expander.expandCodeFor(LoadEv->getStart(),
1094                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
1095                            Preheader->getTerminator());
1096 
1097   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
1098                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
1099     Expander.clear();
1100     // If we generated new code for the base pointer, clean up.
1101     deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
1102     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1103     return false;
1104   }
1105 
1106   // Okay, everything is safe, we can transform this!
1107 
1108 
1109   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1110   // pointer size if it isn't already.
1111   Type *IntPtr = TD->getIntPtrType(SI->getContext());
1112   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1113 
1114   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1115                                          SCEV::FlagNUW);
1116   if (StoreSize != 1)
1117     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1118                                SCEV::FlagNUW);
1119 
1120   Value *NumBytes =
1121     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1122 
1123   CallInst *NewCall =
1124     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
1125                          std::min(SI->getAlignment(), LI->getAlignment()));
1126   NewCall->setDebugLoc(SI->getDebugLoc());
1127 
1128   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1129                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1130                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1131 
1132 
1133   // Okay, the memset has been formed.  Zap the original store and anything that
1134   // feeds into it.
1135   deleteDeadInstruction(SI, *SE, TLI);
1136   ++NumMemCpy;
1137   return true;
1138 }
1139