1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
12 //
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/CodeMetrics.h"
35 #include "llvm/Analysis/Dominators.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include <algorithm>
52 #include <map>
53 #include <set>
54 using namespace llvm;
55
56 STATISTIC(NumBranches, "Number of branches unswitched");
57 STATISTIC(NumSwitches, "Number of switches unswitched");
58 STATISTIC(NumSelects , "Number of selects unswitched");
59 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
60 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
61 STATISTIC(TotalInsts, "Total number of instructions analyzed");
62
63 // The specific value of 100 here was chosen based only on intuition and a
64 // few specific examples.
65 static cl::opt<unsigned>
66 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
67 cl::init(100), cl::Hidden);
68
69 namespace {
70
71 class LUAnalysisCache {
72
73 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
74 UnswitchedValsMap;
75
76 typedef UnswitchedValsMap::iterator UnswitchedValsIt;
77
78 struct LoopProperties {
79 unsigned CanBeUnswitchedCount;
80 unsigned SizeEstimation;
81 UnswitchedValsMap UnswitchedVals;
82 };
83
84 // Here we use std::map instead of DenseMap, since we need to keep valid
85 // LoopProperties pointer for current loop for better performance.
86 typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
87 typedef LoopPropsMap::iterator LoopPropsMapIt;
88
89 LoopPropsMap LoopsProperties;
90 UnswitchedValsMap* CurLoopInstructions;
91 LoopProperties* CurrentLoopProperties;
92
93 // Max size of code we can produce on remained iterations.
94 unsigned MaxSize;
95
96 public:
97
LUAnalysisCache()98 LUAnalysisCache() :
99 CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
100 MaxSize(Threshold)
101 {}
102
103 // Analyze loop. Check its size, calculate is it possible to unswitch
104 // it. Returns true if we can unswitch this loop.
105 bool countLoop(const Loop* L, const TargetTransformInfo &TTI);
106
107 // Clean all data related to given loop.
108 void forgetLoop(const Loop* L);
109
110 // Mark case value as unswitched.
111 // Since SI instruction can be partly unswitched, in order to avoid
112 // extra unswitching in cloned loops keep track all unswitched values.
113 void setUnswitched(const SwitchInst* SI, const Value* V);
114
115 // Check was this case value unswitched before or not.
116 bool isUnswitched(const SwitchInst* SI, const Value* V);
117
118 // Clone all loop-unswitch related loop properties.
119 // Redistribute unswitching quotas.
120 // Note, that new loop data is stored inside the VMap.
121 void cloneData(const Loop* NewLoop, const Loop* OldLoop,
122 const ValueToValueMapTy& VMap);
123 };
124
125 class LoopUnswitch : public LoopPass {
126 LoopInfo *LI; // Loop information
127 LPPassManager *LPM;
128
129 // LoopProcessWorklist - Used to check if second loop needs processing
130 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
131 std::vector<Loop*> LoopProcessWorklist;
132
133 LUAnalysisCache BranchesInfo;
134
135 bool OptimizeForSize;
136 bool redoLoop;
137
138 Loop *currentLoop;
139 DominatorTree *DT;
140 BasicBlock *loopHeader;
141 BasicBlock *loopPreheader;
142
143 // LoopBlocks contains all of the basic blocks of the loop, including the
144 // preheader of the loop, the body of the loop, and the exit blocks of the
145 // loop, in that order.
146 std::vector<BasicBlock*> LoopBlocks;
147 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
148 std::vector<BasicBlock*> NewBlocks;
149
150 public:
151 static char ID; // Pass ID, replacement for typeid
LoopUnswitch(bool Os=false)152 explicit LoopUnswitch(bool Os = false) :
153 LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
154 currentLoop(NULL), DT(NULL), loopHeader(NULL),
155 loopPreheader(NULL) {
156 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
157 }
158
159 bool runOnLoop(Loop *L, LPPassManager &LPM);
160 bool processCurrentLoop();
161
162 /// This transformation requires natural loop information & requires that
163 /// loop preheaders be inserted into the CFG.
164 ///
getAnalysisUsage(AnalysisUsage & AU) const165 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
166 AU.addRequiredID(LoopSimplifyID);
167 AU.addPreservedID(LoopSimplifyID);
168 AU.addRequired<LoopInfo>();
169 AU.addPreserved<LoopInfo>();
170 AU.addRequiredID(LCSSAID);
171 AU.addPreservedID(LCSSAID);
172 AU.addPreserved<DominatorTree>();
173 AU.addPreserved<ScalarEvolution>();
174 AU.addRequired<TargetTransformInfo>();
175 }
176
177 private:
178
releaseMemory()179 virtual void releaseMemory() {
180 BranchesInfo.forgetLoop(currentLoop);
181 }
182
183 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
184 /// remove it.
RemoveLoopFromWorklist(Loop * L)185 void RemoveLoopFromWorklist(Loop *L) {
186 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
187 LoopProcessWorklist.end(), L);
188 if (I != LoopProcessWorklist.end())
189 LoopProcessWorklist.erase(I);
190 }
191
initLoopData()192 void initLoopData() {
193 loopHeader = currentLoop->getHeader();
194 loopPreheader = currentLoop->getLoopPreheader();
195 }
196
197 /// Split all of the edges from inside the loop to their exit blocks.
198 /// Update the appropriate Phi nodes as we do so.
199 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
200
201 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
202 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
203 BasicBlock *ExitBlock);
204 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
205
206 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
207 Constant *Val, bool isEqual);
208
209 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
210 BasicBlock *TrueDest,
211 BasicBlock *FalseDest,
212 Instruction *InsertPt);
213
214 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
215 void RemoveBlockIfDead(BasicBlock *BB,
216 std::vector<Instruction*> &Worklist, Loop *l);
217 void RemoveLoopFromHierarchy(Loop *L);
218 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
219 BasicBlock **LoopExit = 0);
220
221 };
222 }
223
224 // Analyze loop. Check its size, calculate is it possible to unswitch
225 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI)226 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
227
228 std::pair<LoopPropsMapIt, bool> InsertRes =
229 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
230
231 LoopProperties& Props = InsertRes.first->second;
232
233 if (InsertRes.second) {
234 // New loop.
235
236 // Limit the number of instructions to avoid causing significant code
237 // expansion, and the number of basic blocks, to avoid loops with
238 // large numbers of branches which cause loop unswitching to go crazy.
239 // This is a very ad-hoc heuristic.
240
241 // FIXME: This is overly conservative because it does not take into
242 // consideration code simplification opportunities and code that can
243 // be shared by the resultant unswitched loops.
244 CodeMetrics Metrics;
245 for (Loop::block_iterator I = L->block_begin(),
246 E = L->block_end();
247 I != E; ++I)
248 Metrics.analyzeBasicBlock(*I, TTI);
249
250 Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
251 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
252 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
253
254 if (Metrics.notDuplicatable) {
255 DEBUG(dbgs() << "NOT unswitching loop %"
256 << L->getHeader()->getName() << ", contents cannot be "
257 << "duplicated!\n");
258 return false;
259 }
260 }
261
262 if (!Props.CanBeUnswitchedCount) {
263 DEBUG(dbgs() << "NOT unswitching loop %"
264 << L->getHeader()->getName() << ", cost too high: "
265 << L->getBlocks().size() << "\n");
266
267 return false;
268 }
269
270 // Be careful. This links are good only before new loop addition.
271 CurrentLoopProperties = &Props;
272 CurLoopInstructions = &Props.UnswitchedVals;
273
274 return true;
275 }
276
277 // Clean all data related to given loop.
forgetLoop(const Loop * L)278 void LUAnalysisCache::forgetLoop(const Loop* L) {
279
280 LoopPropsMapIt LIt = LoopsProperties.find(L);
281
282 if (LIt != LoopsProperties.end()) {
283 LoopProperties& Props = LIt->second;
284 MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
285 LoopsProperties.erase(LIt);
286 }
287
288 CurrentLoopProperties = NULL;
289 CurLoopInstructions = NULL;
290 }
291
292 // Mark case value as unswitched.
293 // Since SI instruction can be partly unswitched, in order to avoid
294 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)295 void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
296 (*CurLoopInstructions)[SI].insert(V);
297 }
298
299 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)300 bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
301 return (*CurLoopInstructions)[SI].count(V);
302 }
303
304 // Clone all loop-unswitch related loop properties.
305 // Redistribute unswitching quotas.
306 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)307 void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
308 const ValueToValueMapTy& VMap) {
309
310 LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
311 LoopProperties& OldLoopProps = *CurrentLoopProperties;
312 UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;
313
314 // Reallocate "can-be-unswitched quota"
315
316 --OldLoopProps.CanBeUnswitchedCount;
317 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
318 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
319 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
320
321 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
322
323 // Clone unswitched values info:
324 // for new loop switches we clone info about values that was
325 // already unswitched and has redundant successors.
326 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
327 const SwitchInst* OldInst = I->first;
328 Value* NewI = VMap.lookup(OldInst);
329 const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
330 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
331
332 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
333 }
334 }
335
336 char LoopUnswitch::ID = 0;
337 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
338 false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)339 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
340 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
341 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
342 INITIALIZE_PASS_DEPENDENCY(LCSSA)
343 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
344 false, false)
345
346 Pass *llvm::createLoopUnswitchPass(bool Os) {
347 return new LoopUnswitch(Os);
348 }
349
350 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
351 /// invariant in the loop, or has an invariant piece, return the invariant.
352 /// Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)353 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
354
355 // We started analyze new instruction, increment scanned instructions counter.
356 ++TotalInsts;
357
358 // We can never unswitch on vector conditions.
359 if (Cond->getType()->isVectorTy())
360 return 0;
361
362 // Constants should be folded, not unswitched on!
363 if (isa<Constant>(Cond)) return 0;
364
365 // TODO: Handle: br (VARIANT|INVARIANT).
366
367 // Hoist simple values out.
368 if (L->makeLoopInvariant(Cond, Changed))
369 return Cond;
370
371 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
372 if (BO->getOpcode() == Instruction::And ||
373 BO->getOpcode() == Instruction::Or) {
374 // If either the left or right side is invariant, we can unswitch on this,
375 // which will cause the branch to go away in one loop and the condition to
376 // simplify in the other one.
377 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
378 return LHS;
379 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
380 return RHS;
381 }
382
383 return 0;
384 }
385
runOnLoop(Loop * L,LPPassManager & LPM_Ref)386 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
387 LI = &getAnalysis<LoopInfo>();
388 LPM = &LPM_Ref;
389 DT = getAnalysisIfAvailable<DominatorTree>();
390 currentLoop = L;
391 Function *F = currentLoop->getHeader()->getParent();
392 bool Changed = false;
393 do {
394 assert(currentLoop->isLCSSAForm(*DT));
395 redoLoop = false;
396 Changed |= processCurrentLoop();
397 } while(redoLoop);
398
399 if (Changed) {
400 // FIXME: Reconstruct dom info, because it is not preserved properly.
401 if (DT)
402 DT->runOnFunction(*F);
403 }
404 return Changed;
405 }
406
407 /// processCurrentLoop - Do actual work and unswitch loop if possible
408 /// and profitable.
processCurrentLoop()409 bool LoopUnswitch::processCurrentLoop() {
410 bool Changed = false;
411
412 initLoopData();
413
414 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
415 if (!loopPreheader)
416 return false;
417
418 // Loops with indirectbr cannot be cloned.
419 if (!currentLoop->isSafeToClone())
420 return false;
421
422 // Without dedicated exits, splitting the exit edge may fail.
423 if (!currentLoop->hasDedicatedExits())
424 return false;
425
426 LLVMContext &Context = loopHeader->getContext();
427
428 // Probably we reach the quota of branches for this loop. If so
429 // stop unswitching.
430 if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
431 return false;
432
433 // Loop over all of the basic blocks in the loop. If we find an interior
434 // block that is branching on a loop-invariant condition, we can unswitch this
435 // loop.
436 for (Loop::block_iterator I = currentLoop->block_begin(),
437 E = currentLoop->block_end(); I != E; ++I) {
438 TerminatorInst *TI = (*I)->getTerminator();
439 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
440 // If this isn't branching on an invariant condition, we can't unswitch
441 // it.
442 if (BI->isConditional()) {
443 // See if this, or some part of it, is loop invariant. If so, we can
444 // unswitch on it if we desire.
445 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
446 currentLoop, Changed);
447 if (LoopCond && UnswitchIfProfitable(LoopCond,
448 ConstantInt::getTrue(Context))) {
449 ++NumBranches;
450 return true;
451 }
452 }
453 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
454 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
455 currentLoop, Changed);
456 unsigned NumCases = SI->getNumCases();
457 if (LoopCond && NumCases) {
458 // Find a value to unswitch on:
459 // FIXME: this should chose the most expensive case!
460 // FIXME: scan for a case with a non-critical edge?
461 Constant *UnswitchVal = NULL;
462
463 // Do not process same value again and again.
464 // At this point we have some cases already unswitched and
465 // some not yet unswitched. Let's find the first not yet unswitched one.
466 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
467 i != e; ++i) {
468 Constant* UnswitchValCandidate = i.getCaseValue();
469 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
470 UnswitchVal = UnswitchValCandidate;
471 break;
472 }
473 }
474
475 if (!UnswitchVal)
476 continue;
477
478 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
479 ++NumSwitches;
480 return true;
481 }
482 }
483 }
484
485 // Scan the instructions to check for unswitchable values.
486 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
487 BBI != E; ++BBI)
488 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
489 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
490 currentLoop, Changed);
491 if (LoopCond && UnswitchIfProfitable(LoopCond,
492 ConstantInt::getTrue(Context))) {
493 ++NumSelects;
494 return true;
495 }
496 }
497 }
498 return Changed;
499 }
500
501 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
502 /// loop with no side effects (including infinite loops).
503 ///
504 /// If true, we return true and set ExitBB to the block we
505 /// exit through.
506 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)507 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
508 BasicBlock *&ExitBB,
509 std::set<BasicBlock*> &Visited) {
510 if (!Visited.insert(BB).second) {
511 // Already visited. Without more analysis, this could indicate an infinite
512 // loop.
513 return false;
514 } else if (!L->contains(BB)) {
515 // Otherwise, this is a loop exit, this is fine so long as this is the
516 // first exit.
517 if (ExitBB != 0) return false;
518 ExitBB = BB;
519 return true;
520 }
521
522 // Otherwise, this is an unvisited intra-loop node. Check all successors.
523 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
524 // Check to see if the successor is a trivial loop exit.
525 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
526 return false;
527 }
528
529 // Okay, everything after this looks good, check to make sure that this block
530 // doesn't include any side effects.
531 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
532 if (I->mayHaveSideEffects())
533 return false;
534
535 return true;
536 }
537
538 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
539 /// leads to an exit from the specified loop, and has no side-effects in the
540 /// process. If so, return the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)541 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
542 std::set<BasicBlock*> Visited;
543 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
544 BasicBlock *ExitBB = 0;
545 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
546 return ExitBB;
547 return 0;
548 }
549
550 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
551 /// trivial: that is, that the condition controls whether or not the loop does
552 /// anything at all. If this is a trivial condition, unswitching produces no
553 /// code duplications (equivalently, it produces a simpler loop and a new empty
554 /// loop, which gets deleted).
555 ///
556 /// If this is a trivial condition, return true, otherwise return false. When
557 /// returning true, this sets Cond and Val to the condition that controls the
558 /// trivial condition: when Cond dynamically equals Val, the loop is known to
559 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
560 /// Cond == Val.
561 ///
IsTrivialUnswitchCondition(Value * Cond,Constant ** Val,BasicBlock ** LoopExit)562 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
563 BasicBlock **LoopExit) {
564 BasicBlock *Header = currentLoop->getHeader();
565 TerminatorInst *HeaderTerm = Header->getTerminator();
566 LLVMContext &Context = Header->getContext();
567
568 BasicBlock *LoopExitBB = 0;
569 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
570 // If the header block doesn't end with a conditional branch on Cond, we
571 // can't handle it.
572 if (!BI->isConditional() || BI->getCondition() != Cond)
573 return false;
574
575 // Check to see if a successor of the branch is guaranteed to
576 // exit through a unique exit block without having any
577 // side-effects. If so, determine the value of Cond that causes it to do
578 // this.
579 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
580 BI->getSuccessor(0)))) {
581 if (Val) *Val = ConstantInt::getTrue(Context);
582 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
583 BI->getSuccessor(1)))) {
584 if (Val) *Val = ConstantInt::getFalse(Context);
585 }
586 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
587 // If this isn't a switch on Cond, we can't handle it.
588 if (SI->getCondition() != Cond) return false;
589
590 // Check to see if a successor of the switch is guaranteed to go to the
591 // latch block or exit through a one exit block without having any
592 // side-effects. If so, determine the value of Cond that causes it to do
593 // this.
594 // Note that we can't trivially unswitch on the default case or
595 // on already unswitched cases.
596 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
597 i != e; ++i) {
598 BasicBlock* LoopExitCandidate;
599 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
600 i.getCaseSuccessor()))) {
601 // Okay, we found a trivial case, remember the value that is trivial.
602 ConstantInt* CaseVal = i.getCaseValue();
603
604 // Check that it was not unswitched before, since already unswitched
605 // trivial vals are looks trivial too.
606 if (BranchesInfo.isUnswitched(SI, CaseVal))
607 continue;
608 LoopExitBB = LoopExitCandidate;
609 if (Val) *Val = CaseVal;
610 break;
611 }
612 }
613 }
614
615 // If we didn't find a single unique LoopExit block, or if the loop exit block
616 // contains phi nodes, this isn't trivial.
617 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
618 return false; // Can't handle this.
619
620 if (LoopExit) *LoopExit = LoopExitBB;
621
622 // We already know that nothing uses any scalar values defined inside of this
623 // loop. As such, we just have to check to see if this loop will execute any
624 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
625 // part of the loop that the code *would* execute. We already checked the
626 // tail, check the header now.
627 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
628 if (I->mayHaveSideEffects())
629 return false;
630 return true;
631 }
632
633 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
634 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
635 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val)636 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
637 Function *F = loopHeader->getParent();
638 Constant *CondVal = 0;
639 BasicBlock *ExitBlock = 0;
640
641 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
642 // If the condition is trivial, always unswitch. There is no code growth
643 // for this case.
644 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
645 return true;
646 }
647
648 // Check to see if it would be profitable to unswitch current loop.
649
650 // Do not do non-trivial unswitch while optimizing for size.
651 if (OptimizeForSize ||
652 F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
653 Attribute::OptimizeForSize))
654 return false;
655
656 UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
657 return true;
658 }
659
660 /// CloneLoop - Recursively clone the specified loop and all of its children,
661 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)662 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
663 LoopInfo *LI, LPPassManager *LPM) {
664 Loop *New = new Loop();
665 LPM->insertLoop(New, PL);
666
667 // Add all of the blocks in L to the new loop.
668 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
669 I != E; ++I)
670 if (LI->getLoopFor(*I) == L)
671 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
672
673 // Add all of the subloops to the new loop.
674 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
675 CloneLoop(*I, New, VM, LI, LPM);
676
677 return New;
678 }
679
680 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
681 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
682 /// code immediately before InsertPt.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,Instruction * InsertPt)683 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
684 BasicBlock *TrueDest,
685 BasicBlock *FalseDest,
686 Instruction *InsertPt) {
687 // Insert a conditional branch on LIC to the two preheaders. The original
688 // code is the true version and the new code is the false version.
689 Value *BranchVal = LIC;
690 if (!isa<ConstantInt>(Val) ||
691 Val->getType() != Type::getInt1Ty(LIC->getContext()))
692 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
693 else if (Val != ConstantInt::getTrue(Val->getContext()))
694 // We want to enter the new loop when the condition is true.
695 std::swap(TrueDest, FalseDest);
696
697 // Insert the new branch.
698 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
699
700 // If either edge is critical, split it. This helps preserve LoopSimplify
701 // form for enclosing loops.
702 SplitCriticalEdge(BI, 0, this, false, false, true);
703 SplitCriticalEdge(BI, 1, this, false, false, true);
704 }
705
706 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
707 /// condition in it (a cond branch from its header block to its latch block,
708 /// where the path through the loop that doesn't execute its body has no
709 /// side-effects), unswitch it. This doesn't involve any code duplication, just
710 /// moving the conditional branch outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock)711 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
712 Constant *Val,
713 BasicBlock *ExitBlock) {
714 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
715 << loopHeader->getName() << " [" << L->getBlocks().size()
716 << " blocks] in Function " << L->getHeader()->getParent()->getName()
717 << " on cond: " << *Val << " == " << *Cond << "\n");
718
719 // First step, split the preheader, so that we know that there is a safe place
720 // to insert the conditional branch. We will change loopPreheader to have a
721 // conditional branch on Cond.
722 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
723
724 // Now that we have a place to insert the conditional branch, create a place
725 // to branch to: this is the exit block out of the loop that we should
726 // short-circuit to.
727
728 // Split this block now, so that the loop maintains its exit block, and so
729 // that the jump from the preheader can execute the contents of the exit block
730 // without actually branching to it (the exit block should be dominated by the
731 // loop header, not the preheader).
732 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
733 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
734
735 // Okay, now we have a position to branch from and a position to branch to,
736 // insert the new conditional branch.
737 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
738 loopPreheader->getTerminator());
739 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
740 loopPreheader->getTerminator()->eraseFromParent();
741
742 // We need to reprocess this loop, it could be unswitched again.
743 redoLoop = true;
744
745 // Now that we know that the loop is never entered when this condition is a
746 // particular value, rewrite the loop with this info. We know that this will
747 // at least eliminate the old branch.
748 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
749 ++NumTrivial;
750 }
751
752 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
753 /// blocks. Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVector<BasicBlock *,8> & ExitBlocks)754 void LoopUnswitch::SplitExitEdges(Loop *L,
755 const SmallVector<BasicBlock *, 8> &ExitBlocks){
756
757 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
758 BasicBlock *ExitBlock = ExitBlocks[i];
759 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
760 pred_end(ExitBlock));
761
762 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
763 // general, if we call it on all predecessors of all exits then it does.
764 if (!ExitBlock->isLandingPad()) {
765 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
766 } else {
767 SmallVector<BasicBlock*, 2> NewBBs;
768 SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
769 this, NewBBs);
770 }
771 }
772 }
773
774 /// UnswitchNontrivialCondition - We determined that the loop is profitable
775 /// to unswitch when LIC equal Val. Split it into loop versions and test the
776 /// condition outside of either loop. Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L)777 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
778 Loop *L) {
779 Function *F = loopHeader->getParent();
780 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
781 << loopHeader->getName() << " [" << L->getBlocks().size()
782 << " blocks] in Function " << F->getName()
783 << " when '" << *Val << "' == " << *LIC << "\n");
784
785 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
786 SE->forgetLoop(L);
787
788 LoopBlocks.clear();
789 NewBlocks.clear();
790
791 // First step, split the preheader and exit blocks, and add these blocks to
792 // the LoopBlocks list.
793 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
794 LoopBlocks.push_back(NewPreheader);
795
796 // We want the loop to come after the preheader, but before the exit blocks.
797 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
798
799 SmallVector<BasicBlock*, 8> ExitBlocks;
800 L->getUniqueExitBlocks(ExitBlocks);
801
802 // Split all of the edges from inside the loop to their exit blocks. Update
803 // the appropriate Phi nodes as we do so.
804 SplitExitEdges(L, ExitBlocks);
805
806 // The exit blocks may have been changed due to edge splitting, recompute.
807 ExitBlocks.clear();
808 L->getUniqueExitBlocks(ExitBlocks);
809
810 // Add exit blocks to the loop blocks.
811 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
812
813 // Next step, clone all of the basic blocks that make up the loop (including
814 // the loop preheader and exit blocks), keeping track of the mapping between
815 // the instructions and blocks.
816 NewBlocks.reserve(LoopBlocks.size());
817 ValueToValueMapTy VMap;
818 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
819 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
820
821 NewBlocks.push_back(NewBB);
822 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
823 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
824 }
825
826 // Splice the newly inserted blocks into the function right before the
827 // original preheader.
828 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
829 NewBlocks[0], F->end());
830
831 // Now we create the new Loop object for the versioned loop.
832 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
833
834 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
835 // Probably clone more loop-unswitch related loop properties.
836 BranchesInfo.cloneData(NewLoop, L, VMap);
837
838 Loop *ParentLoop = L->getParentLoop();
839 if (ParentLoop) {
840 // Make sure to add the cloned preheader and exit blocks to the parent loop
841 // as well.
842 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
843 }
844
845 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
846 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
847 // The new exit block should be in the same loop as the old one.
848 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
849 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
850
851 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
852 "Exit block should have been split to have one successor!");
853 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
854
855 // If the successor of the exit block had PHI nodes, add an entry for
856 // NewExit.
857 PHINode *PN;
858 for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
859 PN = cast<PHINode>(I);
860 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
861 ValueToValueMapTy::iterator It = VMap.find(V);
862 if (It != VMap.end()) V = It->second;
863 PN->addIncoming(V, NewExit);
864 }
865
866 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
867 PN = PHINode::Create(LPad->getType(), 0, "",
868 ExitSucc->getFirstInsertionPt());
869
870 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
871 I != E; ++I) {
872 BasicBlock *BB = *I;
873 LandingPadInst *LPI = BB->getLandingPadInst();
874 LPI->replaceAllUsesWith(PN);
875 PN->addIncoming(LPI, BB);
876 }
877 }
878 }
879
880 // Rewrite the code to refer to itself.
881 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
882 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
883 E = NewBlocks[i]->end(); I != E; ++I)
884 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
885
886 // Rewrite the original preheader to select between versions of the loop.
887 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
888 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
889 "Preheader splitting did not work correctly!");
890
891 // Emit the new branch that selects between the two versions of this loop.
892 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
893 LPM->deleteSimpleAnalysisValue(OldBR, L);
894 OldBR->eraseFromParent();
895
896 LoopProcessWorklist.push_back(NewLoop);
897 redoLoop = true;
898
899 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
900 // deletes the instruction (for example by simplifying a PHI that feeds into
901 // the condition that we're unswitching on), we don't rewrite the second
902 // iteration.
903 WeakVH LICHandle(LIC);
904
905 // Now we rewrite the original code to know that the condition is true and the
906 // new code to know that the condition is false.
907 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
908
909 // It's possible that simplifying one loop could cause the other to be
910 // changed to another value or a constant. If its a constant, don't simplify
911 // it.
912 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
913 LICHandle && !isa<Constant>(LICHandle))
914 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
915 }
916
917 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
918 /// specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)919 static void RemoveFromWorklist(Instruction *I,
920 std::vector<Instruction*> &Worklist) {
921
922 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
923 Worklist.end());
924 }
925
926 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
927 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)928 static void ReplaceUsesOfWith(Instruction *I, Value *V,
929 std::vector<Instruction*> &Worklist,
930 Loop *L, LPPassManager *LPM) {
931 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
932
933 // Add uses to the worklist, which may be dead now.
934 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
935 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
936 Worklist.push_back(Use);
937
938 // Add users to the worklist which may be simplified now.
939 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
940 UI != E; ++UI)
941 Worklist.push_back(cast<Instruction>(*UI));
942 LPM->deleteSimpleAnalysisValue(I, L);
943 RemoveFromWorklist(I, Worklist);
944 I->replaceAllUsesWith(V);
945 I->eraseFromParent();
946 ++NumSimplify;
947 }
948
949 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
950 /// information, and remove any dead successors it has.
951 ///
RemoveBlockIfDead(BasicBlock * BB,std::vector<Instruction * > & Worklist,Loop * L)952 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
953 std::vector<Instruction*> &Worklist,
954 Loop *L) {
955 if (pred_begin(BB) != pred_end(BB)) {
956 // This block isn't dead, since an edge to BB was just removed, see if there
957 // are any easy simplifications we can do now.
958 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
959 // If it has one pred, fold phi nodes in BB.
960 while (isa<PHINode>(BB->begin()))
961 ReplaceUsesOfWith(BB->begin(),
962 cast<PHINode>(BB->begin())->getIncomingValue(0),
963 Worklist, L, LPM);
964
965 // If this is the header of a loop and the only pred is the latch, we now
966 // have an unreachable loop.
967 if (Loop *L = LI->getLoopFor(BB))
968 if (loopHeader == BB && L->contains(Pred)) {
969 // Remove the branch from the latch to the header block, this makes
970 // the header dead, which will make the latch dead (because the header
971 // dominates the latch).
972 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
973 Pred->getTerminator()->eraseFromParent();
974 new UnreachableInst(BB->getContext(), Pred);
975
976 // The loop is now broken, remove it from LI.
977 RemoveLoopFromHierarchy(L);
978
979 // Reprocess the header, which now IS dead.
980 RemoveBlockIfDead(BB, Worklist, L);
981 return;
982 }
983
984 // If pred ends in a uncond branch, add uncond branch to worklist so that
985 // the two blocks will get merged.
986 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
987 if (BI->isUnconditional())
988 Worklist.push_back(BI);
989 }
990 return;
991 }
992
993 DEBUG(dbgs() << "Nuking dead block: " << *BB);
994
995 // Remove the instructions in the basic block from the worklist.
996 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
997 RemoveFromWorklist(I, Worklist);
998
999 // Anything that uses the instructions in this basic block should have their
1000 // uses replaced with undefs.
1001 // If I is not void type then replaceAllUsesWith undef.
1002 // This allows ValueHandlers and custom metadata to adjust itself.
1003 if (!I->getType()->isVoidTy())
1004 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1005 }
1006
1007 // If this is the edge to the header block for a loop, remove the loop and
1008 // promote all subloops.
1009 if (Loop *BBLoop = LI->getLoopFor(BB)) {
1010 if (BBLoop->getLoopLatch() == BB) {
1011 RemoveLoopFromHierarchy(BBLoop);
1012 if (currentLoop == BBLoop) {
1013 currentLoop = 0;
1014 redoLoop = false;
1015 }
1016 }
1017 }
1018
1019 // Remove the block from the loop info, which removes it from any loops it
1020 // was in.
1021 LI->removeBlock(BB);
1022
1023
1024 // Remove phi node entries in successors for this block.
1025 TerminatorInst *TI = BB->getTerminator();
1026 SmallVector<BasicBlock*, 4> Succs;
1027 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1028 Succs.push_back(TI->getSuccessor(i));
1029 TI->getSuccessor(i)->removePredecessor(BB);
1030 }
1031
1032 // Unique the successors, remove anything with multiple uses.
1033 array_pod_sort(Succs.begin(), Succs.end());
1034 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1035
1036 // Remove the basic block, including all of the instructions contained in it.
1037 LPM->deleteSimpleAnalysisValue(BB, L);
1038 BB->eraseFromParent();
1039 // Remove successor blocks here that are not dead, so that we know we only
1040 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
1041 // then getting removed before we revisit them, which is badness.
1042 //
1043 for (unsigned i = 0; i != Succs.size(); ++i)
1044 if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1045 // One exception is loop headers. If this block was the preheader for a
1046 // loop, then we DO want to visit the loop so the loop gets deleted.
1047 // We know that if the successor is a loop header, that this loop had to
1048 // be the preheader: the case where this was the latch block was handled
1049 // above and headers can only have two predecessors.
1050 if (!LI->isLoopHeader(Succs[i])) {
1051 Succs.erase(Succs.begin()+i);
1052 --i;
1053 }
1054 }
1055
1056 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1057 RemoveBlockIfDead(Succs[i], Worklist, L);
1058 }
1059
1060 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1061 /// become unwrapped, either because the backedge was deleted, or because the
1062 /// edge into the header was removed. If the edge into the header from the
1063 /// latch block was removed, the loop is unwrapped but subloops are still alive,
1064 /// so they just reparent loops. If the loops are actually dead, they will be
1065 /// removed later.
RemoveLoopFromHierarchy(Loop * L)1066 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1067 LPM->deleteLoopFromQueue(L);
1068 RemoveLoopFromWorklist(L);
1069 }
1070
1071 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1072 // the value specified by Val in the specified loop, or we know it does NOT have
1073 // that value. Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1074 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1075 Constant *Val,
1076 bool IsEqual) {
1077 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1078
1079 // FIXME: Support correlated properties, like:
1080 // for (...)
1081 // if (li1 < li2)
1082 // ...
1083 // if (li1 > li2)
1084 // ...
1085
1086 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1087 // selects, switches.
1088 std::vector<Instruction*> Worklist;
1089 LLVMContext &Context = Val->getContext();
1090
1091
1092 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1093 // in the loop with the appropriate one directly.
1094 if (IsEqual || (isa<ConstantInt>(Val) &&
1095 Val->getType()->isIntegerTy(1))) {
1096 Value *Replacement;
1097 if (IsEqual)
1098 Replacement = Val;
1099 else
1100 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1101 !cast<ConstantInt>(Val)->getZExtValue());
1102
1103 for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1104 UI != E; ++UI) {
1105 Instruction *U = dyn_cast<Instruction>(*UI);
1106 if (!U || !L->contains(U))
1107 continue;
1108 Worklist.push_back(U);
1109 }
1110
1111 for (std::vector<Instruction*>::iterator UI = Worklist.begin();
1112 UI != Worklist.end(); ++UI)
1113 (*UI)->replaceUsesOfWith(LIC, Replacement);
1114
1115 SimplifyCode(Worklist, L);
1116 return;
1117 }
1118
1119 // Otherwise, we don't know the precise value of LIC, but we do know that it
1120 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1121 // can. This case occurs when we unswitch switch statements.
1122 for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
1123 UI != E; ++UI) {
1124 Instruction *U = dyn_cast<Instruction>(*UI);
1125 if (!U || !L->contains(U))
1126 continue;
1127
1128 Worklist.push_back(U);
1129
1130 // TODO: We could do other simplifications, for example, turning
1131 // 'icmp eq LIC, Val' -> false.
1132
1133 // If we know that LIC is not Val, use this info to simplify code.
1134 SwitchInst *SI = dyn_cast<SwitchInst>(U);
1135 if (SI == 0 || !isa<ConstantInt>(Val)) continue;
1136
1137 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1138 // Default case is live for multiple values.
1139 if (DeadCase == SI->case_default()) continue;
1140
1141 // Found a dead case value. Don't remove PHI nodes in the
1142 // successor if they become single-entry, those PHI nodes may
1143 // be in the Users list.
1144
1145 BasicBlock *Switch = SI->getParent();
1146 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1147 BasicBlock *Latch = L->getLoopLatch();
1148
1149 BranchesInfo.setUnswitched(SI, Val);
1150
1151 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1152 // If the DeadCase successor dominates the loop latch, then the
1153 // transformation isn't safe since it will delete the sole predecessor edge
1154 // to the latch.
1155 if (Latch && DT->dominates(SISucc, Latch))
1156 continue;
1157
1158 // FIXME: This is a hack. We need to keep the successor around
1159 // and hooked up so as to preserve the loop structure, because
1160 // trying to update it is complicated. So instead we preserve the
1161 // loop structure and put the block on a dead code path.
1162 SplitEdge(Switch, SISucc, this);
1163 // Compute the successors instead of relying on the return value
1164 // of SplitEdge, since it may have split the switch successor
1165 // after PHI nodes.
1166 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1167 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1168 // Create an "unreachable" destination.
1169 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1170 Switch->getParent(),
1171 OldSISucc);
1172 new UnreachableInst(Context, Abort);
1173 // Force the new case destination to branch to the "unreachable"
1174 // block while maintaining a (dead) CFG edge to the old block.
1175 NewSISucc->getTerminator()->eraseFromParent();
1176 BranchInst::Create(Abort, OldSISucc,
1177 ConstantInt::getTrue(Context), NewSISucc);
1178 // Release the PHI operands for this edge.
1179 for (BasicBlock::iterator II = NewSISucc->begin();
1180 PHINode *PN = dyn_cast<PHINode>(II); ++II)
1181 PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1182 UndefValue::get(PN->getType()));
1183 // Tell the domtree about the new block. We don't fully update the
1184 // domtree here -- instead we force it to do a full recomputation
1185 // after the pass is complete -- but we do need to inform it of
1186 // new blocks.
1187 if (DT)
1188 DT->addNewBlock(Abort, NewSISucc);
1189 }
1190
1191 SimplifyCode(Worklist, L);
1192 }
1193
1194 /// SimplifyCode - Okay, now that we have simplified some instructions in the
1195 /// loop, walk over it and constant prop, dce, and fold control flow where
1196 /// possible. Note that this is effectively a very simple loop-structure-aware
1197 /// optimizer. During processing of this loop, L could very well be deleted, so
1198 /// it must not be used.
1199 ///
1200 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1201 /// pass.
1202 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1203 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1204 while (!Worklist.empty()) {
1205 Instruction *I = Worklist.back();
1206 Worklist.pop_back();
1207
1208 // Simple DCE.
1209 if (isInstructionTriviallyDead(I)) {
1210 DEBUG(dbgs() << "Remove dead instruction '" << *I);
1211
1212 // Add uses to the worklist, which may be dead now.
1213 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1214 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1215 Worklist.push_back(Use);
1216 LPM->deleteSimpleAnalysisValue(I, L);
1217 RemoveFromWorklist(I, Worklist);
1218 I->eraseFromParent();
1219 ++NumSimplify;
1220 continue;
1221 }
1222
1223 // See if instruction simplification can hack this up. This is common for
1224 // things like "select false, X, Y" after unswitching made the condition be
1225 // 'false'. TODO: update the domtree properly so we can pass it here.
1226 if (Value *V = SimplifyInstruction(I))
1227 if (LI->replacementPreservesLCSSAForm(I, V)) {
1228 ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1229 continue;
1230 }
1231
1232 // Special case hacks that appear commonly in unswitched code.
1233 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1234 if (BI->isUnconditional()) {
1235 // If BI's parent is the only pred of the successor, fold the two blocks
1236 // together.
1237 BasicBlock *Pred = BI->getParent();
1238 BasicBlock *Succ = BI->getSuccessor(0);
1239 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1240 if (!SinglePred) continue; // Nothing to do.
1241 assert(SinglePred == Pred && "CFG broken");
1242
1243 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1244 << Succ->getName() << "\n");
1245
1246 // Resolve any single entry PHI nodes in Succ.
1247 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1248 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1249
1250 // If Succ has any successors with PHI nodes, update them to have
1251 // entries coming from Pred instead of Succ.
1252 Succ->replaceAllUsesWith(Pred);
1253
1254 // Move all of the successor contents from Succ to Pred.
1255 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1256 Succ->end());
1257 LPM->deleteSimpleAnalysisValue(BI, L);
1258 BI->eraseFromParent();
1259 RemoveFromWorklist(BI, Worklist);
1260
1261 // Remove Succ from the loop tree.
1262 LI->removeBlock(Succ);
1263 LPM->deleteSimpleAnalysisValue(Succ, L);
1264 Succ->eraseFromParent();
1265 ++NumSimplify;
1266 continue;
1267 }
1268
1269 if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1270 // Conditional branch. Turn it into an unconditional branch, then
1271 // remove dead blocks.
1272 continue; // FIXME: Enable.
1273
1274 DEBUG(dbgs() << "Folded branch: " << *BI);
1275 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1276 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1277 DeadSucc->removePredecessor(BI->getParent(), true);
1278 Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1279 LPM->deleteSimpleAnalysisValue(BI, L);
1280 BI->eraseFromParent();
1281 RemoveFromWorklist(BI, Worklist);
1282 ++NumSimplify;
1283
1284 RemoveBlockIfDead(DeadSucc, Worklist, L);
1285 }
1286 continue;
1287 }
1288 }
1289 }
1290