1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/DebugInfo.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Utils/ValueMapper.h"
33 #include <map>
34 using namespace llvm;
35
36 // CloneBasicBlock - See comments in Cloning.h
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo)37 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
38 ValueToValueMapTy &VMap,
39 const Twine &NameSuffix, Function *F,
40 ClonedCodeInfo *CodeInfo) {
41 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
42 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
43
44 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
45
46 // Loop over all instructions, and copy them over.
47 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
48 II != IE; ++II) {
49 Instruction *NewInst = II->clone();
50 if (II->hasName())
51 NewInst->setName(II->getName()+NameSuffix);
52 NewBB->getInstList().push_back(NewInst);
53 VMap[II] = NewInst; // Add instruction map to value.
54
55 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
56 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
57 if (isa<ConstantInt>(AI->getArraySize()))
58 hasStaticAllocas = true;
59 else
60 hasDynamicAllocas = true;
61 }
62 }
63
64 if (CodeInfo) {
65 CodeInfo->ContainsCalls |= hasCalls;
66 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
67 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
68 BB != &BB->getParent()->getEntryBlock();
69 }
70 return NewBB;
71 }
72
73 // Clone OldFunc into NewFunc, transforming the old arguments into references to
74 // VMap values.
75 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper)76 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
77 ValueToValueMapTy &VMap,
78 bool ModuleLevelChanges,
79 SmallVectorImpl<ReturnInst*> &Returns,
80 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
81 ValueMapTypeRemapper *TypeMapper) {
82 assert(NameSuffix && "NameSuffix cannot be null!");
83
84 #ifndef NDEBUG
85 for (Function::const_arg_iterator I = OldFunc->arg_begin(),
86 E = OldFunc->arg_end(); I != E; ++I)
87 assert(VMap.count(I) && "No mapping from source argument specified!");
88 #endif
89
90 AttributeSet OldAttrs = OldFunc->getAttributes();
91 // Clone any argument attributes that are present in the VMap.
92 for (Function::const_arg_iterator I = OldFunc->arg_begin(),
93 E = OldFunc->arg_end();
94 I != E; ++I)
95 if (Argument *Anew = dyn_cast<Argument>(VMap[I])) {
96 AttributeSet attrs =
97 OldAttrs.getParamAttributes(I->getArgNo() + 1);
98 if (attrs.getNumSlots() > 0)
99 Anew->addAttr(attrs);
100 }
101
102 NewFunc->setAttributes(NewFunc->getAttributes()
103 .addAttributes(NewFunc->getContext(),
104 AttributeSet::ReturnIndex,
105 OldAttrs.getRetAttributes()));
106 NewFunc->setAttributes(NewFunc->getAttributes()
107 .addAttributes(NewFunc->getContext(),
108 AttributeSet::FunctionIndex,
109 OldAttrs.getFnAttributes()));
110
111 // Loop over all of the basic blocks in the function, cloning them as
112 // appropriate. Note that we save BE this way in order to handle cloning of
113 // recursive functions into themselves.
114 //
115 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
116 BI != BE; ++BI) {
117 const BasicBlock &BB = *BI;
118
119 // Create a new basic block and copy instructions into it!
120 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
121
122 // Add basic block mapping.
123 VMap[&BB] = CBB;
124
125 // It is only legal to clone a function if a block address within that
126 // function is never referenced outside of the function. Given that, we
127 // want to map block addresses from the old function to block addresses in
128 // the clone. (This is different from the generic ValueMapper
129 // implementation, which generates an invalid blockaddress when
130 // cloning a function.)
131 if (BB.hasAddressTaken()) {
132 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
133 const_cast<BasicBlock*>(&BB));
134 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
135 }
136
137 // Note return instructions for the caller.
138 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
139 Returns.push_back(RI);
140 }
141
142 // Loop over all of the instructions in the function, fixing up operand
143 // references as we go. This uses VMap to do all the hard work.
144 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
145 BE = NewFunc->end(); BB != BE; ++BB)
146 // Loop over all instructions, fixing each one as we find it...
147 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
148 RemapInstruction(II, VMap,
149 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150 TypeMapper);
151 }
152
153 /// CloneFunction - Return a copy of the specified function, but without
154 /// embedding the function into another module. Also, any references specified
155 /// in the VMap are changed to refer to their mapped value instead of the
156 /// original one. If any of the arguments to the function are in the VMap,
157 /// the arguments are deleted from the resultant function. The VMap is
158 /// updated to include mappings from all of the instructions and basicblocks in
159 /// the function from their old to new values.
160 ///
CloneFunction(const Function * F,ValueToValueMapTy & VMap,bool ModuleLevelChanges,ClonedCodeInfo * CodeInfo)161 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
162 bool ModuleLevelChanges,
163 ClonedCodeInfo *CodeInfo) {
164 std::vector<Type*> ArgTypes;
165
166 // The user might be deleting arguments to the function by specifying them in
167 // the VMap. If so, we need to not add the arguments to the arg ty vector
168 //
169 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
170 I != E; ++I)
171 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet?
172 ArgTypes.push_back(I->getType());
173
174 // Create a new function type...
175 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
176 ArgTypes, F->getFunctionType()->isVarArg());
177
178 // Create the new function...
179 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
180
181 // Loop over the arguments, copying the names of the mapped arguments over...
182 Function::arg_iterator DestI = NewF->arg_begin();
183 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
184 I != E; ++I)
185 if (VMap.count(I) == 0) { // Is this argument preserved?
186 DestI->setName(I->getName()); // Copy the name over...
187 VMap[I] = DestI++; // Add mapping to VMap
188 }
189
190 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
191 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
192 return NewF;
193 }
194
195
196
197 namespace {
198 /// PruningFunctionCloner - This class is a private class used to implement
199 /// the CloneAndPruneFunctionInto method.
200 struct PruningFunctionCloner {
201 Function *NewFunc;
202 const Function *OldFunc;
203 ValueToValueMapTy &VMap;
204 bool ModuleLevelChanges;
205 const char *NameSuffix;
206 ClonedCodeInfo *CodeInfo;
207 const DataLayout *TD;
208 public:
PruningFunctionCloner__anon44a896ad0111::PruningFunctionCloner209 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
210 ValueToValueMapTy &valueMap,
211 bool moduleLevelChanges,
212 const char *nameSuffix,
213 ClonedCodeInfo *codeInfo,
214 const DataLayout *td)
215 : NewFunc(newFunc), OldFunc(oldFunc),
216 VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
217 NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
218 }
219
220 /// CloneBlock - The specified block is found to be reachable, clone it and
221 /// anything that it can reach.
222 void CloneBlock(const BasicBlock *BB,
223 std::vector<const BasicBlock*> &ToClone);
224 };
225 }
226
227 /// CloneBlock - The specified block is found to be reachable, clone it and
228 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,std::vector<const BasicBlock * > & ToClone)229 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
230 std::vector<const BasicBlock*> &ToClone){
231 WeakVH &BBEntry = VMap[BB];
232
233 // Have we already cloned this block?
234 if (BBEntry) return;
235
236 // Nope, clone it now.
237 BasicBlock *NewBB;
238 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
239 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
240
241 // It is only legal to clone a function if a block address within that
242 // function is never referenced outside of the function. Given that, we
243 // want to map block addresses from the old function to block addresses in
244 // the clone. (This is different from the generic ValueMapper
245 // implementation, which generates an invalid blockaddress when
246 // cloning a function.)
247 //
248 // Note that we don't need to fix the mapping for unreachable blocks;
249 // the default mapping there is safe.
250 if (BB->hasAddressTaken()) {
251 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
252 const_cast<BasicBlock*>(BB));
253 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
254 }
255
256
257 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
258
259 // Loop over all instructions, and copy them over, DCE'ing as we go. This
260 // loop doesn't include the terminator.
261 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
262 II != IE; ++II) {
263 Instruction *NewInst = II->clone();
264
265 // Eagerly remap operands to the newly cloned instruction, except for PHI
266 // nodes for which we defer processing until we update the CFG.
267 if (!isa<PHINode>(NewInst)) {
268 RemapInstruction(NewInst, VMap,
269 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
270
271 // If we can simplify this instruction to some other value, simply add
272 // a mapping to that value rather than inserting a new instruction into
273 // the basic block.
274 if (Value *V = SimplifyInstruction(NewInst, TD)) {
275 // On the off-chance that this simplifies to an instruction in the old
276 // function, map it back into the new function.
277 if (Value *MappedV = VMap.lookup(V))
278 V = MappedV;
279
280 VMap[II] = V;
281 delete NewInst;
282 continue;
283 }
284 }
285
286 if (II->hasName())
287 NewInst->setName(II->getName()+NameSuffix);
288 VMap[II] = NewInst; // Add instruction map to value.
289 NewBB->getInstList().push_back(NewInst);
290 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
291 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
292 if (isa<ConstantInt>(AI->getArraySize()))
293 hasStaticAllocas = true;
294 else
295 hasDynamicAllocas = true;
296 }
297 }
298
299 // Finally, clone over the terminator.
300 const TerminatorInst *OldTI = BB->getTerminator();
301 bool TerminatorDone = false;
302 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
303 if (BI->isConditional()) {
304 // If the condition was a known constant in the callee...
305 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
306 // Or is a known constant in the caller...
307 if (Cond == 0) {
308 Value *V = VMap[BI->getCondition()];
309 Cond = dyn_cast_or_null<ConstantInt>(V);
310 }
311
312 // Constant fold to uncond branch!
313 if (Cond) {
314 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
315 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
316 ToClone.push_back(Dest);
317 TerminatorDone = true;
318 }
319 }
320 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
321 // If switching on a value known constant in the caller.
322 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
323 if (Cond == 0) { // Or known constant after constant prop in the callee...
324 Value *V = VMap[SI->getCondition()];
325 Cond = dyn_cast_or_null<ConstantInt>(V);
326 }
327 if (Cond) { // Constant fold to uncond branch!
328 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
329 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
330 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
331 ToClone.push_back(Dest);
332 TerminatorDone = true;
333 }
334 }
335
336 if (!TerminatorDone) {
337 Instruction *NewInst = OldTI->clone();
338 if (OldTI->hasName())
339 NewInst->setName(OldTI->getName()+NameSuffix);
340 NewBB->getInstList().push_back(NewInst);
341 VMap[OldTI] = NewInst; // Add instruction map to value.
342
343 // Recursively clone any reachable successor blocks.
344 const TerminatorInst *TI = BB->getTerminator();
345 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
346 ToClone.push_back(TI->getSuccessor(i));
347 }
348
349 if (CodeInfo) {
350 CodeInfo->ContainsCalls |= hasCalls;
351 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
352 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
353 BB != &BB->getParent()->front();
354 }
355 }
356
357 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
358 /// except that it does some simple constant prop and DCE on the fly. The
359 /// effect of this is to copy significantly less code in cases where (for
360 /// example) a function call with constant arguments is inlined, and those
361 /// constant arguments cause a significant amount of code in the callee to be
362 /// dead. Since this doesn't produce an exact copy of the input, it can't be
363 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,const DataLayout * TD,Instruction * TheCall)364 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
365 ValueToValueMapTy &VMap,
366 bool ModuleLevelChanges,
367 SmallVectorImpl<ReturnInst*> &Returns,
368 const char *NameSuffix,
369 ClonedCodeInfo *CodeInfo,
370 const DataLayout *TD,
371 Instruction *TheCall) {
372 assert(NameSuffix && "NameSuffix cannot be null!");
373
374 #ifndef NDEBUG
375 for (Function::const_arg_iterator II = OldFunc->arg_begin(),
376 E = OldFunc->arg_end(); II != E; ++II)
377 assert(VMap.count(II) && "No mapping from source argument specified!");
378 #endif
379
380 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
381 NameSuffix, CodeInfo, TD);
382
383 // Clone the entry block, and anything recursively reachable from it.
384 std::vector<const BasicBlock*> CloneWorklist;
385 CloneWorklist.push_back(&OldFunc->getEntryBlock());
386 while (!CloneWorklist.empty()) {
387 const BasicBlock *BB = CloneWorklist.back();
388 CloneWorklist.pop_back();
389 PFC.CloneBlock(BB, CloneWorklist);
390 }
391
392 // Loop over all of the basic blocks in the old function. If the block was
393 // reachable, we have cloned it and the old block is now in the value map:
394 // insert it into the new function in the right order. If not, ignore it.
395 //
396 // Defer PHI resolution until rest of function is resolved.
397 SmallVector<const PHINode*, 16> PHIToResolve;
398 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
399 BI != BE; ++BI) {
400 Value *V = VMap[BI];
401 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
402 if (NewBB == 0) continue; // Dead block.
403
404 // Add the new block to the new function.
405 NewFunc->getBasicBlockList().push_back(NewBB);
406
407 // Handle PHI nodes specially, as we have to remove references to dead
408 // blocks.
409 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
410 if (const PHINode *PN = dyn_cast<PHINode>(I))
411 PHIToResolve.push_back(PN);
412 else
413 break;
414
415 // Finally, remap the terminator instructions, as those can't be remapped
416 // until all BBs are mapped.
417 RemapInstruction(NewBB->getTerminator(), VMap,
418 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
419 }
420
421 // Defer PHI resolution until rest of function is resolved, PHI resolution
422 // requires the CFG to be up-to-date.
423 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
424 const PHINode *OPN = PHIToResolve[phino];
425 unsigned NumPreds = OPN->getNumIncomingValues();
426 const BasicBlock *OldBB = OPN->getParent();
427 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
428
429 // Map operands for blocks that are live and remove operands for blocks
430 // that are dead.
431 for (; phino != PHIToResolve.size() &&
432 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
433 OPN = PHIToResolve[phino];
434 PHINode *PN = cast<PHINode>(VMap[OPN]);
435 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
436 Value *V = VMap[PN->getIncomingBlock(pred)];
437 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
438 Value *InVal = MapValue(PN->getIncomingValue(pred),
439 VMap,
440 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
441 assert(InVal && "Unknown input value?");
442 PN->setIncomingValue(pred, InVal);
443 PN->setIncomingBlock(pred, MappedBlock);
444 } else {
445 PN->removeIncomingValue(pred, false);
446 --pred, --e; // Revisit the next entry.
447 }
448 }
449 }
450
451 // The loop above has removed PHI entries for those blocks that are dead
452 // and has updated others. However, if a block is live (i.e. copied over)
453 // but its terminator has been changed to not go to this block, then our
454 // phi nodes will have invalid entries. Update the PHI nodes in this
455 // case.
456 PHINode *PN = cast<PHINode>(NewBB->begin());
457 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
458 if (NumPreds != PN->getNumIncomingValues()) {
459 assert(NumPreds < PN->getNumIncomingValues());
460 // Count how many times each predecessor comes to this block.
461 std::map<BasicBlock*, unsigned> PredCount;
462 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
463 PI != E; ++PI)
464 --PredCount[*PI];
465
466 // Figure out how many entries to remove from each PHI.
467 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
468 ++PredCount[PN->getIncomingBlock(i)];
469
470 // At this point, the excess predecessor entries are positive in the
471 // map. Loop over all of the PHIs and remove excess predecessor
472 // entries.
473 BasicBlock::iterator I = NewBB->begin();
474 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
475 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
476 E = PredCount.end(); PCI != E; ++PCI) {
477 BasicBlock *Pred = PCI->first;
478 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
479 PN->removeIncomingValue(Pred, false);
480 }
481 }
482 }
483
484 // If the loops above have made these phi nodes have 0 or 1 operand,
485 // replace them with undef or the input value. We must do this for
486 // correctness, because 0-operand phis are not valid.
487 PN = cast<PHINode>(NewBB->begin());
488 if (PN->getNumIncomingValues() == 0) {
489 BasicBlock::iterator I = NewBB->begin();
490 BasicBlock::const_iterator OldI = OldBB->begin();
491 while ((PN = dyn_cast<PHINode>(I++))) {
492 Value *NV = UndefValue::get(PN->getType());
493 PN->replaceAllUsesWith(NV);
494 assert(VMap[OldI] == PN && "VMap mismatch");
495 VMap[OldI] = NV;
496 PN->eraseFromParent();
497 ++OldI;
498 }
499 }
500 }
501
502 // Make a second pass over the PHINodes now that all of them have been
503 // remapped into the new function, simplifying the PHINode and performing any
504 // recursive simplifications exposed. This will transparently update the
505 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
506 // two PHINodes, the iteration over the old PHIs remains valid, and the
507 // mapping will just map us to the new node (which may not even be a PHI
508 // node).
509 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
510 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
511 recursivelySimplifyInstruction(PN, TD);
512
513 // Now that the inlined function body has been fully constructed, go through
514 // and zap unconditional fall-through branches. This happen all the time when
515 // specializing code: code specialization turns conditional branches into
516 // uncond branches, and this code folds them.
517 Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
518 Function::iterator I = Begin;
519 while (I != NewFunc->end()) {
520 // Check if this block has become dead during inlining or other
521 // simplifications. Note that the first block will appear dead, as it has
522 // not yet been wired up properly.
523 if (I != Begin && (pred_begin(I) == pred_end(I) ||
524 I->getSinglePredecessor() == I)) {
525 BasicBlock *DeadBB = I++;
526 DeleteDeadBlock(DeadBB);
527 continue;
528 }
529
530 // We need to simplify conditional branches and switches with a constant
531 // operand. We try to prune these out when cloning, but if the
532 // simplification required looking through PHI nodes, those are only
533 // available after forming the full basic block. That may leave some here,
534 // and we still want to prune the dead code as early as possible.
535 ConstantFoldTerminator(I);
536
537 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
538 if (!BI || BI->isConditional()) { ++I; continue; }
539
540 BasicBlock *Dest = BI->getSuccessor(0);
541 if (!Dest->getSinglePredecessor()) {
542 ++I; continue;
543 }
544
545 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
546 // above should have zapped all of them..
547 assert(!isa<PHINode>(Dest->begin()));
548
549 // We know all single-entry PHI nodes in the inlined function have been
550 // removed, so we just need to splice the blocks.
551 BI->eraseFromParent();
552
553 // Make all PHI nodes that referred to Dest now refer to I as their source.
554 Dest->replaceAllUsesWith(I);
555
556 // Move all the instructions in the succ to the pred.
557 I->getInstList().splice(I->end(), Dest->getInstList());
558
559 // Remove the dest block.
560 Dest->eraseFromParent();
561
562 // Do not increment I, iteratively merge all things this block branches to.
563 }
564
565 // Make a final pass over the basic blocks from theh old function to gather
566 // any return instructions which survived folding. We have to do this here
567 // because we can iteratively remove and merge returns above.
568 for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
569 E = NewFunc->end();
570 I != E; ++I)
571 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
572 Returns.push_back(RI);
573 }
574