1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CodeEmitterGen uses the descriptions of instructions and their fields to
11 // construct an automated code emitter: a function that, given a MachineInstr,
12 // returns the (currently, 32-bit unsigned) value of the instruction.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/TableGenBackend.h"
22 #include <map>
23 #include <string>
24 #include <vector>
25 using namespace llvm;
26
27 // FIXME: Somewhat hackish to use a command line option for this. There should
28 // be a CodeEmitter class in the Target.td that controls this sort of thing
29 // instead.
30 static cl::opt<bool>
31 MCEmitter("mc-emitter",
32 cl::desc("Generate CodeEmitter for use with the MC library."),
33 cl::init(false));
34
35 namespace {
36
37 class CodeEmitterGen {
38 RecordKeeper &Records;
39 public:
CodeEmitterGen(RecordKeeper & R)40 CodeEmitterGen(RecordKeeper &R) : Records(R) {}
41
42 void run(raw_ostream &o);
43 private:
44 void emitMachineOpEmitter(raw_ostream &o, const std::string &Namespace);
45 void emitGetValueBit(raw_ostream &o, const std::string &Namespace);
46 void reverseBits(std::vector<Record*> &Insts);
47 int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
48 std::string getInstructionCase(Record *R, CodeGenTarget &Target);
49 void AddCodeToMergeInOperand(Record *R, BitsInit *BI,
50 const std::string &VarName,
51 unsigned &NumberedOp,
52 std::string &Case, CodeGenTarget &Target);
53
54 };
55
reverseBits(std::vector<Record * > & Insts)56 void CodeEmitterGen::reverseBits(std::vector<Record*> &Insts) {
57 for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end();
58 I != E; ++I) {
59 Record *R = *I;
60 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
61 R->getValueAsBit("isPseudo"))
62 continue;
63
64 BitsInit *BI = R->getValueAsBitsInit("Inst");
65
66 unsigned numBits = BI->getNumBits();
67
68 SmallVector<Init *, 16> NewBits(numBits);
69
70 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
71 unsigned bitSwapIdx = numBits - bit - 1;
72 Init *OrigBit = BI->getBit(bit);
73 Init *BitSwap = BI->getBit(bitSwapIdx);
74 NewBits[bit] = BitSwap;
75 NewBits[bitSwapIdx] = OrigBit;
76 }
77 if (numBits % 2) {
78 unsigned middle = (numBits + 1) / 2;
79 NewBits[middle] = BI->getBit(middle);
80 }
81
82 BitsInit *NewBI = BitsInit::get(NewBits);
83
84 // Update the bits in reversed order so that emitInstrOpBits will get the
85 // correct endianness.
86 R->getValue("Inst")->setValue(NewBI);
87 }
88 }
89
90 // If the VarBitInit at position 'bit' matches the specified variable then
91 // return the variable bit position. Otherwise return -1.
getVariableBit(const std::string & VarName,BitsInit * BI,int bit)92 int CodeEmitterGen::getVariableBit(const std::string &VarName,
93 BitsInit *BI, int bit) {
94 if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
95 if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
96 if (VI->getName() == VarName)
97 return VBI->getBitNum();
98 } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
99 if (VI->getName() == VarName)
100 return 0;
101 }
102
103 return -1;
104 }
105
106 void CodeEmitterGen::
AddCodeToMergeInOperand(Record * R,BitsInit * BI,const std::string & VarName,unsigned & NumberedOp,std::string & Case,CodeGenTarget & Target)107 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName,
108 unsigned &NumberedOp,
109 std::string &Case, CodeGenTarget &Target) {
110 CodeGenInstruction &CGI = Target.getInstruction(R);
111
112 // Determine if VarName actually contributes to the Inst encoding.
113 int bit = BI->getNumBits()-1;
114
115 // Scan for a bit that this contributed to.
116 for (; bit >= 0; ) {
117 if (getVariableBit(VarName, BI, bit) != -1)
118 break;
119
120 --bit;
121 }
122
123 // If we found no bits, ignore this value, otherwise emit the call to get the
124 // operand encoding.
125 if (bit < 0) return;
126
127 // If the operand matches by name, reference according to that
128 // operand number. Non-matching operands are assumed to be in
129 // order.
130 unsigned OpIdx;
131 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
132 // Get the machine operand number for the indicated operand.
133 OpIdx = CGI.Operands[OpIdx].MIOperandNo;
134 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) &&
135 "Explicitly used operand also marked as not emitted!");
136 } else {
137 unsigned NumberOps = CGI.Operands.size();
138 /// If this operand is not supposed to be emitted by the
139 /// generated emitter, skip it.
140 while (NumberedOp < NumberOps &&
141 CGI.Operands.isFlatOperandNotEmitted(NumberedOp))
142 ++NumberedOp;
143
144 OpIdx = NumberedOp++;
145 }
146
147 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
148 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName;
149
150 // If the source operand has a custom encoder, use it. This will
151 // get the encoding for all of the suboperands.
152 if (!EncoderMethodName.empty()) {
153 // A custom encoder has all of the information for the
154 // sub-operands, if there are more than one, so only
155 // query the encoder once per source operand.
156 if (SO.second == 0) {
157 Case += " // op: " + VarName + "\n" +
158 " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
159 if (MCEmitter)
160 Case += ", Fixups";
161 Case += ");\n";
162 }
163 } else {
164 Case += " // op: " + VarName + "\n" +
165 " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
166 if (MCEmitter)
167 Case += ", Fixups";
168 Case += ");\n";
169 }
170
171 for (; bit >= 0; ) {
172 int varBit = getVariableBit(VarName, BI, bit);
173
174 // If this bit isn't from a variable, skip it.
175 if (varBit == -1) {
176 --bit;
177 continue;
178 }
179
180 // Figure out the consecutive range of bits covered by this operand, in
181 // order to generate better encoding code.
182 int beginInstBit = bit;
183 int beginVarBit = varBit;
184 int N = 1;
185 for (--bit; bit >= 0;) {
186 varBit = getVariableBit(VarName, BI, bit);
187 if (varBit == -1 || varBit != (beginVarBit - N)) break;
188 ++N;
189 --bit;
190 }
191
192 uint64_t opMask = ~(uint64_t)0 >> (64-N);
193 int opShift = beginVarBit - N + 1;
194 opMask <<= opShift;
195 opShift = beginInstBit - beginVarBit;
196
197 if (opShift > 0) {
198 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " +
199 itostr(opShift) + ";\n";
200 } else if (opShift < 0) {
201 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " +
202 itostr(-opShift) + ";\n";
203 } else {
204 Case += " Value |= op & UINT64_C(" + utostr(opMask) + ");\n";
205 }
206 }
207 }
208
209
getInstructionCase(Record * R,CodeGenTarget & Target)210 std::string CodeEmitterGen::getInstructionCase(Record *R,
211 CodeGenTarget &Target) {
212 std::string Case;
213
214 BitsInit *BI = R->getValueAsBitsInit("Inst");
215 const std::vector<RecordVal> &Vals = R->getValues();
216 unsigned NumberedOp = 0;
217
218 // Loop over all of the fields in the instruction, determining which are the
219 // operands to the instruction.
220 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
221 // Ignore fixed fields in the record, we're looking for values like:
222 // bits<5> RST = { ?, ?, ?, ?, ? };
223 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
224 continue;
225
226 AddCodeToMergeInOperand(R, BI, Vals[i].getName(), NumberedOp, Case, Target);
227 }
228
229 std::string PostEmitter = R->getValueAsString("PostEncoderMethod");
230 if (!PostEmitter.empty())
231 Case += " Value = " + PostEmitter + "(MI, Value);\n";
232
233 return Case;
234 }
235
run(raw_ostream & o)236 void CodeEmitterGen::run(raw_ostream &o) {
237 CodeGenTarget Target(Records);
238 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
239
240 // For little-endian instruction bit encodings, reverse the bit order
241 if (Target.isLittleEndianEncoding()) reverseBits(Insts);
242
243
244 const std::vector<const CodeGenInstruction*> &NumberedInstructions =
245 Target.getInstructionsByEnumValue();
246
247 // Emit function declaration
248 o << "uint64_t " << Target.getName();
249 if (MCEmitter)
250 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
251 << " SmallVectorImpl<MCFixup> &Fixups) const {\n";
252 else
253 o << "CodeEmitter::getBinaryCodeForInstr(const MachineInstr &MI) const {\n";
254
255 // Emit instruction base values
256 o << " static const uint64_t InstBits[] = {\n";
257 for (std::vector<const CodeGenInstruction*>::const_iterator
258 IN = NumberedInstructions.begin(),
259 EN = NumberedInstructions.end();
260 IN != EN; ++IN) {
261 const CodeGenInstruction *CGI = *IN;
262 Record *R = CGI->TheDef;
263
264 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
265 R->getValueAsBit("isPseudo")) {
266 o << " UINT64_C(0),\n";
267 continue;
268 }
269
270 BitsInit *BI = R->getValueAsBitsInit("Inst");
271
272 // Start by filling in fixed values.
273 uint64_t Value = 0;
274 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
275 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e-i-1)))
276 Value |= (uint64_t)B->getValue() << (e-i-1);
277 }
278 o << " UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n";
279 }
280 o << " UINT64_C(0)\n };\n";
281
282 // Map to accumulate all the cases.
283 std::map<std::string, std::vector<std::string> > CaseMap;
284
285 // Construct all cases statement for each opcode
286 for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end();
287 IC != EC; ++IC) {
288 Record *R = *IC;
289 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
290 (R->getValueAsBit("isPseudo") && MCEmitter))
291 continue;
292 const std::string &InstName = R->getValueAsString("Namespace") + "::"
293 + R->getName();
294 std::string Case;
295 if (!R->getValueAsBit("isPseudo")) {
296 Case = getInstructionCase(R, Target);
297 }
298
299 CaseMap[Case].push_back(InstName);
300 }
301
302 // Emit initial function code
303 o << " const unsigned opcode = MI.getOpcode();\n"
304 << " uint64_t Value = InstBits[opcode];\n"
305 << " uint64_t op = 0;\n"
306 << " (void)op; // suppress warning\n"
307 << " switch (opcode) {\n";
308
309 // Emit each case statement
310 std::map<std::string, std::vector<std::string> >::iterator IE, EE;
311 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
312 const std::string &Case = IE->first;
313 std::vector<std::string> &InstList = IE->second;
314
315 for (int i = 0, N = InstList.size(); i < N; i++) {
316 if (i) o << "\n";
317 o << " case " << InstList[i] << ":";
318 }
319 o << " {\n";
320 o << Case;
321 o << " break;\n"
322 << " }\n";
323 }
324
325 // Default case: unhandled opcode
326 o << " default:\n"
327 << " std::string msg;\n"
328 << " raw_string_ostream Msg(msg);\n"
329 << " Msg << \"Not supported instr: \" << MI;\n"
330 << " report_fatal_error(Msg.str());\n"
331 << " }\n"
332 << " return Value;\n"
333 << "}\n\n";
334 }
335
336 } // End anonymous namespace
337
338 namespace llvm {
339
EmitCodeEmitter(RecordKeeper & RK,raw_ostream & OS)340 void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) {
341 emitSourceFileHeader("Machine Code Emitter", OS);
342 CodeEmitterGen(RK).run(OS);
343 }
344
345 } // End llvm namespace
346