• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, 2008 Google Inc.
2 // Authors: Jeff Dean, Sanjay Ghemawat, Lincoln Smith
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 
16 #ifndef OPEN_VCDIFF_ROLLING_HASH_H_
17 #define OPEN_VCDIFF_ROLLING_HASH_H_
18 
19 #include <config.h>
20 #include <stdint.h>  // uint32_t
21 #include "compile_assert.h"
22 #include "logging.h"
23 
24 namespace open_vcdiff {
25 
26 // Rabin-Karp hasher module -- this is a faster version with different
27 // constants, so it's not quite Rabin-Karp fingerprinting, but its behavior is
28 // close enough for most applications.
29 
30 // Definitions common to all hash window sizes.
31 class RollingHashUtil {
32  public:
33   // Multiplier for incremental hashing.  The compiler should be smart enough to
34   // convert (val * kMult) into ((val << 8) + val).
35   static const uint32_t kMult = 257;
36 
37   // All hashes are returned modulo "kBase".  Current implementation requires
38   // kBase <= 2^32/kMult to avoid overflow.  Also, kBase must be a power of two
39   // so that we can compute modulus efficiently.
40   static const uint32_t kBase = (1 << 23);
41 
42   // Returns operand % kBase, assuming that kBase is a power of two.
ModBase(uint32_t operand)43   static inline uint32_t ModBase(uint32_t operand) {
44     return operand & (kBase - 1);
45   }
46 
47   // Given an unsigned integer "operand", returns an unsigned integer "result"
48   // such that
49   //     result < kBase
50   // and
51   //     ModBase(operand + result) == 0
FindModBaseInverse(uint32_t operand)52   static inline uint32_t FindModBaseInverse(uint32_t operand) {
53     // The subtraction (0 - operand) produces an unsigned underflow for any
54     // operand except 0.  The underflow results in a (very large) unsigned
55     // number.  Binary subtraction is used instead of unary negation because
56     // some compilers (e.g. Visual Studio 7+) produce a warning if an unsigned
57     // value is negated.
58     //
59     // The C++ mod operation (operand % kBase) may produce different results for
60     // different compilers if operand is negative.  That is not a problem in
61     // this case, since all numbers used are unsigned, and ModBase does its work
62     // using bitwise arithmetic rather than the % operator.
63     return ModBase(uint32_t(0) - operand);
64   }
65 
66   // Here's the heart of the hash algorithm.  Start with a partial_hash value of
67   // 0, and run this HashStep once against each byte in the data window to be
68   // hashed.  The result will be the hash value for the entire data window.  The
69   // Hash() function, below, does exactly this, albeit with some refinements.
HashStep(uint32_t partial_hash,unsigned char next_byte)70   static inline uint32_t HashStep(uint32_t partial_hash,
71                                   unsigned char next_byte) {
72     return ModBase((partial_hash * kMult) + next_byte);
73   }
74 
75   // Use this function to start computing a new hash value based on the first
76   // two bytes in the window.  It is equivalent to calling
77   //     HashStep(HashStep(0, ptr[0]), ptr[1])
78   // but takes advantage of the fact that the maximum value of
79   // (ptr[0] * kMult) + ptr[1] is not large enough to exceed kBase, thus
80   // avoiding an unnecessary ModBase operation.
HashFirstTwoBytes(const char * ptr)81   static inline uint32_t HashFirstTwoBytes(const char* ptr) {
82     return (static_cast<unsigned char>(ptr[0]) * kMult)
83         + static_cast<unsigned char>(ptr[1]);
84   }
85  private:
86   // Making these private avoids copy constructor and assignment operator.
87   // No objects of this type should be constructed.
88   RollingHashUtil();
89   RollingHashUtil(const RollingHashUtil&);  // NOLINT
90   void operator=(const RollingHashUtil&);
91 };
92 
93 // window_size must be >= 2.
94 template<int window_size>
95 class RollingHash {
96  public:
97   // Perform global initialization that is required in order to instantiate a
98   // RollingHash.  This function *must* be called (preferably on startup) by any
99   // program that uses a RollingHash.  It is harmless to call this function more
100   // than once.  It is not thread-safe, but calling it from two different
101   // threads at the same time can only cause a memory leak, not incorrect
102   // behavior.  Make sure to call it before spawning any threads that could use
103   // RollingHash.
104   static void Init();
105 
106   // Initialize hasher to maintain a window of the specified size.  You need an
107   // instance of this type to use UpdateHash(), but Hash() does not depend on
108   // remove_table_, so it is static.
RollingHash()109   RollingHash() {
110     if (!remove_table_) {
111       VCD_DFATAL << "RollingHash object instantiated"
112                     " before calling RollingHash::Init()" << VCD_ENDL;
113     }
114   }
115 
116   // Compute a hash of the window "ptr[0, window_size - 1]".
Hash(const char * ptr)117   static uint32_t Hash(const char* ptr) {
118     uint32_t h = RollingHashUtil::HashFirstTwoBytes(ptr);
119     for (int i = 2; i < window_size; ++i) {
120       h = RollingHashUtil::HashStep(h, ptr[i]);
121     }
122     return h;
123   }
124 
125   // Update a hash by removing the oldest byte and adding a new byte.
126   //
127   // UpdateHash takes the hash value of buffer[0] ... buffer[window_size -1]
128   // along with the value of buffer[0] (the "old_first_byte" argument)
129   // and the value of buffer[window_size] (the "new_last_byte" argument).
130   // It quickly computes the hash value of buffer[1] ... buffer[window_size]
131   // without having to run Hash() on the entire window.
132   //
133   // The larger the window, the more advantage comes from using UpdateHash()
134   // (which runs in time independent of window_size) instead of Hash().
135   // Each time window_size doubles, the time to execute Hash() also doubles,
136   // while the time to execute UpdateHash() remains constant.  Empirical tests
137   // have borne out this statement.
UpdateHash(uint32_t old_hash,const char old_first_byte,const char new_last_byte)138   uint32_t UpdateHash(uint32_t old_hash,
139                       const char old_first_byte,
140                       const char new_last_byte) const {
141     uint32_t partial_hash = RemoveFirstByteFromHash(old_hash, old_first_byte);
142     return RollingHashUtil::HashStep(partial_hash, new_last_byte);
143   }
144 
145  protected:
146   // Given a full hash value for buffer[0] ... buffer[window_size -1], plus the
147   // value of the first byte buffer[0], this function returns a *partial* hash
148   // value for buffer[1] ... buffer[window_size -1].  See the comments in
149   // Init(), below, for a description of how the contents of remove_table_ are
150   // computed.
RemoveFirstByteFromHash(uint32_t full_hash,unsigned char first_byte)151   static uint32_t RemoveFirstByteFromHash(uint32_t full_hash,
152                                           unsigned char first_byte) {
153     return RollingHashUtil::ModBase(full_hash + remove_table_[first_byte]);
154   }
155 
156  private:
157   // We keep a table that maps from any byte "b" to
158   //    (- b * pow(kMult, window_size - 1)) % kBase
159   static const uint32_t* remove_table_;
160 };
161 
162 // For each window_size, fill a 256-entry table such that
163 //        the hash value of buffer[0] ... buffer[window_size - 1]
164 //      + remove_table_[buffer[0]]
165 //     == the hash value of buffer[1] ... buffer[window_size - 1]
166 // See the comments in Init(), below, for a description of how the contents of
167 // remove_table_ are computed.
168 template<int window_size>
169 const uint32_t* RollingHash<window_size>::remove_table_ = NULL;
170 
171 // Init() checks to make sure that the static object remove_table_ has been
172 // initialized; if not, it does the considerable work of populating it.  Once
173 // it's ready, the table can be used for any number of RollingHash objects of
174 // the same window_size.
175 //
176 template<int window_size>
Init()177 void RollingHash<window_size>::Init() {
178   VCD_COMPILE_ASSERT(window_size >= 2,
179                      RollingHash_window_size_must_be_at_least_2);
180   if (remove_table_ == NULL) {
181     // The new object is placed into a local pointer instead of directly into
182     // remove_table_, for two reasons:
183     //   1. remove_table_ is a pointer to const.  The table is populated using
184     //      the non-const local pointer and then assigned to the global const
185     //      pointer once it's ready.
186     //   2. No other thread will ever see remove_table_ pointing to a
187     //      partially-initialized table.  If two threads happen to call Init()
188     //      at the same time, two tables with the same contents may be created
189     //      (causing a memory leak), but the results will be consistent
190     //      no matter which of the two tables is used.
191     uint32_t* new_remove_table = new uint32_t[256];
192     // Compute multiplier.  Concisely, it is:
193     //     pow(kMult, (window_size - 1)) % kBase,
194     // but we compute the power in integer form.
195     uint32_t multiplier = 1;
196     for (int i = 0; i < window_size - 1; ++i) {
197       multiplier =
198           RollingHashUtil::ModBase(multiplier * RollingHashUtil::kMult);
199     }
200     // For each character removed_byte, compute
201     //     remove_table_[removed_byte] ==
202     //         (- (removed_byte * pow(kMult, (window_size - 1)))) % kBase
203     // where the power operator "pow" is taken in integer form.
204     //
205     // If you take a hash value fp representing the hash of
206     //     buffer[0] ... buffer[window_size - 1]
207     // and add the value of remove_table_[buffer[0]] to it, the result will be
208     // a partial hash value for
209     //     buffer[1] ... buffer[window_size - 1]
210     // that is to say, it no longer includes buffer[0].
211     //
212     // The following byte at buffer[window_size] can then be merged with this
213     // partial hash value to arrive quickly at the hash value for a window that
214     // has advanced by one byte, to
215     //     buffer[1] ... buffer[window_size]
216     // In fact, that is precisely what happens in UpdateHash, above.
217     uint32_t byte_times_multiplier = 0;
218     for (int removed_byte = 0; removed_byte < 256; ++removed_byte) {
219       new_remove_table[removed_byte] =
220           RollingHashUtil::FindModBaseInverse(byte_times_multiplier);
221       // Iteratively adding the multiplier in this loop is equivalent to
222       // computing (removed_byte * multiplier), and is faster
223       byte_times_multiplier =
224           RollingHashUtil::ModBase(byte_times_multiplier + multiplier);
225     }
226     remove_table_ = new_remove_table;
227   }
228 }
229 
230 }  // namespace open_vcdiff
231 
232 #endif  // OPEN_VCDIFF_ROLLING_HASH_H_
233