1 /*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5 /* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58 /*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62 #include <stdio.h>
63 #include <stdlib.h>
64
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71
72 #ifndef OPENSSL_NO_RFC3779
73
74 /*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78 ASN1_SEQUENCE(IPAddressRange) = {
79 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
82
83 ASN1_CHOICE(IPAddressOrRange) = {
84 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
87
88 ASN1_CHOICE(IPAddressChoice) = {
89 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
92
93 ASN1_SEQUENCE(IPAddressFamily) = {
94 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
95 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
97
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108 /*
109 * How much buffer space do we need for a raw address?
110 */
111 #define ADDR_RAW_BUF_LEN 16
112
113 /*
114 * What's the address length associated with this AFI?
115 */
116 static int length_from_afi(const unsigned afi)
117 {
118 switch (afi) {
119 case IANA_AFI_IPV4:
120 return 4;
121 case IANA_AFI_IPV6:
122 return 16;
123 default:
124 return 0;
125 }
126 }
127
128 /*
129 * Extract the AFI from an IPAddressFamily.
130 */
v3_addr_get_afi(const IPAddressFamily * f)131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132 {
133 return ((f != NULL &&
134 f->addressFamily != NULL &&
135 f->addressFamily->data != NULL)
136 ? ((f->addressFamily->data[0] << 8) |
137 (f->addressFamily->data[1]))
138 : 0);
139 }
140
141 /*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
addr_expand(unsigned char * addr,const ASN1_BIT_STRING * bs,const int length,const unsigned char fill)145 static int addr_expand(unsigned char *addr,
146 const ASN1_BIT_STRING *bs,
147 const int length,
148 const unsigned char fill)
149 {
150 if (bs->length < 0 || bs->length > length)
151 return 0;
152 if (bs->length > 0) {
153 memcpy(addr, bs->data, bs->length);
154 if ((bs->flags & 7) != 0) {
155 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
156 if (fill == 0)
157 addr[bs->length - 1] &= ~mask;
158 else
159 addr[bs->length - 1] |= mask;
160 }
161 }
162 memset(addr + bs->length, fill, length - bs->length);
163 return 1;
164 }
165
166 /*
167 * Extract the prefix length from a bitstring.
168 */
169 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
170
171 /*
172 * i2r handler for one address bitstring.
173 */
i2r_address(BIO * out,const unsigned afi,const unsigned char fill,const ASN1_BIT_STRING * bs)174 static int i2r_address(BIO *out,
175 const unsigned afi,
176 const unsigned char fill,
177 const ASN1_BIT_STRING *bs)
178 {
179 unsigned char addr[ADDR_RAW_BUF_LEN];
180 int i, n;
181
182 if (bs->length < 0)
183 return 0;
184 switch (afi) {
185 case IANA_AFI_IPV4:
186 if (!addr_expand(addr, bs, 4, fill))
187 return 0;
188 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
189 break;
190 case IANA_AFI_IPV6:
191 if (!addr_expand(addr, bs, 16, fill))
192 return 0;
193 for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
194 ;
195 for (i = 0; i < n; i += 2)
196 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
197 if (i < 16)
198 BIO_puts(out, ":");
199 if (i == 0)
200 BIO_puts(out, ":");
201 break;
202 default:
203 for (i = 0; i < bs->length; i++)
204 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
205 BIO_printf(out, "[%d]", (int) (bs->flags & 7));
206 break;
207 }
208 return 1;
209 }
210
211 /*
212 * i2r handler for a sequence of addresses and ranges.
213 */
i2r_IPAddressOrRanges(BIO * out,const int indent,const IPAddressOrRanges * aors,const unsigned afi)214 static int i2r_IPAddressOrRanges(BIO *out,
215 const int indent,
216 const IPAddressOrRanges *aors,
217 const unsigned afi)
218 {
219 int i;
220 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
221 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
222 BIO_printf(out, "%*s", indent, "");
223 switch (aor->type) {
224 case IPAddressOrRange_addressPrefix:
225 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
226 return 0;
227 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
228 continue;
229 case IPAddressOrRange_addressRange:
230 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
231 return 0;
232 BIO_puts(out, "-");
233 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
234 return 0;
235 BIO_puts(out, "\n");
236 continue;
237 }
238 }
239 return 1;
240 }
241
242 /*
243 * i2r handler for an IPAddrBlocks extension.
244 */
i2r_IPAddrBlocks(const X509V3_EXT_METHOD * method,void * ext,BIO * out,int indent)245 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
246 void *ext,
247 BIO *out,
248 int indent)
249 {
250 const IPAddrBlocks *addr = ext;
251 int i;
252 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
253 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
254 const unsigned int afi = v3_addr_get_afi(f);
255 switch (afi) {
256 case IANA_AFI_IPV4:
257 BIO_printf(out, "%*sIPv4", indent, "");
258 break;
259 case IANA_AFI_IPV6:
260 BIO_printf(out, "%*sIPv6", indent, "");
261 break;
262 default:
263 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
264 break;
265 }
266 if (f->addressFamily->length > 2) {
267 switch (f->addressFamily->data[2]) {
268 case 1:
269 BIO_puts(out, " (Unicast)");
270 break;
271 case 2:
272 BIO_puts(out, " (Multicast)");
273 break;
274 case 3:
275 BIO_puts(out, " (Unicast/Multicast)");
276 break;
277 case 4:
278 BIO_puts(out, " (MPLS)");
279 break;
280 case 64:
281 BIO_puts(out, " (Tunnel)");
282 break;
283 case 65:
284 BIO_puts(out, " (VPLS)");
285 break;
286 case 66:
287 BIO_puts(out, " (BGP MDT)");
288 break;
289 case 128:
290 BIO_puts(out, " (MPLS-labeled VPN)");
291 break;
292 default:
293 BIO_printf(out, " (Unknown SAFI %u)",
294 (unsigned) f->addressFamily->data[2]);
295 break;
296 }
297 }
298 switch (f->ipAddressChoice->type) {
299 case IPAddressChoice_inherit:
300 BIO_puts(out, ": inherit\n");
301 break;
302 case IPAddressChoice_addressesOrRanges:
303 BIO_puts(out, ":\n");
304 if (!i2r_IPAddressOrRanges(out,
305 indent + 2,
306 f->ipAddressChoice->u.addressesOrRanges,
307 afi))
308 return 0;
309 break;
310 }
311 }
312 return 1;
313 }
314
315 /*
316 * Sort comparison function for a sequence of IPAddressOrRange
317 * elements.
318 *
319 * There's no sane answer we can give if addr_expand() fails, and an
320 * assertion failure on externally supplied data is seriously uncool,
321 * so we just arbitrarily declare that if given invalid inputs this
322 * function returns -1. If this messes up your preferred sort order
323 * for garbage input, tough noogies.
324 */
IPAddressOrRange_cmp(const IPAddressOrRange * a,const IPAddressOrRange * b,const int length)325 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
326 const IPAddressOrRange *b,
327 const int length)
328 {
329 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
330 int prefixlen_a = 0, prefixlen_b = 0;
331 int r;
332
333 switch (a->type) {
334 case IPAddressOrRange_addressPrefix:
335 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
336 return -1;
337 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
338 break;
339 case IPAddressOrRange_addressRange:
340 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
341 return -1;
342 prefixlen_a = length * 8;
343 break;
344 }
345
346 switch (b->type) {
347 case IPAddressOrRange_addressPrefix:
348 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
349 return -1;
350 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
351 break;
352 case IPAddressOrRange_addressRange:
353 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
354 return -1;
355 prefixlen_b = length * 8;
356 break;
357 }
358
359 if ((r = memcmp(addr_a, addr_b, length)) != 0)
360 return r;
361 else
362 return prefixlen_a - prefixlen_b;
363 }
364
365 /*
366 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
367 * comparision routines are only allowed two arguments.
368 */
v4IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)369 static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
370 const IPAddressOrRange * const *b)
371 {
372 return IPAddressOrRange_cmp(*a, *b, 4);
373 }
374
375 /*
376 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
377 * comparision routines are only allowed two arguments.
378 */
v6IPAddressOrRange_cmp(const IPAddressOrRange * const * a,const IPAddressOrRange * const * b)379 static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
380 const IPAddressOrRange * const *b)
381 {
382 return IPAddressOrRange_cmp(*a, *b, 16);
383 }
384
385 /*
386 * Calculate whether a range collapses to a prefix.
387 * See last paragraph of RFC 3779 2.2.3.7.
388 */
range_should_be_prefix(const unsigned char * min,const unsigned char * max,const int length)389 static int range_should_be_prefix(const unsigned char *min,
390 const unsigned char *max,
391 const int length)
392 {
393 unsigned char mask;
394 int i, j;
395
396 OPENSSL_assert(memcmp(min, max, length) <= 0);
397 for (i = 0; i < length && min[i] == max[i]; i++)
398 ;
399 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
400 ;
401 if (i < j)
402 return -1;
403 if (i > j)
404 return i * 8;
405 mask = min[i] ^ max[i];
406 switch (mask) {
407 case 0x01: j = 7; break;
408 case 0x03: j = 6; break;
409 case 0x07: j = 5; break;
410 case 0x0F: j = 4; break;
411 case 0x1F: j = 3; break;
412 case 0x3F: j = 2; break;
413 case 0x7F: j = 1; break;
414 default: return -1;
415 }
416 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
417 return -1;
418 else
419 return i * 8 + j;
420 }
421
422 /*
423 * Construct a prefix.
424 */
make_addressPrefix(IPAddressOrRange ** result,unsigned char * addr,const int prefixlen)425 static int make_addressPrefix(IPAddressOrRange **result,
426 unsigned char *addr,
427 const int prefixlen)
428 {
429 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
430 IPAddressOrRange *aor = IPAddressOrRange_new();
431
432 if (aor == NULL)
433 return 0;
434 aor->type = IPAddressOrRange_addressPrefix;
435 if (aor->u.addressPrefix == NULL &&
436 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
437 goto err;
438 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
439 goto err;
440 aor->u.addressPrefix->flags &= ~7;
441 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
442 if (bitlen > 0) {
443 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
444 aor->u.addressPrefix->flags |= 8 - bitlen;
445 }
446
447 *result = aor;
448 return 1;
449
450 err:
451 IPAddressOrRange_free(aor);
452 return 0;
453 }
454
455 /*
456 * Construct a range. If it can be expressed as a prefix,
457 * return a prefix instead. Doing this here simplifies
458 * the rest of the code considerably.
459 */
make_addressRange(IPAddressOrRange ** result,unsigned char * min,unsigned char * max,const int length)460 static int make_addressRange(IPAddressOrRange **result,
461 unsigned char *min,
462 unsigned char *max,
463 const int length)
464 {
465 IPAddressOrRange *aor;
466 int i, prefixlen;
467
468 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
469 return make_addressPrefix(result, min, prefixlen);
470
471 if ((aor = IPAddressOrRange_new()) == NULL)
472 return 0;
473 aor->type = IPAddressOrRange_addressRange;
474 OPENSSL_assert(aor->u.addressRange == NULL);
475 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
476 goto err;
477 if (aor->u.addressRange->min == NULL &&
478 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
479 goto err;
480 if (aor->u.addressRange->max == NULL &&
481 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
482 goto err;
483
484 for (i = length; i > 0 && min[i - 1] == 0x00; --i)
485 ;
486 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
487 goto err;
488 aor->u.addressRange->min->flags &= ~7;
489 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
490 if (i > 0) {
491 unsigned char b = min[i - 1];
492 int j = 1;
493 while ((b & (0xFFU >> j)) != 0)
494 ++j;
495 aor->u.addressRange->min->flags |= 8 - j;
496 }
497
498 for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
499 ;
500 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
501 goto err;
502 aor->u.addressRange->max->flags &= ~7;
503 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
504 if (i > 0) {
505 unsigned char b = max[i - 1];
506 int j = 1;
507 while ((b & (0xFFU >> j)) != (0xFFU >> j))
508 ++j;
509 aor->u.addressRange->max->flags |= 8 - j;
510 }
511
512 *result = aor;
513 return 1;
514
515 err:
516 IPAddressOrRange_free(aor);
517 return 0;
518 }
519
520 /*
521 * Construct a new address family or find an existing one.
522 */
make_IPAddressFamily(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)523 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
524 const unsigned afi,
525 const unsigned *safi)
526 {
527 IPAddressFamily *f;
528 unsigned char key[3];
529 unsigned keylen;
530 int i;
531
532 key[0] = (afi >> 8) & 0xFF;
533 key[1] = afi & 0xFF;
534 if (safi != NULL) {
535 key[2] = *safi & 0xFF;
536 keylen = 3;
537 } else {
538 keylen = 2;
539 }
540
541 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
542 f = sk_IPAddressFamily_value(addr, i);
543 OPENSSL_assert(f->addressFamily->data != NULL);
544 if (f->addressFamily->length == keylen &&
545 !memcmp(f->addressFamily->data, key, keylen))
546 return f;
547 }
548
549 if ((f = IPAddressFamily_new()) == NULL)
550 goto err;
551 if (f->ipAddressChoice == NULL &&
552 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
553 goto err;
554 if (f->addressFamily == NULL &&
555 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
556 goto err;
557 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
558 goto err;
559 if (!sk_IPAddressFamily_push(addr, f))
560 goto err;
561
562 return f;
563
564 err:
565 IPAddressFamily_free(f);
566 return NULL;
567 }
568
569 /*
570 * Add an inheritance element.
571 */
v3_addr_add_inherit(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)572 int v3_addr_add_inherit(IPAddrBlocks *addr,
573 const unsigned afi,
574 const unsigned *safi)
575 {
576 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
577 if (f == NULL ||
578 f->ipAddressChoice == NULL ||
579 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
580 f->ipAddressChoice->u.addressesOrRanges != NULL))
581 return 0;
582 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
583 f->ipAddressChoice->u.inherit != NULL)
584 return 1;
585 if (f->ipAddressChoice->u.inherit == NULL &&
586 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
587 return 0;
588 f->ipAddressChoice->type = IPAddressChoice_inherit;
589 return 1;
590 }
591
592 /*
593 * Construct an IPAddressOrRange sequence, or return an existing one.
594 */
make_prefix_or_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi)595 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
596 const unsigned afi,
597 const unsigned *safi)
598 {
599 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
600 IPAddressOrRanges *aors = NULL;
601
602 if (f == NULL ||
603 f->ipAddressChoice == NULL ||
604 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
605 f->ipAddressChoice->u.inherit != NULL))
606 return NULL;
607 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
608 aors = f->ipAddressChoice->u.addressesOrRanges;
609 if (aors != NULL)
610 return aors;
611 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
612 return NULL;
613 switch (afi) {
614 case IANA_AFI_IPV4:
615 (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
616 break;
617 case IANA_AFI_IPV6:
618 (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
619 break;
620 }
621 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
622 f->ipAddressChoice->u.addressesOrRanges = aors;
623 return aors;
624 }
625
626 /*
627 * Add a prefix.
628 */
v3_addr_add_prefix(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * a,const int prefixlen)629 int v3_addr_add_prefix(IPAddrBlocks *addr,
630 const unsigned afi,
631 const unsigned *safi,
632 unsigned char *a,
633 const int prefixlen)
634 {
635 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636 IPAddressOrRange *aor;
637 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638 return 0;
639 if (sk_IPAddressOrRange_push(aors, aor))
640 return 1;
641 IPAddressOrRange_free(aor);
642 return 0;
643 }
644
645 /*
646 * Add a range.
647 */
v3_addr_add_range(IPAddrBlocks * addr,const unsigned afi,const unsigned * safi,unsigned char * min,unsigned char * max)648 int v3_addr_add_range(IPAddrBlocks *addr,
649 const unsigned afi,
650 const unsigned *safi,
651 unsigned char *min,
652 unsigned char *max)
653 {
654 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655 IPAddressOrRange *aor;
656 int length = length_from_afi(afi);
657 if (aors == NULL)
658 return 0;
659 if (!make_addressRange(&aor, min, max, length))
660 return 0;
661 if (sk_IPAddressOrRange_push(aors, aor))
662 return 1;
663 IPAddressOrRange_free(aor);
664 return 0;
665 }
666
667 /*
668 * Extract min and max values from an IPAddressOrRange.
669 */
extract_min_max(IPAddressOrRange * aor,unsigned char * min,unsigned char * max,int length)670 static int extract_min_max(IPAddressOrRange *aor,
671 unsigned char *min,
672 unsigned char *max,
673 int length)
674 {
675 if (aor == NULL || min == NULL || max == NULL)
676 return 0;
677 switch (aor->type) {
678 case IPAddressOrRange_addressPrefix:
679 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
680 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
681 case IPAddressOrRange_addressRange:
682 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
683 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
684 }
685 return 0;
686 }
687
688 /*
689 * Public wrapper for extract_min_max().
690 */
v3_addr_get_range(IPAddressOrRange * aor,const unsigned afi,unsigned char * min,unsigned char * max,const int length)691 int v3_addr_get_range(IPAddressOrRange *aor,
692 const unsigned afi,
693 unsigned char *min,
694 unsigned char *max,
695 const int length)
696 {
697 int afi_length = length_from_afi(afi);
698 if (aor == NULL || min == NULL || max == NULL ||
699 afi_length == 0 || length < afi_length ||
700 (aor->type != IPAddressOrRange_addressPrefix &&
701 aor->type != IPAddressOrRange_addressRange) ||
702 !extract_min_max(aor, min, max, afi_length))
703 return 0;
704
705 return afi_length;
706 }
707
708 /*
709 * Sort comparision function for a sequence of IPAddressFamily.
710 *
711 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
712 * the ordering: I can read it as meaning that IPv6 without a SAFI
713 * comes before IPv4 with a SAFI, which seems pretty weird. The
714 * examples in appendix B suggest that the author intended the
715 * null-SAFI rule to apply only within a single AFI, which is what I
716 * would have expected and is what the following code implements.
717 */
IPAddressFamily_cmp(const IPAddressFamily * const * a_,const IPAddressFamily * const * b_)718 static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
719 const IPAddressFamily * const *b_)
720 {
721 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
722 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
723 int len = ((a->length <= b->length) ? a->length : b->length);
724 int cmp = memcmp(a->data, b->data, len);
725 return cmp ? cmp : a->length - b->length;
726 }
727
728 /*
729 * Check whether an IPAddrBLocks is in canonical form.
730 */
v3_addr_is_canonical(IPAddrBlocks * addr)731 int v3_addr_is_canonical(IPAddrBlocks *addr)
732 {
733 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
734 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
735 IPAddressOrRanges *aors;
736 int i, j, k;
737
738 /*
739 * Empty extension is cannonical.
740 */
741 if (addr == NULL)
742 return 1;
743
744 /*
745 * Check whether the top-level list is in order.
746 */
747 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
748 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
749 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
750 if (IPAddressFamily_cmp(&a, &b) >= 0)
751 return 0;
752 }
753
754 /*
755 * Top level's ok, now check each address family.
756 */
757 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
758 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
759 int length = length_from_afi(v3_addr_get_afi(f));
760
761 /*
762 * Inheritance is canonical. Anything other than inheritance or
763 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
764 */
765 if (f == NULL || f->ipAddressChoice == NULL)
766 return 0;
767 switch (f->ipAddressChoice->type) {
768 case IPAddressChoice_inherit:
769 continue;
770 case IPAddressChoice_addressesOrRanges:
771 break;
772 default:
773 return 0;
774 }
775
776 /*
777 * It's an IPAddressOrRanges sequence, check it.
778 */
779 aors = f->ipAddressChoice->u.addressesOrRanges;
780 if (sk_IPAddressOrRange_num(aors) == 0)
781 return 0;
782 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
783 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
784 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
785
786 if (!extract_min_max(a, a_min, a_max, length) ||
787 !extract_min_max(b, b_min, b_max, length))
788 return 0;
789
790 /*
791 * Punt misordered list, overlapping start, or inverted range.
792 */
793 if (memcmp(a_min, b_min, length) >= 0 ||
794 memcmp(a_min, a_max, length) > 0 ||
795 memcmp(b_min, b_max, length) > 0)
796 return 0;
797
798 /*
799 * Punt if adjacent or overlapping. Check for adjacency by
800 * subtracting one from b_min first.
801 */
802 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
803 ;
804 if (memcmp(a_max, b_min, length) >= 0)
805 return 0;
806
807 /*
808 * Check for range that should be expressed as a prefix.
809 */
810 if (a->type == IPAddressOrRange_addressRange &&
811 range_should_be_prefix(a_min, a_max, length) >= 0)
812 return 0;
813 }
814
815 /*
816 * Check range to see if it's inverted or should be a
817 * prefix.
818 */
819 j = sk_IPAddressOrRange_num(aors) - 1;
820 {
821 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
822 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
823 if (!extract_min_max(a, a_min, a_max, length))
824 return 0;
825 if (memcmp(a_min, a_max, length) > 0 ||
826 range_should_be_prefix(a_min, a_max, length) >= 0)
827 return 0;
828 }
829 }
830 }
831
832 /*
833 * If we made it through all that, we're happy.
834 */
835 return 1;
836 }
837
838 /*
839 * Whack an IPAddressOrRanges into canonical form.
840 */
IPAddressOrRanges_canonize(IPAddressOrRanges * aors,const unsigned afi)841 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
842 const unsigned afi)
843 {
844 int i, j, length = length_from_afi(afi);
845
846 /*
847 * Sort the IPAddressOrRanges sequence.
848 */
849 sk_IPAddressOrRange_sort(aors);
850
851 /*
852 * Clean up representation issues, punt on duplicates or overlaps.
853 */
854 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
855 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
856 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
857 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
858 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
859
860 if (!extract_min_max(a, a_min, a_max, length) ||
861 !extract_min_max(b, b_min, b_max, length))
862 return 0;
863
864 /*
865 * Punt inverted ranges.
866 */
867 if (memcmp(a_min, a_max, length) > 0 ||
868 memcmp(b_min, b_max, length) > 0)
869 return 0;
870
871 /*
872 * Punt overlaps.
873 */
874 if (memcmp(a_max, b_min, length) >= 0)
875 return 0;
876
877 /*
878 * Merge if a and b are adjacent. We check for
879 * adjacency by subtracting one from b_min first.
880 */
881 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
882 ;
883 if (memcmp(a_max, b_min, length) == 0) {
884 IPAddressOrRange *merged;
885 if (!make_addressRange(&merged, a_min, b_max, length))
886 return 0;
887 (void) sk_IPAddressOrRange_set(aors, i, merged);
888 (void) sk_IPAddressOrRange_delete(aors, i + 1);
889 IPAddressOrRange_free(a);
890 IPAddressOrRange_free(b);
891 --i;
892 continue;
893 }
894 }
895
896 /*
897 * Check for inverted final range.
898 */
899 j = sk_IPAddressOrRange_num(aors) - 1;
900 {
901 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
902 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
903 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
904 extract_min_max(a, a_min, a_max, length);
905 if (memcmp(a_min, a_max, length) > 0)
906 return 0;
907 }
908 }
909
910 return 1;
911 }
912
913 /*
914 * Whack an IPAddrBlocks extension into canonical form.
915 */
v3_addr_canonize(IPAddrBlocks * addr)916 int v3_addr_canonize(IPAddrBlocks *addr)
917 {
918 int i;
919 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
920 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
921 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
922 !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
923 v3_addr_get_afi(f)))
924 return 0;
925 }
926 (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
927 sk_IPAddressFamily_sort(addr);
928 OPENSSL_assert(v3_addr_is_canonical(addr));
929 return 1;
930 }
931
932 /*
933 * v2i handler for the IPAddrBlocks extension.
934 */
v2i_IPAddrBlocks(const struct v3_ext_method * method,struct v3_ext_ctx * ctx,STACK_OF (CONF_VALUE)* values)935 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
936 struct v3_ext_ctx *ctx,
937 STACK_OF(CONF_VALUE) *values)
938 {
939 static const char v4addr_chars[] = "0123456789.";
940 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
941 IPAddrBlocks *addr = NULL;
942 char *s = NULL, *t;
943 int i;
944
945 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
946 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
947 return NULL;
948 }
949
950 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
951 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
952 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
953 unsigned afi, *safi = NULL, safi_;
954 const char *addr_chars;
955 int prefixlen, i1, i2, delim, length;
956
957 if ( !name_cmp(val->name, "IPv4")) {
958 afi = IANA_AFI_IPV4;
959 } else if (!name_cmp(val->name, "IPv6")) {
960 afi = IANA_AFI_IPV6;
961 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
962 afi = IANA_AFI_IPV4;
963 safi = &safi_;
964 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
965 afi = IANA_AFI_IPV6;
966 safi = &safi_;
967 } else {
968 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
969 X509V3_conf_err(val);
970 goto err;
971 }
972
973 switch (afi) {
974 case IANA_AFI_IPV4:
975 addr_chars = v4addr_chars;
976 break;
977 case IANA_AFI_IPV6:
978 addr_chars = v6addr_chars;
979 break;
980 }
981
982 length = length_from_afi(afi);
983
984 /*
985 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
986 * the other input values.
987 */
988 if (safi != NULL) {
989 *safi = strtoul(val->value, &t, 0);
990 t += strspn(t, " \t");
991 if (*safi > 0xFF || *t++ != ':') {
992 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
993 X509V3_conf_err(val);
994 goto err;
995 }
996 t += strspn(t, " \t");
997 s = BUF_strdup(t);
998 } else {
999 s = BUF_strdup(val->value);
1000 }
1001 if (s == NULL) {
1002 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1003 goto err;
1004 }
1005
1006 /*
1007 * Check for inheritance. Not worth additional complexity to
1008 * optimize this (seldom-used) case.
1009 */
1010 if (!strcmp(s, "inherit")) {
1011 if (!v3_addr_add_inherit(addr, afi, safi)) {
1012 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
1013 X509V3_conf_err(val);
1014 goto err;
1015 }
1016 OPENSSL_free(s);
1017 s = NULL;
1018 continue;
1019 }
1020
1021 i1 = strspn(s, addr_chars);
1022 i2 = i1 + strspn(s + i1, " \t");
1023 delim = s[i2++];
1024 s[i1] = '\0';
1025
1026 if (a2i_ipadd(min, s) != length) {
1027 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1028 X509V3_conf_err(val);
1029 goto err;
1030 }
1031
1032 switch (delim) {
1033 case '/':
1034 prefixlen = (int) strtoul(s + i2, &t, 10);
1035 if (t == s + i2 || *t != '\0') {
1036 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1037 X509V3_conf_err(val);
1038 goto err;
1039 }
1040 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1041 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1042 goto err;
1043 }
1044 break;
1045 case '-':
1046 i1 = i2 + strspn(s + i2, " \t");
1047 i2 = i1 + strspn(s + i1, addr_chars);
1048 if (i1 == i2 || s[i2] != '\0') {
1049 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1050 X509V3_conf_err(val);
1051 goto err;
1052 }
1053 if (a2i_ipadd(max, s + i1) != length) {
1054 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1055 X509V3_conf_err(val);
1056 goto err;
1057 }
1058 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1060 X509V3_conf_err(val);
1061 goto err;
1062 }
1063 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1064 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1065 goto err;
1066 }
1067 break;
1068 case '\0':
1069 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1070 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1071 goto err;
1072 }
1073 break;
1074 default:
1075 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1076 X509V3_conf_err(val);
1077 goto err;
1078 }
1079
1080 OPENSSL_free(s);
1081 s = NULL;
1082 }
1083
1084 /*
1085 * Canonize the result, then we're done.
1086 */
1087 if (!v3_addr_canonize(addr))
1088 goto err;
1089 return addr;
1090
1091 err:
1092 OPENSSL_free(s);
1093 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1094 return NULL;
1095 }
1096
1097 /*
1098 * OpenSSL dispatch
1099 */
1100 const X509V3_EXT_METHOD v3_addr = {
1101 NID_sbgp_ipAddrBlock, /* nid */
1102 0, /* flags */
1103 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1104 0, 0, 0, 0, /* old functions, ignored */
1105 0, /* i2s */
1106 0, /* s2i */
1107 0, /* i2v */
1108 v2i_IPAddrBlocks, /* v2i */
1109 i2r_IPAddrBlocks, /* i2r */
1110 0, /* r2i */
1111 NULL /* extension-specific data */
1112 };
1113
1114 /*
1115 * Figure out whether extension sues inheritance.
1116 */
v3_addr_inherits(IPAddrBlocks * addr)1117 int v3_addr_inherits(IPAddrBlocks *addr)
1118 {
1119 int i;
1120 if (addr == NULL)
1121 return 0;
1122 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1123 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1124 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1125 return 1;
1126 }
1127 return 0;
1128 }
1129
1130 /*
1131 * Figure out whether parent contains child.
1132 */
addr_contains(IPAddressOrRanges * parent,IPAddressOrRanges * child,int length)1133 static int addr_contains(IPAddressOrRanges *parent,
1134 IPAddressOrRanges *child,
1135 int length)
1136 {
1137 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1138 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1139 int p, c;
1140
1141 if (child == NULL || parent == child)
1142 return 1;
1143 if (parent == NULL)
1144 return 0;
1145
1146 p = 0;
1147 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1148 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1149 c_min, c_max, length))
1150 return -1;
1151 for (;; p++) {
1152 if (p >= sk_IPAddressOrRange_num(parent))
1153 return 0;
1154 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1155 p_min, p_max, length))
1156 return 0;
1157 if (memcmp(p_max, c_max, length) < 0)
1158 continue;
1159 if (memcmp(p_min, c_min, length) > 0)
1160 return 0;
1161 break;
1162 }
1163 }
1164
1165 return 1;
1166 }
1167
1168 /*
1169 * Test whether a is a subset of b.
1170 */
v3_addr_subset(IPAddrBlocks * a,IPAddrBlocks * b)1171 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1172 {
1173 int i;
1174 if (a == NULL || a == b)
1175 return 1;
1176 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1177 return 0;
1178 (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1179 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1180 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1181 int j = sk_IPAddressFamily_find(b, fa);
1182 IPAddressFamily *fb;
1183 fb = sk_IPAddressFamily_value(b, j);
1184 if (fb == NULL)
1185 return 0;
1186 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1187 fa->ipAddressChoice->u.addressesOrRanges,
1188 length_from_afi(v3_addr_get_afi(fb))))
1189 return 0;
1190 }
1191 return 1;
1192 }
1193
1194 /*
1195 * Validation error handling via callback.
1196 */
1197 #define validation_err(_err_) \
1198 do { \
1199 if (ctx != NULL) { \
1200 ctx->error = _err_; \
1201 ctx->error_depth = i; \
1202 ctx->current_cert = x; \
1203 ret = ctx->verify_cb(0, ctx); \
1204 } else { \
1205 ret = 0; \
1206 } \
1207 if (!ret) \
1208 goto done; \
1209 } while (0)
1210
1211 /*
1212 * Core code for RFC 3779 2.3 path validation.
1213 */
v3_addr_validate_path_internal(X509_STORE_CTX * ctx,STACK_OF (X509)* chain,IPAddrBlocks * ext)1214 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1215 STACK_OF(X509) *chain,
1216 IPAddrBlocks *ext)
1217 {
1218 IPAddrBlocks *child = NULL;
1219 int i, j, ret = 1;
1220 X509 *x;
1221
1222 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1223 OPENSSL_assert(ctx != NULL || ext != NULL);
1224 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1225
1226 /*
1227 * Figure out where to start. If we don't have an extension to
1228 * check, we're done. Otherwise, check canonical form and
1229 * set up for walking up the chain.
1230 */
1231 if (ext != NULL) {
1232 i = -1;
1233 x = NULL;
1234 } else {
1235 i = 0;
1236 x = sk_X509_value(chain, i);
1237 OPENSSL_assert(x != NULL);
1238 if ((ext = x->rfc3779_addr) == NULL)
1239 goto done;
1240 }
1241 if (!v3_addr_is_canonical(ext))
1242 validation_err(X509_V_ERR_INVALID_EXTENSION);
1243 (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1244 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1245 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1246 ret = 0;
1247 goto done;
1248 }
1249
1250 /*
1251 * Now walk up the chain. No cert may list resources that its
1252 * parent doesn't list.
1253 */
1254 for (i++; i < sk_X509_num(chain); i++) {
1255 x = sk_X509_value(chain, i);
1256 OPENSSL_assert(x != NULL);
1257 if (!v3_addr_is_canonical(x->rfc3779_addr))
1258 validation_err(X509_V_ERR_INVALID_EXTENSION);
1259 if (x->rfc3779_addr == NULL) {
1260 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1261 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1262 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1263 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1264 break;
1265 }
1266 }
1267 continue;
1268 }
1269 (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1270 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1271 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1272 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1273 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1274 if (fp == NULL) {
1275 if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1276 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1277 break;
1278 }
1279 continue;
1280 }
1281 if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1282 if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1283 addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1284 fc->ipAddressChoice->u.addressesOrRanges,
1285 length_from_afi(v3_addr_get_afi(fc))))
1286 sk_IPAddressFamily_set(child, j, fp);
1287 else
1288 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1289 }
1290 }
1291 }
1292
1293 /*
1294 * Trust anchor can't inherit.
1295 */
1296 OPENSSL_assert(x != NULL);
1297 if (x->rfc3779_addr != NULL) {
1298 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1299 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1300 if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1301 sk_IPAddressFamily_find(child, fp) >= 0)
1302 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1303 }
1304 }
1305
1306 done:
1307 sk_IPAddressFamily_free(child);
1308 return ret;
1309 }
1310
1311 #undef validation_err
1312
1313 /*
1314 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1315 */
v3_addr_validate_path(X509_STORE_CTX * ctx)1316 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1317 {
1318 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1319 }
1320
1321 /*
1322 * RFC 3779 2.3 path validation of an extension.
1323 * Test whether chain covers extension.
1324 */
v3_addr_validate_resource_set(STACK_OF (X509)* chain,IPAddrBlocks * ext,int allow_inheritance)1325 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1326 IPAddrBlocks *ext,
1327 int allow_inheritance)
1328 {
1329 if (ext == NULL)
1330 return 1;
1331 if (chain == NULL || sk_X509_num(chain) == 0)
1332 return 0;
1333 if (!allow_inheritance && v3_addr_inherits(ext))
1334 return 0;
1335 return v3_addr_validate_path_internal(NULL, chain, ext);
1336 }
1337
1338 #endif /* OPENSSL_NO_RFC3779 */
1339