• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helper.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 //#include "hw/loader.h"
13 #ifdef CONFIG_TRACE
14 #include "android-trace.h"
15 #endif
16 #endif
17 
18 static uint32_t cortexa9_cp15_c0_c1[8] =
19 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
20 
21 static uint32_t cortexa9_cp15_c0_c2[8] =
22 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
23 
24 static uint32_t cortexa8_cp15_c0_c1[8] =
25 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
26 
27 static uint32_t cortexa8_cp15_c0_c2[8] =
28 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
29 
30 static uint32_t cortexa8r2_cp15_c0_c2[8] =
31 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00011142, 0, 0, 0 };
32 
33 static uint32_t mpcore_cp15_c0_c1[8] =
34 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
35 
36 static uint32_t mpcore_cp15_c0_c2[8] =
37 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
38 
39 static uint32_t arm1136_cp15_c0_c1[8] =
40 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
41 
42 static uint32_t arm1136_cp15_c0_c2[8] =
43 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
44 
45 static uint32_t cpu_arm_find_by_name(const char *name);
46 
set_feature(CPUARMState * env,int feature)47 static inline void set_feature(CPUARMState *env, int feature)
48 {
49     env->features |= 1u << feature;
50 }
51 
cpu_reset_model_id(CPUARMState * env,uint32_t id)52 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
53 {
54     env->cp15.c0_cpuid = id;
55     switch (id) {
56     case ARM_CPUID_ARM926:
57         set_feature(env, ARM_FEATURE_V4T);
58         set_feature(env, ARM_FEATURE_V5);
59         set_feature(env, ARM_FEATURE_VFP);
60         env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
61         env->cp15.c0_cachetype = 0x1dd20d2;
62         env->cp15.c1_sys = 0x00090078;
63         break;
64     case ARM_CPUID_ARM946:
65         set_feature(env, ARM_FEATURE_V4T);
66         set_feature(env, ARM_FEATURE_V5);
67         set_feature(env, ARM_FEATURE_MPU);
68         env->cp15.c0_cachetype = 0x0f004006;
69         env->cp15.c1_sys = 0x00000078;
70         break;
71     case ARM_CPUID_ARM1026:
72         set_feature(env, ARM_FEATURE_V4T);
73         set_feature(env, ARM_FEATURE_V5);
74         set_feature(env, ARM_FEATURE_VFP);
75         set_feature(env, ARM_FEATURE_AUXCR);
76         env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
77         env->cp15.c0_cachetype = 0x1dd20d2;
78         env->cp15.c1_sys = 0x00090078;
79         break;
80     case ARM_CPUID_ARM1136_R2:
81     case ARM_CPUID_ARM1136:
82         set_feature(env, ARM_FEATURE_V4T);
83         set_feature(env, ARM_FEATURE_V5);
84         set_feature(env, ARM_FEATURE_V6);
85         set_feature(env, ARM_FEATURE_VFP);
86         set_feature(env, ARM_FEATURE_AUXCR);
87         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
88         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
89         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
90         memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
91         memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
92         env->cp15.c0_cachetype = 0x1dd20d2;
93         env->cp15.c1_sys = 0x00050078;
94         break;
95     case ARM_CPUID_ARM11MPCORE:
96         set_feature(env, ARM_FEATURE_V4T);
97         set_feature(env, ARM_FEATURE_V5);
98         set_feature(env, ARM_FEATURE_V6);
99         set_feature(env, ARM_FEATURE_V6K);
100         set_feature(env, ARM_FEATURE_VFP);
101         set_feature(env, ARM_FEATURE_AUXCR);
102         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
103         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
104         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
105         memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
106         memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
107         env->cp15.c0_cachetype = 0x1dd20d2;
108         break;
109     case ARM_CPUID_CORTEXA8:
110         set_feature(env, ARM_FEATURE_V4T);
111         set_feature(env, ARM_FEATURE_V5);
112         set_feature(env, ARM_FEATURE_V6);
113         set_feature(env, ARM_FEATURE_V6K);
114         set_feature(env, ARM_FEATURE_V7);
115         set_feature(env, ARM_FEATURE_AUXCR);
116         set_feature(env, ARM_FEATURE_THUMB2);
117         set_feature(env, ARM_FEATURE_VFP);
118         set_feature(env, ARM_FEATURE_VFP3);
119         set_feature(env, ARM_FEATURE_NEON);
120         set_feature(env, ARM_FEATURE_THUMB2EE);
121         set_feature(env, ARM_FEATURE_TRUSTZONE);
122         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
123         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
124         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
125         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
126         memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
127         env->cp15.c0_cachetype = 0x82048004;
128         env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
129         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
130         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
131         env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
132         env->cp15.c1_sys = 0x00c50078;
133         break;
134     case ARM_CPUID_CORTEXA8_R2:
135         set_feature(env, ARM_FEATURE_V4T);
136         set_feature(env, ARM_FEATURE_V5);
137         set_feature(env, ARM_FEATURE_V6);
138         set_feature(env, ARM_FEATURE_V6K);
139         set_feature(env, ARM_FEATURE_V7);
140         set_feature(env, ARM_FEATURE_AUXCR);
141         set_feature(env, ARM_FEATURE_THUMB2);
142         set_feature(env, ARM_FEATURE_VFP);
143         set_feature(env, ARM_FEATURE_VFP3);
144         set_feature(env, ARM_FEATURE_NEON);
145         set_feature(env, ARM_FEATURE_THUMB2EE);
146         set_feature(env, ARM_FEATURE_TRUSTZONE);
147         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c2;
148         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
149         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011111;
150         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
151         memcpy(env->cp15.c0_c2, cortexa8r2_cp15_c0_c2, 8 * sizeof(uint32_t));
152         env->cp15.c0_cachetype = 0x82048004;
153         env->cp15.c0_clid = (1 << 27) | (2 << 24) | (4 << 3) | 3;
154         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
155         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
156         env->cp15.c0_ccsid[2] = 0xf03fe03a; /* 256k L2 cache. */
157         env->cp15.c1_sys = 0x00c50078;
158         break;
159     case ARM_CPUID_CORTEXA9:
160         set_feature(env, ARM_FEATURE_V4T);
161         set_feature(env, ARM_FEATURE_V5);
162         set_feature(env, ARM_FEATURE_V6);
163         set_feature(env, ARM_FEATURE_V6K);
164         set_feature(env, ARM_FEATURE_V7);
165         set_feature(env, ARM_FEATURE_AUXCR);
166         set_feature(env, ARM_FEATURE_THUMB2);
167         set_feature(env, ARM_FEATURE_VFP);
168         set_feature(env, ARM_FEATURE_VFP3);
169         set_feature(env, ARM_FEATURE_VFP_FP16);
170         set_feature(env, ARM_FEATURE_NEON);
171         set_feature(env, ARM_FEATURE_THUMB2EE);
172         /* Note that A9 supports the MP extensions even for
173          * A9UP and single-core A9MP (which are both different
174          * and valid configurations; we don't model A9UP).
175          */
176         set_feature(env, ARM_FEATURE_V7MP);
177         set_feature(env, ARM_FEATURE_TRUSTZONE);
178         env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
179         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
180         env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
181         memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
182         memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
183         env->cp15.c0_cachetype = 0x80038003;
184         env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
185         env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
186         env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
187         env->cp15.c1_sys = 0x00c50078;
188         break;
189     case ARM_CPUID_CORTEXM3:
190         set_feature(env, ARM_FEATURE_V4T);
191         set_feature(env, ARM_FEATURE_V5);
192         set_feature(env, ARM_FEATURE_V6);
193         set_feature(env, ARM_FEATURE_THUMB2);
194         set_feature(env, ARM_FEATURE_V7);
195         set_feature(env, ARM_FEATURE_M);
196         set_feature(env, ARM_FEATURE_DIV);
197         break;
198     case ARM_CPUID_ANY: /* For userspace emulation.  */
199         set_feature(env, ARM_FEATURE_V4T);
200         set_feature(env, ARM_FEATURE_V5);
201         set_feature(env, ARM_FEATURE_V6);
202         set_feature(env, ARM_FEATURE_V6K);
203         set_feature(env, ARM_FEATURE_V7);
204         set_feature(env, ARM_FEATURE_THUMB2);
205         set_feature(env, ARM_FEATURE_VFP);
206         set_feature(env, ARM_FEATURE_VFP3);
207         set_feature(env, ARM_FEATURE_VFP_FP16);
208         set_feature(env, ARM_FEATURE_NEON);
209         set_feature(env, ARM_FEATURE_THUMB2EE);
210         set_feature(env, ARM_FEATURE_DIV);
211         set_feature(env, ARM_FEATURE_V7MP);
212         break;
213     case ARM_CPUID_TI915T:
214     case ARM_CPUID_TI925T:
215         set_feature(env, ARM_FEATURE_V4T);
216         set_feature(env, ARM_FEATURE_OMAPCP);
217         env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
218         env->cp15.c0_cachetype = 0x5109149;
219         env->cp15.c1_sys = 0x00000070;
220         env->cp15.c15_i_max = 0x000;
221         env->cp15.c15_i_min = 0xff0;
222         break;
223     case ARM_CPUID_PXA250:
224     case ARM_CPUID_PXA255:
225     case ARM_CPUID_PXA260:
226     case ARM_CPUID_PXA261:
227     case ARM_CPUID_PXA262:
228         set_feature(env, ARM_FEATURE_V4T);
229         set_feature(env, ARM_FEATURE_V5);
230         set_feature(env, ARM_FEATURE_XSCALE);
231         /* JTAG_ID is ((id << 28) | 0x09265013) */
232         env->cp15.c0_cachetype = 0xd172172;
233         env->cp15.c1_sys = 0x00000078;
234         break;
235     case ARM_CPUID_PXA270_A0:
236     case ARM_CPUID_PXA270_A1:
237     case ARM_CPUID_PXA270_B0:
238     case ARM_CPUID_PXA270_B1:
239     case ARM_CPUID_PXA270_C0:
240     case ARM_CPUID_PXA270_C5:
241         set_feature(env, ARM_FEATURE_V4T);
242         set_feature(env, ARM_FEATURE_V5);
243         set_feature(env, ARM_FEATURE_XSCALE);
244         /* JTAG_ID is ((id << 28) | 0x09265013) */
245         set_feature(env, ARM_FEATURE_IWMMXT);
246         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
247         env->cp15.c0_cachetype = 0xd172172;
248         env->cp15.c1_sys = 0x00000078;
249         break;
250     case ARM_CPUID_SA1100:
251     case ARM_CPUID_SA1110:
252         set_feature(env, ARM_FEATURE_STRONGARM);
253         env->cp15.c1_sys = 0x00000070;
254         break;
255     default:
256         cpu_abort(env, "Bad CPU ID: %x\n", id);
257         break;
258     }
259 }
260 
cpu_reset(CPUARMState * env)261 void cpu_reset(CPUARMState *env)
262 {
263     uint32_t id;
264 
265     if (qemu_loglevel_mask(CPU_LOG_RESET)) {
266         qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
267         log_cpu_state(env, 0);
268     }
269 
270     id = env->cp15.c0_cpuid;
271     memset(env, 0, offsetof(CPUARMState, breakpoints));
272     if (id)
273         cpu_reset_model_id(env, id);
274     /* DBGDIDR : we implement nothing, and just mirror the main ID
275      * register's Variant and Revision fields.
276      */
277     env->cp14_dbgdidr = (id >> 16 & 0xf0) | 0xf;
278 #if defined (CONFIG_USER_ONLY)
279     env->uncached_cpsr = ARM_CPU_MODE_USR;
280     /* For user mode we must enable access to coprocessors */
281     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
282     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
283         env->cp15.c15_cpar = 3;
284     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
285         env->cp15.c15_cpar = 1;
286     }
287 #else
288     /* SVC mode with interrupts disabled.  */
289     env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
290     /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
291        clear at reset.  Initial SP and PC are loaded from ROM.  */
292     if (IS_M(env)) {
293         uint32_t pc;
294         uint8_t *rom;
295         env->uncached_cpsr &= ~CPSR_I;
296 #ifndef CONFIG_ANDROID  /* No hw/loader.h and no ROM support for now on Android */
297         rom = rom_ptr(0);
298         if (rom) {
299             /* We should really use ldl_phys here, in case the guest
300                modified flash and reset itself.  However images
301                loaded via -kenrel have not been copied yet, so load the
302                values directly from there.  */
303             env->regs[13] = ldl_p(rom);
304             pc = ldl_p(rom + 4);
305             env->thumb = pc & 1;
306             env->regs[15] = pc & ~1;
307         }
308 #endif
309     }
310     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
311     env->cp15.c2_base_mask = 0xffffc000u;
312 #endif
313     set_flush_to_zero(1, &env->vfp.standard_fp_status);
314     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
315     set_default_nan_mode(1, &env->vfp.standard_fp_status);
316     set_float_detect_tininess(float_tininess_before_rounding,
317                               &env->vfp.fp_status);
318     set_float_detect_tininess(float_tininess_before_rounding,
319                               &env->vfp.standard_fp_status);
320     tlb_flush(env, 1);
321 }
322 
vfp_gdb_get_reg(CPUState * env,uint8_t * buf,int reg)323 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
324 {
325     int nregs;
326 
327     /* VFP data registers are always little-endian.  */
328     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
329     if (reg < nregs) {
330         stfq_le_p(buf, env->vfp.regs[reg]);
331         return 8;
332     }
333     if (arm_feature(env, ARM_FEATURE_NEON)) {
334         /* Aliases for Q regs.  */
335         nregs += 16;
336         if (reg < nregs) {
337             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
338             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
339             return 16;
340         }
341     }
342     switch (reg - nregs) {
343     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
344     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
345     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
346     }
347     return 0;
348 }
349 
vfp_gdb_set_reg(CPUState * env,uint8_t * buf,int reg)350 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
351 {
352     int nregs;
353 
354     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
355     if (reg < nregs) {
356         env->vfp.regs[reg] = ldfq_le_p(buf);
357         return 8;
358     }
359     if (arm_feature(env, ARM_FEATURE_NEON)) {
360         nregs += 16;
361         if (reg < nregs) {
362             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
363             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
364             return 16;
365         }
366     }
367     switch (reg - nregs) {
368     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
369     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
370     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
371     }
372     return 0;
373 }
374 
cpu_arm_init(const char * cpu_model)375 CPUARMState *cpu_arm_init(const char *cpu_model)
376 {
377     CPUARMState *env;
378     uint32_t id;
379     static int inited = 0;
380 
381     id = cpu_arm_find_by_name(cpu_model);
382     if (id == 0)
383         return NULL;
384     env = qemu_mallocz(sizeof(CPUARMState));
385     cpu_exec_init(env);
386     if (!inited) {
387         inited = 1;
388         arm_translate_init();
389     }
390 
391     env->cpu_model_str = cpu_model;
392     env->cp15.c0_cpuid = id;
393     cpu_reset(env);
394     if (arm_feature(env, ARM_FEATURE_NEON)) {
395         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
396                                  51, "arm-neon.xml", 0);
397     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
398         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
399                                  35, "arm-vfp3.xml", 0);
400     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
401         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
402                                  19, "arm-vfp.xml", 0);
403     }
404     qemu_init_vcpu(env);
405     return env;
406 }
407 
408 struct arm_cpu_t {
409     uint32_t id;
410     const char *name;
411 };
412 
413 static const struct arm_cpu_t arm_cpu_names[] = {
414     { ARM_CPUID_ARM926, "arm926"},
415     { ARM_CPUID_ARM946, "arm946"},
416     { ARM_CPUID_ARM1026, "arm1026"},
417     { ARM_CPUID_ARM1136, "arm1136"},
418     { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
419     { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
420     { ARM_CPUID_CORTEXM3, "cortex-m3"},
421     { ARM_CPUID_CORTEXA8, "cortex-a8"},
422     { ARM_CPUID_CORTEXA8_R2, "cortex-a8-r2"},
423     { ARM_CPUID_CORTEXA9, "cortex-a9"},
424     { ARM_CPUID_TI925T, "ti925t" },
425     { ARM_CPUID_PXA250, "pxa250" },
426     { ARM_CPUID_SA1100,    "sa1100" },
427     { ARM_CPUID_SA1110,    "sa1110" },
428     { ARM_CPUID_PXA255, "pxa255" },
429     { ARM_CPUID_PXA260, "pxa260" },
430     { ARM_CPUID_PXA261, "pxa261" },
431     { ARM_CPUID_PXA262, "pxa262" },
432     { ARM_CPUID_PXA270, "pxa270" },
433     { ARM_CPUID_PXA270_A0, "pxa270-a0" },
434     { ARM_CPUID_PXA270_A1, "pxa270-a1" },
435     { ARM_CPUID_PXA270_B0, "pxa270-b0" },
436     { ARM_CPUID_PXA270_B1, "pxa270-b1" },
437     { ARM_CPUID_PXA270_C0, "pxa270-c0" },
438     { ARM_CPUID_PXA270_C5, "pxa270-c5" },
439     { ARM_CPUID_ANY, "any"},
440     { 0, NULL}
441 };
442 
arm_cpu_list(FILE * f,fprintf_function cpu_fprintf)443 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
444 {
445     int i;
446 
447     (*cpu_fprintf)(f, "Available CPUs:\n");
448     for (i = 0; arm_cpu_names[i].name; i++) {
449         (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
450     }
451 }
452 
453 /* return 0 if not found */
cpu_arm_find_by_name(const char * name)454 static uint32_t cpu_arm_find_by_name(const char *name)
455 {
456     int i;
457     uint32_t id;
458 
459     id = 0;
460     for (i = 0; arm_cpu_names[i].name; i++) {
461         if (strcmp(name, arm_cpu_names[i].name) == 0) {
462             id = arm_cpu_names[i].id;
463             break;
464         }
465     }
466     return id;
467 }
468 
cpu_arm_close(CPUARMState * env)469 void cpu_arm_close(CPUARMState *env)
470 {
471     free(env);
472 }
473 
cpsr_read(CPUARMState * env)474 uint32_t cpsr_read(CPUARMState *env)
475 {
476     int ZF;
477     ZF = (env->ZF == 0);
478     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
479         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
480         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
481         | ((env->condexec_bits & 0xfc) << 8)
482         | (env->GE << 16);
483 }
484 
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)485 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
486 {
487     if (mask & CPSR_NZCV) {
488         env->ZF = (~val) & CPSR_Z;
489         env->NF = val;
490         env->CF = (val >> 29) & 1;
491         env->VF = (val << 3) & 0x80000000;
492     }
493     if (mask & CPSR_Q)
494         env->QF = ((val & CPSR_Q) != 0);
495     if (mask & CPSR_T)
496         env->thumb = ((val & CPSR_T) != 0);
497     if (mask & CPSR_IT_0_1) {
498         env->condexec_bits &= ~3;
499         env->condexec_bits |= (val >> 25) & 3;
500     }
501     if (mask & CPSR_IT_2_7) {
502         env->condexec_bits &= 3;
503         env->condexec_bits |= (val >> 8) & 0xfc;
504     }
505     if (mask & CPSR_GE) {
506         env->GE = (val >> 16) & 0xf;
507     }
508 
509     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
510         switch_mode(env, val & CPSR_M);
511     }
512     mask &= ~CACHED_CPSR_BITS;
513     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
514 }
515 
516 /* Sign/zero extend */
HELPER(sxtb16)517 uint32_t HELPER(sxtb16)(uint32_t x)
518 {
519     uint32_t res;
520     res = (uint16_t)(int8_t)x;
521     res |= (uint32_t)(int8_t)(x >> 16) << 16;
522     return res;
523 }
524 
HELPER(uxtb16)525 uint32_t HELPER(uxtb16)(uint32_t x)
526 {
527     uint32_t res;
528     res = (uint16_t)(uint8_t)x;
529     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
530     return res;
531 }
532 
HELPER(clz)533 uint32_t HELPER(clz)(uint32_t x)
534 {
535     return clz32(x);
536 }
537 
HELPER(sdiv)538 int32_t HELPER(sdiv)(int32_t num, int32_t den)
539 {
540     if (den == 0)
541       return 0;
542     if (num == INT_MIN && den == -1)
543       return INT_MIN;
544     return num / den;
545 }
546 
HELPER(udiv)547 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
548 {
549     if (den == 0)
550       return 0;
551     return num / den;
552 }
553 
HELPER(rbit)554 uint32_t HELPER(rbit)(uint32_t x)
555 {
556     x =  ((x & 0xff000000) >> 24)
557        | ((x & 0x00ff0000) >> 8)
558        | ((x & 0x0000ff00) << 8)
559        | ((x & 0x000000ff) << 24);
560     x =  ((x & 0xf0f0f0f0) >> 4)
561        | ((x & 0x0f0f0f0f) << 4);
562     x =  ((x & 0x88888888) >> 3)
563        | ((x & 0x44444444) >> 1)
564        | ((x & 0x22222222) << 1)
565        | ((x & 0x11111111) << 3);
566     return x;
567 }
568 
HELPER(abs)569 uint32_t HELPER(abs)(uint32_t x)
570 {
571     return ((int32_t)x < 0) ? -x : x;
572 }
573 
574 #if defined(CONFIG_USER_ONLY)
575 
do_interrupt(CPUState * env)576 void do_interrupt (CPUState *env)
577 {
578     env->exception_index = -1;
579 }
580 
cpu_arm_handle_mmu_fault(CPUState * env,target_ulong address,int rw,int mmu_idx,int is_softmmu)581 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
582                               int mmu_idx, int is_softmmu)
583 {
584     if (rw == 2) {
585         env->exception_index = EXCP_PREFETCH_ABORT;
586         env->cp15.c6_insn = address;
587     } else {
588         env->exception_index = EXCP_DATA_ABORT;
589         env->cp15.c6_data = address;
590     }
591     return 1;
592 }
593 
594 /* These should probably raise undefined insn exceptions.  */
HELPER(set_cp15)595 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
596 {
597     cpu_abort(env, "cp15 insn %08x\n", insn);
598 }
599 
HELPER(get_cp15)600 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
601 {
602     cpu_abort(env, "cp15 insn %08x\n", insn);
603     return 0;
604 }
605 
606 /* These should probably raise undefined insn exceptions.  */
HELPER(v7m_msr)607 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
608 {
609     cpu_abort(env, "v7m_mrs %d\n", reg);
610 }
611 
HELPER(v7m_mrs)612 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
613 {
614     cpu_abort(env, "v7m_mrs %d\n", reg);
615     return 0;
616 }
617 
switch_mode(CPUState * env,int mode)618 void switch_mode(CPUState *env, int mode)
619 {
620     if (mode != ARM_CPU_MODE_USR)
621         cpu_abort(env, "Tried to switch out of user mode\n");
622 }
623 
HELPER(set_r13_banked)624 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
625 {
626     cpu_abort(env, "banked r13 write\n");
627 }
628 
HELPER(get_r13_banked)629 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
630 {
631     cpu_abort(env, "banked r13 read\n");
632     return 0;
633 }
634 
635 #else
636 
637 extern int semihosting_enabled;
638 
639 /* Map CPU modes onto saved register banks.  */
bank_number(int mode)640 static inline int bank_number (int mode)
641 {
642     switch (mode) {
643     case ARM_CPU_MODE_USR:
644     case ARM_CPU_MODE_SYS:
645         return 0;
646     case ARM_CPU_MODE_SVC:
647         return 1;
648     case ARM_CPU_MODE_ABT:
649         return 2;
650     case ARM_CPU_MODE_UND:
651         return 3;
652     case ARM_CPU_MODE_IRQ:
653         return 4;
654     case ARM_CPU_MODE_FIQ:
655         return 5;
656     case ARM_CPU_MODE_SMC:
657         return 6;
658     }
659     cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
660     return -1;
661 }
662 
switch_mode(CPUState * env,int mode)663 void switch_mode(CPUState *env, int mode)
664 {
665     int old_mode;
666     int i;
667 
668     old_mode = env->uncached_cpsr & CPSR_M;
669     if (mode == old_mode)
670         return;
671 
672     if (old_mode == ARM_CPU_MODE_FIQ) {
673         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
674         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
675     } else if (mode == ARM_CPU_MODE_FIQ) {
676         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
677         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
678     }
679 
680     i = bank_number(old_mode);
681     env->banked_r13[i] = env->regs[13];
682     env->banked_r14[i] = env->regs[14];
683     env->banked_spsr[i] = env->spsr;
684 
685     i = bank_number(mode);
686     env->regs[13] = env->banked_r13[i];
687     env->regs[14] = env->banked_r14[i];
688     env->spsr = env->banked_spsr[i];
689 }
690 
v7m_push(CPUARMState * env,uint32_t val)691 static void v7m_push(CPUARMState *env, uint32_t val)
692 {
693     env->regs[13] -= 4;
694     stl_phys(env->regs[13], val);
695 }
696 
v7m_pop(CPUARMState * env)697 static uint32_t v7m_pop(CPUARMState *env)
698 {
699     uint32_t val;
700     val = ldl_phys(env->regs[13]);
701     env->regs[13] += 4;
702     return val;
703 }
704 
705 /* Switch to V7M main or process stack pointer.  */
switch_v7m_sp(CPUARMState * env,int process)706 static void switch_v7m_sp(CPUARMState *env, int process)
707 {
708     uint32_t tmp;
709     if (env->v7m.current_sp != process) {
710         tmp = env->v7m.other_sp;
711         env->v7m.other_sp = env->regs[13];
712         env->regs[13] = tmp;
713         env->v7m.current_sp = process;
714     }
715 }
716 
do_v7m_exception_exit(CPUARMState * env)717 static void do_v7m_exception_exit(CPUARMState *env)
718 {
719     uint32_t type;
720     uint32_t xpsr;
721 
722     type = env->regs[15];
723     if (env->v7m.exception != 0)
724         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
725 
726     /* Switch to the target stack.  */
727     switch_v7m_sp(env, (type & 4) != 0);
728     /* Pop registers.  */
729     env->regs[0] = v7m_pop(env);
730     env->regs[1] = v7m_pop(env);
731     env->regs[2] = v7m_pop(env);
732     env->regs[3] = v7m_pop(env);
733     env->regs[12] = v7m_pop(env);
734     env->regs[14] = v7m_pop(env);
735     env->regs[15] = v7m_pop(env);
736     xpsr = v7m_pop(env);
737     xpsr_write(env, xpsr, 0xfffffdff);
738     /* Undo stack alignment.  */
739     if (xpsr & 0x200)
740         env->regs[13] |= 4;
741     /* ??? The exception return type specifies Thread/Handler mode.  However
742        this is also implied by the xPSR value. Not sure what to do
743        if there is a mismatch.  */
744     /* ??? Likewise for mismatches between the CONTROL register and the stack
745        pointer.  */
746 }
747 
do_interrupt_v7m(CPUARMState * env)748 static void do_interrupt_v7m(CPUARMState *env)
749 {
750     uint32_t xpsr = xpsr_read(env);
751     uint32_t lr;
752     uint32_t addr;
753 
754     lr = 0xfffffff1;
755     if (env->v7m.current_sp)
756         lr |= 4;
757     if (env->v7m.exception == 0)
758         lr |= 8;
759 
760     /* For exceptions we just mark as pending on the NVIC, and let that
761        handle it.  */
762     /* TODO: Need to escalate if the current priority is higher than the
763        one we're raising.  */
764     switch (env->exception_index) {
765     case EXCP_UDEF:
766         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
767         return;
768     case EXCP_SWI:
769         env->regs[15] += 2;
770         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
771         return;
772     case EXCP_PREFETCH_ABORT:
773     case EXCP_DATA_ABORT:
774         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
775         return;
776     case EXCP_BKPT:
777         if (semihosting_enabled) {
778             int nr;
779             nr = lduw_code(env->regs[15]) & 0xff;
780             if (nr == 0xab) {
781                 env->regs[15] += 2;
782                 env->regs[0] = do_arm_semihosting(env);
783                 return;
784             }
785         }
786         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
787         return;
788     case EXCP_IRQ:
789         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
790         break;
791     case EXCP_EXCEPTION_EXIT:
792         do_v7m_exception_exit(env);
793         return;
794     default:
795         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
796         return; /* Never happens.  Keep compiler happy.  */
797     }
798 
799     /* Align stack pointer.  */
800     /* ??? Should only do this if Configuration Control Register
801        STACKALIGN bit is set.  */
802     if (env->regs[13] & 4) {
803         env->regs[13] -= 4;
804         xpsr |= 0x200;
805     }
806     /* Switch to the handler mode.  */
807     v7m_push(env, xpsr);
808     v7m_push(env, env->regs[15]);
809     v7m_push(env, env->regs[14]);
810     v7m_push(env, env->regs[12]);
811     v7m_push(env, env->regs[3]);
812     v7m_push(env, env->regs[2]);
813     v7m_push(env, env->regs[1]);
814     v7m_push(env, env->regs[0]);
815     switch_v7m_sp(env, 0);
816     env->uncached_cpsr &= ~CPSR_IT;
817     env->regs[14] = lr;
818     addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
819     env->regs[15] = addr & 0xfffffffe;
820     env->thumb = addr & 1;
821 }
822 
823 /* Handle a CPU exception.  */
do_interrupt(CPUARMState * env)824 void do_interrupt(CPUARMState *env)
825 {
826     uint32_t addr;
827     uint32_t mask;
828     int new_mode;
829     uint32_t offset;
830 
831 #ifdef CONFIG_TRACE
832     if (tracing) {
833         trace_exception(env->regs[15]);
834     }
835 #endif
836 
837     if (IS_M(env)) {
838         do_interrupt_v7m(env);
839         return;
840     }
841     /* TODO: Vectored interrupt controller.  */
842     switch (env->exception_index) {
843     case EXCP_UDEF:
844         new_mode = ARM_CPU_MODE_UND;
845         addr = 0x04;
846         mask = CPSR_I;
847         if (env->thumb)
848             offset = 2;
849         else
850             offset = 4;
851         break;
852     case EXCP_SWI:
853         if (semihosting_enabled) {
854             /* Check for semihosting interrupt.  */
855             if (env->thumb) {
856                 mask = lduw_code(env->regs[15] - 2) & 0xff;
857             } else {
858                 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
859             }
860             /* Only intercept calls from privileged modes, to provide some
861                semblance of security.  */
862             if (((mask == 0x123456 && !env->thumb)
863                     || (mask == 0xab && env->thumb))
864                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
865                 env->regs[0] = do_arm_semihosting(env);
866                 return;
867             }
868         }
869         new_mode = ARM_CPU_MODE_SVC;
870         addr = 0x08;
871         mask = CPSR_I;
872         /* The PC already points to the next instruction.  */
873         offset = 0;
874         break;
875     case EXCP_BKPT:
876         /* See if this is a semihosting syscall.  */
877         if (env->thumb && semihosting_enabled) {
878             mask = lduw_code(env->regs[15]) & 0xff;
879             if (mask == 0xab
880                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
881                 env->regs[15] += 2;
882                 env->regs[0] = do_arm_semihosting(env);
883                 return;
884             }
885         }
886         /* Fall through to prefetch abort.  */
887     case EXCP_PREFETCH_ABORT:
888         new_mode = ARM_CPU_MODE_ABT;
889         addr = 0x0c;
890         mask = CPSR_A | CPSR_I;
891         offset = 4;
892         break;
893     case EXCP_DATA_ABORT:
894         new_mode = ARM_CPU_MODE_ABT;
895         addr = 0x10;
896         mask = CPSR_A | CPSR_I;
897         offset = 8;
898         break;
899     case EXCP_IRQ:
900         new_mode = ARM_CPU_MODE_IRQ;
901         addr = 0x18;
902         /* Disable IRQ and imprecise data aborts.  */
903         mask = CPSR_A | CPSR_I;
904         offset = 4;
905         break;
906     case EXCP_FIQ:
907         new_mode = ARM_CPU_MODE_FIQ;
908         addr = 0x1c;
909         /* Disable FIQ, IRQ and imprecise data aborts.  */
910         mask = CPSR_A | CPSR_I | CPSR_F;
911         offset = 4;
912         break;
913     case EXCP_SMC:
914         if (semihosting_enabled) {
915             cpu_abort(env, "SMC handling under semihosting not implemented\n");
916             return;
917         }
918         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
919             env->cp15.c1_secfg &= ~1;
920         }
921         offset = env->thumb ? 2 : 0;
922         new_mode = ARM_CPU_MODE_SMC;
923         addr = 0x08;
924         mask = CPSR_A | CPSR_I | CPSR_F;
925         break;
926     default:
927         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
928         return; /* Never happens.  Keep compiler happy.  */
929     }
930     if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
931         if (new_mode == ARM_CPU_MODE_SMC ||
932             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
933             addr += env->cp15.c12_mvbar;
934         } else {
935             if (env->cp15.c1_sys & (1 << 13)) {
936                 addr += 0xffff0000;
937             } else {
938                 addr += env->cp15.c12_vbar;
939             }
940         }
941     } else {
942     /* High vectors.  */
943     if (env->cp15.c1_sys & (1 << 13)) {
944         addr += 0xffff0000;
945         }
946     }
947     switch_mode (env, new_mode);
948     env->spsr = cpsr_read(env);
949     /* Clear IT bits.  */
950     env->condexec_bits = 0;
951     /* Switch to the new mode, and to the correct instruction set.  */
952     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
953     env->uncached_cpsr |= mask;
954     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
955      * and we should just guard the thumb mode on V4 */
956     if (arm_feature(env, ARM_FEATURE_V4T)) {
957         env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
958     }
959     env->regs[14] = env->regs[15] + offset;
960     env->regs[15] = addr;
961     env->interrupt_request |= CPU_INTERRUPT_EXITTB;
962 }
963 
964 /* Check section/page access permissions.
965    Returns the page protection flags, or zero if the access is not
966    permitted.  */
check_ap(CPUState * env,int ap,int domain,int access_type,int is_user)967 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
968                            int is_user)
969 {
970   int prot_ro;
971 
972   if (domain == 3)
973     return PAGE_READ | PAGE_WRITE;
974 
975   if (access_type == 1)
976       prot_ro = 0;
977   else
978       prot_ro = PAGE_READ;
979 
980   switch (ap) {
981   case 0:
982       if (access_type == 1)
983           return 0;
984       switch ((env->cp15.c1_sys >> 8) & 3) {
985       case 1:
986           return is_user ? 0 : PAGE_READ;
987       case 2:
988           return PAGE_READ;
989       default:
990           return 0;
991       }
992   case 1:
993       return is_user ? 0 : PAGE_READ | PAGE_WRITE;
994   case 2:
995       if (is_user)
996           return prot_ro;
997       else
998           return PAGE_READ | PAGE_WRITE;
999   case 3:
1000       return PAGE_READ | PAGE_WRITE;
1001   case 4: /* Reserved.  */
1002       return 0;
1003   case 5:
1004       return is_user ? 0 : prot_ro;
1005   case 6:
1006       return prot_ro;
1007   case 7:
1008       if (!arm_feature (env, ARM_FEATURE_V7))
1009           return 0;
1010       return prot_ro;
1011   default:
1012       abort();
1013   }
1014 }
1015 
get_level1_table_address(CPUState * env,uint32_t address)1016 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
1017 {
1018     uint32_t table;
1019 
1020     if (address & env->cp15.c2_mask)
1021         table = env->cp15.c2_base1 & 0xffffc000;
1022     else
1023         table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1024 
1025     table |= (address >> 18) & 0x3ffc;
1026     return table;
1027 }
1028 
get_phys_addr_v5(CPUState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot,target_ulong * page_size)1029 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
1030 			    int is_user, uint32_t *phys_ptr, int *prot,
1031                             target_ulong *page_size)
1032 {
1033     int code;
1034     uint32_t table;
1035     uint32_t desc;
1036     int type;
1037     int ap;
1038     int domain;
1039     uint32_t phys_addr;
1040 
1041     /* Pagetable walk.  */
1042     /* Lookup l1 descriptor.  */
1043     table = get_level1_table_address(env, address);
1044     desc = ldl_phys(table);
1045     type = (desc & 3);
1046     domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
1047     if (type == 0) {
1048         /* Section translation fault.  */
1049         code = 5;
1050         goto do_fault;
1051     }
1052     if (domain == 0 || domain == 2) {
1053         if (type == 2)
1054             code = 9; /* Section domain fault.  */
1055         else
1056             code = 11; /* Page domain fault.  */
1057         goto do_fault;
1058     }
1059     if (type == 2) {
1060         /* 1Mb section.  */
1061         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1062         ap = (desc >> 10) & 3;
1063         code = 13;
1064         *page_size = 1024 * 1024;
1065     } else {
1066         /* Lookup l2 entry.  */
1067 	if (type == 1) {
1068 	    /* Coarse pagetable.  */
1069 	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1070 	} else {
1071 	    /* Fine pagetable.  */
1072 	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1073 	}
1074         desc = ldl_phys(table);
1075         switch (desc & 3) {
1076         case 0: /* Page translation fault.  */
1077             code = 7;
1078             goto do_fault;
1079         case 1: /* 64k page.  */
1080             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1081             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1082             *page_size = 0x10000;
1083             break;
1084         case 2: /* 4k page.  */
1085             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1086             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1087             *page_size = 0x1000;
1088             break;
1089         case 3: /* 1k page.  */
1090 	    if (type == 1) {
1091 		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1092 		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1093 		} else {
1094 		    /* Page translation fault.  */
1095 		    code = 7;
1096 		    goto do_fault;
1097 		}
1098 	    } else {
1099 		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1100 	    }
1101             ap = (desc >> 4) & 3;
1102             *page_size = 0x400;
1103             break;
1104         default:
1105             /* Never happens, but compiler isn't smart enough to tell.  */
1106             abort();
1107         }
1108         code = 15;
1109     }
1110     *prot = check_ap(env, ap, domain, access_type, is_user);
1111     if (!*prot) {
1112         /* Access permission fault.  */
1113         goto do_fault;
1114     }
1115     *prot |= PAGE_EXEC;
1116     *phys_ptr = phys_addr;
1117     return 0;
1118 do_fault:
1119     return code | (domain << 4);
1120 }
1121 
get_phys_addr_v6(CPUState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot,target_ulong * page_size)1122 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1123 			    int is_user, uint32_t *phys_ptr, int *prot,
1124                             target_ulong *page_size)
1125 {
1126     int code;
1127     uint32_t table;
1128     uint32_t desc;
1129     uint32_t xn;
1130     int type;
1131     int ap;
1132     int domain;
1133     uint32_t phys_addr;
1134 
1135     /* Pagetable walk.  */
1136     /* Lookup l1 descriptor.  */
1137     table = get_level1_table_address(env, address);
1138     desc = ldl_phys(table);
1139     type = (desc & 3);
1140     if (type == 0 || type == 3) {
1141         /* Section translation fault.  */
1142         code = 5;
1143         domain = 0;
1144         goto do_fault;
1145     } else if (type == 2 && (desc & (1 << 18))) {
1146         /* Supersection.  */
1147         domain = 0;
1148     } else {
1149         /* Section or page.  */
1150         domain = (desc >> 4) & 0x1e;
1151     }
1152     domain = (env->cp15.c3 >> domain) & 3;
1153     if (domain == 0 || domain == 2) {
1154         if (type == 2)
1155             code = 9; /* Section domain fault.  */
1156         else
1157             code = 11; /* Page domain fault.  */
1158         goto do_fault;
1159     }
1160     if (type == 2) {
1161         if (desc & (1 << 18)) {
1162             /* Supersection.  */
1163             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1164             *page_size = 0x1000000;
1165         } else {
1166             /* Section.  */
1167             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1168             *page_size = 0x100000;
1169         }
1170         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1171         xn = desc & (1 << 4);
1172         code = 13;
1173     } else {
1174         /* Lookup l2 entry.  */
1175         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1176         desc = ldl_phys(table);
1177         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1178         switch (desc & 3) {
1179         case 0: /* Page translation fault.  */
1180             code = 7;
1181             goto do_fault;
1182         case 1: /* 64k page.  */
1183             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1184             xn = desc & (1 << 15);
1185             *page_size = 0x10000;
1186             break;
1187         case 2: case 3: /* 4k page.  */
1188             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1189             xn = desc & 1;
1190             *page_size = 0x1000;
1191             break;
1192         default:
1193             /* Never happens, but compiler isn't smart enough to tell.  */
1194             abort();
1195         }
1196         code = 15;
1197     }
1198     if (domain == 3) {
1199         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1200     } else {
1201     if (xn && access_type == 2)
1202         goto do_fault;
1203 
1204     /* The simplified model uses AP[0] as an access control bit.  */
1205     if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1206         /* Access flag fault.  */
1207         code = (code == 15) ? 6 : 3;
1208         goto do_fault;
1209     }
1210     *prot = check_ap(env, ap, domain, access_type, is_user);
1211     if (!*prot) {
1212         /* Access permission fault.  */
1213         goto do_fault;
1214         }
1215         if (!xn) {
1216             *prot |= PAGE_EXEC;
1217         }
1218     }
1219     *phys_ptr = phys_addr;
1220     return 0;
1221 do_fault:
1222     return code | (domain << 4);
1223 }
1224 
get_phys_addr_mpu(CPUState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot)1225 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1226 			     int is_user, uint32_t *phys_ptr, int *prot)
1227 {
1228     int n;
1229     uint32_t mask;
1230     uint32_t base;
1231 
1232     *phys_ptr = address;
1233     for (n = 7; n >= 0; n--) {
1234 	base = env->cp15.c6_region[n];
1235 	if ((base & 1) == 0)
1236 	    continue;
1237 	mask = 1 << ((base >> 1) & 0x1f);
1238 	/* Keep this shift separate from the above to avoid an
1239 	   (undefined) << 32.  */
1240 	mask = (mask << 1) - 1;
1241 	if (((base ^ address) & ~mask) == 0)
1242 	    break;
1243     }
1244     if (n < 0)
1245 	return 2;
1246 
1247     if (access_type == 2) {
1248 	mask = env->cp15.c5_insn;
1249     } else {
1250 	mask = env->cp15.c5_data;
1251     }
1252     mask = (mask >> (n * 4)) & 0xf;
1253     switch (mask) {
1254     case 0:
1255 	return 1;
1256     case 1:
1257 	if (is_user)
1258 	  return 1;
1259 	*prot = PAGE_READ | PAGE_WRITE;
1260 	break;
1261     case 2:
1262 	*prot = PAGE_READ;
1263 	if (!is_user)
1264 	    *prot |= PAGE_WRITE;
1265 	break;
1266     case 3:
1267 	*prot = PAGE_READ | PAGE_WRITE;
1268 	break;
1269     case 5:
1270 	if (is_user)
1271 	    return 1;
1272 	*prot = PAGE_READ;
1273 	break;
1274     case 6:
1275 	*prot = PAGE_READ;
1276 	break;
1277     default:
1278 	/* Bad permission.  */
1279 	return 1;
1280     }
1281     *prot |= PAGE_EXEC;
1282     return 0;
1283 }
1284 
1285 #ifdef CONFIG_GLES2
1286 int get_phys_addr(CPUState *env, uint32_t address,
1287                   int access_type, int is_user,
1288                   uint32_t *phys_ptr, int *prot,
1289                   target_ulong *page_size);
1290 #else
1291 static
1292 #endif
get_phys_addr(CPUState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot,target_ulong * page_size)1293 int get_phys_addr(CPUState *env, uint32_t address,
1294                                 int access_type, int is_user,
1295                                 uint32_t *phys_ptr, int *prot,
1296                                 target_ulong *page_size)
1297 {
1298     /* Fast Context Switch Extension.  */
1299     if (address < 0x02000000)
1300         address += env->cp15.c13_fcse;
1301 
1302     if ((env->cp15.c1_sys & 1) == 0) {
1303         /* MMU/MPU disabled.  */
1304         *phys_ptr = address;
1305         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1306         *page_size = TARGET_PAGE_SIZE;
1307         return 0;
1308     } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1309         *page_size = TARGET_PAGE_SIZE;
1310 	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1311 				 prot);
1312     } else if (env->cp15.c1_sys & (1 << 23)) {
1313         return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1314                                 prot, page_size);
1315     } else {
1316         return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1317                                 prot, page_size);
1318     }
1319 }
1320 
cpu_arm_handle_mmu_fault(CPUState * env,target_ulong address,int access_type,int mmu_idx,int is_softmmu)1321 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1322                               int access_type, int mmu_idx, int is_softmmu)
1323 {
1324     uint32_t phys_addr;
1325     target_ulong page_size;
1326     int prot;
1327     int ret, is_user;
1328 
1329     is_user = mmu_idx == MMU_USER_IDX;
1330     ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1331                         &page_size);
1332     if (ret == 0) {
1333         /* Map a single [sub]page.  */
1334         phys_addr &= ~(uint32_t)0x3ff;
1335         address &= ~(uint32_t)0x3ff;
1336         tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1337         return 0;
1338     }
1339 
1340     if (access_type == 2) {
1341         env->cp15.c5_insn = ret;
1342         env->cp15.c6_insn = address;
1343         env->exception_index = EXCP_PREFETCH_ABORT;
1344     } else {
1345         env->cp15.c5_data = ret;
1346         if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1347             env->cp15.c5_data |= (1 << 11);
1348         env->cp15.c6_data = address;
1349         env->exception_index = EXCP_DATA_ABORT;
1350     }
1351     return 1;
1352 }
1353 
cpu_get_phys_page_debug(CPUState * env,target_ulong addr)1354 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1355 {
1356     uint32_t phys_addr;
1357     target_ulong page_size;
1358     int prot;
1359     int ret;
1360 
1361     ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1362 
1363     if (ret != 0)
1364         return -1;
1365 
1366     return phys_addr;
1367 }
1368 
1369 /* Return basic MPU access permission bits.  */
simple_mpu_ap_bits(uint32_t val)1370 static uint32_t simple_mpu_ap_bits(uint32_t val)
1371 {
1372     uint32_t ret;
1373     uint32_t mask;
1374     int i;
1375     ret = 0;
1376     mask = 3;
1377     for (i = 0; i < 16; i += 2) {
1378         ret |= (val >> i) & mask;
1379         mask <<= 2;
1380     }
1381     return ret;
1382 }
1383 
1384 /* Pad basic MPU access permission bits to extended format.  */
extended_mpu_ap_bits(uint32_t val)1385 static uint32_t extended_mpu_ap_bits(uint32_t val)
1386 {
1387     uint32_t ret;
1388     uint32_t mask;
1389     int i;
1390     ret = 0;
1391     mask = 3;
1392     for (i = 0; i < 16; i += 2) {
1393         ret |= (val & mask) << i;
1394         mask <<= 2;
1395     }
1396     return ret;
1397 }
1398 
HELPER(set_cp15)1399 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1400 {
1401     int op1;
1402     int op2;
1403     int crm;
1404 
1405     op1 = (insn >> 21) & 7;
1406     op2 = (insn >> 5) & 7;
1407     crm = insn & 0xf;
1408     switch ((insn >> 16) & 0xf) {
1409     case 0:
1410         /* ID codes.  */
1411         if (arm_feature(env, ARM_FEATURE_XSCALE))
1412             break;
1413         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1414             break;
1415         if (arm_feature(env, ARM_FEATURE_V7)
1416                 && op1 == 2 && crm == 0 && op2 == 0) {
1417             env->cp15.c0_cssel = val & 0xf;
1418             break;
1419         }
1420         goto bad_reg;
1421     case 1: /* System configuration.  */
1422         switch (crm) {
1423         case 0:
1424         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1425             op2 = 0;
1426         switch (op2) {
1427         case 0:
1428                 if (!arm_feature(env, ARM_FEATURE_XSCALE))
1429                 env->cp15.c1_sys = val;
1430             /* ??? Lots of these bits are not implemented.  */
1431             /* This may enable/disable the MMU, so do a TLB flush.  */
1432             tlb_flush(env, 1);
1433             break;
1434             case 1: /* Auxiliary control register.  */
1435             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1436                 env->cp15.c1_xscaleauxcr = val;
1437                 break;
1438             }
1439             /* Not implemented.  */
1440             break;
1441         case 2:
1442             if (arm_feature(env, ARM_FEATURE_XSCALE))
1443                 goto bad_reg;
1444             if (env->cp15.c1_coproc != val) {
1445                 env->cp15.c1_coproc = val;
1446                 /* ??? Is this safe when called from within a TB?  */
1447                 tb_flush(env);
1448                 }
1449                 break;
1450             default:
1451                 goto bad_reg;
1452             }
1453             break;
1454         case 1:
1455             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
1456                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
1457                 goto bad_reg;
1458             switch (op2) {
1459             case 0: /* Secure configuration register. */
1460                 if (env->cp15.c1_secfg & 1)
1461                     goto bad_reg;
1462                 env->cp15.c1_secfg = val;
1463                 break;
1464             case 1: /* Secure debug enable register. */
1465                 if (env->cp15.c1_secfg & 1)
1466                     goto bad_reg;
1467                 env->cp15.c1_sedbg = val;
1468                 break;
1469             case 2: /* Nonsecure access control register. */
1470                 if (env->cp15.c1_secfg & 1)
1471                     goto bad_reg;
1472                 env->cp15.c1_nseac = val;
1473                 break;
1474             default:
1475                 goto bad_reg;
1476             }
1477             break;
1478         default:
1479             goto bad_reg;
1480         }
1481         break;
1482     case 2: /* MMU Page table control / MPU cache control.  */
1483         if (arm_feature(env, ARM_FEATURE_MPU)) {
1484             switch (op2) {
1485             case 0:
1486                 env->cp15.c2_data = val;
1487                 break;
1488             case 1:
1489                 env->cp15.c2_insn = val;
1490                 break;
1491             default:
1492                 goto bad_reg;
1493             }
1494         } else {
1495 	    switch (op2) {
1496 	    case 0:
1497 		env->cp15.c2_base0 = val;
1498 		break;
1499 	    case 1:
1500 		env->cp15.c2_base1 = val;
1501 		break;
1502 	    case 2:
1503                 val &= 7;
1504                 env->cp15.c2_control = val;
1505 		env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1506                 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1507 		break;
1508 	    default:
1509 		goto bad_reg;
1510 	    }
1511         }
1512         break;
1513     case 3: /* MMU Domain access control / MPU write buffer control.  */
1514         env->cp15.c3 = val;
1515         tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1516         break;
1517     case 4: /* Reserved.  */
1518         goto bad_reg;
1519     case 5: /* MMU Fault status / MPU access permission.  */
1520         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1521             op2 = 0;
1522         switch (op2) {
1523         case 0:
1524             if (arm_feature(env, ARM_FEATURE_MPU))
1525                 val = extended_mpu_ap_bits(val);
1526             env->cp15.c5_data = val;
1527             break;
1528         case 1:
1529             if (arm_feature(env, ARM_FEATURE_MPU))
1530                 val = extended_mpu_ap_bits(val);
1531             env->cp15.c5_insn = val;
1532             break;
1533         case 2:
1534             if (!arm_feature(env, ARM_FEATURE_MPU))
1535                 goto bad_reg;
1536             env->cp15.c5_data = val;
1537             break;
1538         case 3:
1539             if (!arm_feature(env, ARM_FEATURE_MPU))
1540                 goto bad_reg;
1541             env->cp15.c5_insn = val;
1542             break;
1543         default:
1544             goto bad_reg;
1545         }
1546         break;
1547     case 6: /* MMU Fault address / MPU base/size.  */
1548         if (arm_feature(env, ARM_FEATURE_MPU)) {
1549             if (crm >= 8)
1550                 goto bad_reg;
1551             env->cp15.c6_region[crm] = val;
1552         } else {
1553             if (arm_feature(env, ARM_FEATURE_OMAPCP))
1554                 op2 = 0;
1555             switch (op2) {
1556             case 0:
1557                 env->cp15.c6_data = val;
1558                 break;
1559             case 1: /* ??? This is WFAR on armv6 */
1560             case 2:
1561                 env->cp15.c6_insn = val;
1562                 break;
1563             default:
1564                 goto bad_reg;
1565             }
1566         }
1567         break;
1568     case 7: /* Cache control.  */
1569         env->cp15.c15_i_max = 0x000;
1570         env->cp15.c15_i_min = 0xff0;
1571         if (op1 != 0) {
1572             goto bad_reg;
1573         }
1574         /* No cache, so nothing to do except VA->PA translations. */
1575         if (arm_feature(env, ARM_FEATURE_V6K)) {
1576             switch (crm) {
1577             case 4:
1578                 if (arm_feature(env, ARM_FEATURE_V7)) {
1579                     env->cp15.c7_par = val & 0xfffff6ff;
1580                 } else {
1581                     env->cp15.c7_par = val & 0xfffff1ff;
1582                 }
1583                 break;
1584             case 8: {
1585                 uint32_t phys_addr;
1586                 target_ulong page_size;
1587                 int prot;
1588                 int ret, is_user = op2 & 2;
1589                 int access_type = op2 & 1;
1590 
1591                 if (op2 & 4) {
1592                     /* Other states are only available with TrustZone */
1593                     goto bad_reg;
1594                 }
1595                 ret = get_phys_addr(env, val, access_type, is_user,
1596                                     &phys_addr, &prot, &page_size);
1597                 if (ret == 0) {
1598                     /* We do not set any attribute bits in the PAR */
1599                     if (page_size == (1 << 24)
1600                         && arm_feature(env, ARM_FEATURE_V7)) {
1601                         env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1602                     } else {
1603                         env->cp15.c7_par = phys_addr & 0xfffff000;
1604                     }
1605                 } else {
1606                     env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1607                                        ((ret & (12 << 1)) >> 6) |
1608                                        ((ret & 0xf) << 1) | 1;
1609                 }
1610                 break;
1611             }
1612             }
1613         }
1614         break;
1615     case 8: /* MMU TLB control.  */
1616         switch (op2) {
1617         case 0: /* Invalidate all.  */
1618             tlb_flush(env, 0);
1619             break;
1620         case 1: /* Invalidate single TLB entry.  */
1621             tlb_flush_page(env, val & TARGET_PAGE_MASK);
1622             break;
1623         case 2: /* Invalidate on ASID.  */
1624             tlb_flush(env, val == 0);
1625             break;
1626         case 3: /* Invalidate single entry on MVA.  */
1627             /* ??? This is like case 1, but ignores ASID.  */
1628             tlb_flush(env, 1);
1629             break;
1630         default:
1631             goto bad_reg;
1632         }
1633         break;
1634     case 9:
1635         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1636             break;
1637         if (arm_feature(env, ARM_FEATURE_STRONGARM))
1638             break; /* Ignore ReadBuffer access */
1639         switch (crm) {
1640         case 0: /* Cache lockdown.  */
1641 	    switch (op1) {
1642 	    case 0: /* L1 cache.  */
1643 		switch (op2) {
1644 		case 0:
1645 		    env->cp15.c9_data = val;
1646 		    break;
1647 		case 1:
1648 		    env->cp15.c9_insn = val;
1649 		    break;
1650 		default:
1651 		    goto bad_reg;
1652 		}
1653 		break;
1654 	    case 1: /* L2 cache.  */
1655                 switch (op2) {
1656                 case 0: /* L2 cache lockdown */
1657                 case 2: /* L2 cache auxiliary control */
1658                     /* ignore */
1659                     break;
1660                 default:
1661                     goto bad_reg;
1662                 }
1663 		break;
1664 	    default:
1665 		goto bad_reg;
1666 	    }
1667 	    break;
1668         case 1: /* TCM memory region registers.  */
1669         case 2:
1670             /* Not implemented.  */
1671             goto bad_reg;
1672         case 12: /* performance monitor control */
1673             if (arm_feature(env, ARM_FEATURE_V7)) {
1674                 switch (op2) {
1675                 case 0: /* performance monitor control */
1676                     env->cp15.c9_pmcr_data = val;
1677                     break;
1678                 case 1: /* count enable set */
1679                 case 2: /* count enable clear */
1680                 case 3: /* overflow flag status */
1681                 case 4: /* software increment */
1682                 case 5: /* performance counter selection */
1683                     /* not implemented */
1684                     goto bad_reg;
1685                 default:
1686                     goto bad_reg;
1687                 }
1688             } else {
1689                 goto bad_reg;
1690             }
1691             break;
1692         case 13: /* performance counters */
1693             if (arm_feature(env, ARM_FEATURE_V7)) {
1694                 switch (op2) {
1695                 case 0: /* cycle count */
1696                 case 1: /* event selection */
1697                 case 2: /* performance monitor count */
1698                     /* not implemented */
1699                     goto bad_reg;
1700                 default:
1701                     goto bad_reg;
1702                 }
1703             } else {
1704                 goto bad_reg;
1705             }
1706             break;
1707         case 14: /* performance monitor control */
1708             if (arm_feature(env, ARM_FEATURE_V7)) {
1709                 switch (op2) {
1710                 case 0: /* user enable */
1711                     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
1712                         goto bad_reg;
1713                     }
1714                     env->cp15.c9_useren = val & 1;
1715                     break;
1716                 case 1: /* interrupt enable set */
1717                     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
1718                         goto bad_reg;
1719                     }
1720                     env->cp15.c9_inten |= val & 0xf;
1721                     break;
1722                 case 2: /* interrupt enable clear */
1723                     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
1724                         goto bad_reg;
1725                     }
1726                     env->cp15.c9_inten &= ~(val & 0xf);
1727                     break;
1728                 default:
1729                     goto bad_reg;
1730                 }
1731             } else {
1732                 goto bad_reg;
1733             }
1734             break;
1735         default:
1736             goto bad_reg;
1737         }
1738         break;
1739     case 10: /* MMU TLB lockdown.  */
1740         /* ??? TLB lockdown not implemented.  */
1741         break;
1742     case 12: /* Reserved.  */
1743         if (!op1 && !crm) {
1744             switch (op2) {
1745             case 0:
1746                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
1747                     goto bad_reg;
1748                 }
1749                 env->cp15.c12_vbar = val & ~0x1f;
1750                 break;
1751             case 1:
1752                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
1753                     goto bad_reg;
1754                 }
1755                 if (!(env->cp15.c1_secfg & 1)) {
1756                     env->cp15.c12_mvbar = val & ~0x1f;
1757                 }
1758                 break;
1759             default:
1760                 goto bad_reg;
1761             }
1762             break;
1763         }
1764         goto bad_reg;
1765     case 13: /* Process ID.  */
1766         switch (op2) {
1767         case 0:
1768             /* Unlike real hardware the qemu TLB uses virtual addresses,
1769                not modified virtual addresses, so this causes a TLB flush.
1770              */
1771             if (env->cp15.c13_fcse != val)
1772               tlb_flush(env, 1);
1773             env->cp15.c13_fcse = val;
1774             break;
1775         case 1:
1776             /* This changes the ASID, so do a TLB flush.  */
1777             if (env->cp15.c13_context != val
1778                 && !arm_feature(env, ARM_FEATURE_MPU))
1779               tlb_flush(env, 0);
1780             env->cp15.c13_context = val;
1781             break;
1782         default:
1783             goto bad_reg;
1784         }
1785         break;
1786     case 14: /* Reserved.  */
1787         goto bad_reg;
1788     case 15: /* Implementation specific.  */
1789         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1790             if (op2 == 0 && crm == 1) {
1791                 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1792                     /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1793                     tb_flush(env);
1794                     env->cp15.c15_cpar = val & 0x3fff;
1795                 }
1796                 break;
1797             }
1798             goto bad_reg;
1799         }
1800         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1801             switch (crm) {
1802             case 0:
1803                 break;
1804             case 1: /* Set TI925T configuration.  */
1805                 env->cp15.c15_ticonfig = val & 0xe7;
1806                 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1807                         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1808                 break;
1809             case 2: /* Set I_max.  */
1810                 env->cp15.c15_i_max = val;
1811                 break;
1812             case 3: /* Set I_min.  */
1813                 env->cp15.c15_i_min = val;
1814                 break;
1815             case 4: /* Set thread-ID.  */
1816                 env->cp15.c15_threadid = val & 0xffff;
1817                 break;
1818             case 8: /* Wait-for-interrupt (deprecated).  */
1819                 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1820                 break;
1821             default:
1822                 goto bad_reg;
1823             }
1824         }
1825         break;
1826     }
1827     return;
1828 bad_reg:
1829     /* ??? For debugging only.  Should raise illegal instruction exception.  */
1830     cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1831               (insn >> 16) & 0xf, crm, op1, op2);
1832 }
1833 
HELPER(get_cp15)1834 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1835 {
1836     int op1;
1837     int op2;
1838     int crm;
1839 
1840     op1 = (insn >> 21) & 7;
1841     op2 = (insn >> 5) & 7;
1842     crm = insn & 0xf;
1843     switch ((insn >> 16) & 0xf) {
1844     case 0: /* ID codes.  */
1845         switch (op1) {
1846         case 0:
1847             switch (crm) {
1848             case 0:
1849                 switch (op2) {
1850                 case 0: /* Device ID.  */
1851                     return env->cp15.c0_cpuid;
1852                 case 1: /* Cache Type.  */
1853 		    return env->cp15.c0_cachetype;
1854                 case 2: /* TCM status.  */
1855                     return 0;
1856                 case 3: /* TLB type register.  */
1857                     return 0; /* No lockable TLB entries.  */
1858                 case 5: /* MPIDR */
1859                     /* The MPIDR was standardised in v7; prior to
1860                      * this it was implemented only in the 11MPCore.
1861                      * For all other pre-v7 cores it does not exist.
1862                      */
1863                     if (arm_feature(env, ARM_FEATURE_V7) ||
1864                         ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1865                         int mpidr = env->cpu_index;
1866                         /* We don't support setting cluster ID ([8..11])
1867                          * so these bits always RAZ.
1868                          */
1869                         if (arm_feature(env, ARM_FEATURE_V7MP)) {
1870                             mpidr |= (1 << 31);
1871                             /* Cores which are uniprocessor (non-coherent)
1872                              * but still implement the MP extensions set
1873                              * bit 30. (For instance, A9UP.) However we do
1874                              * not currently model any of those cores.
1875                              */
1876                         }
1877                         return mpidr;
1878                     }
1879                     /* otherwise fall through to the unimplemented-reg case */
1880                 default:
1881                     goto bad_reg;
1882                 }
1883             case 1:
1884                 if (!arm_feature(env, ARM_FEATURE_V6))
1885                     goto bad_reg;
1886                 return env->cp15.c0_c1[op2];
1887             case 2:
1888                 if (!arm_feature(env, ARM_FEATURE_V6))
1889                     goto bad_reg;
1890                 return env->cp15.c0_c2[op2];
1891             case 3: case 4: case 5: case 6: case 7:
1892                 return 0;
1893             default:
1894                 goto bad_reg;
1895             }
1896             break;
1897         case 1:
1898             /* These registers aren't documented on arm11 cores.  However
1899                Linux looks at them anyway.  */
1900             if (!arm_feature(env, ARM_FEATURE_V6))
1901                 goto bad_reg;
1902             if (crm != 0)
1903                 goto bad_reg;
1904             if (!arm_feature(env, ARM_FEATURE_V7))
1905                 return 0;
1906 
1907             switch (op2) {
1908             case 0:
1909                 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1910             case 1:
1911                 return env->cp15.c0_clid;
1912             case 7:
1913                 return 0;
1914             }
1915             goto bad_reg;
1916         case 2:
1917             if (op2 != 0 || crm != 0)
1918                 goto bad_reg;
1919             return env->cp15.c0_cssel;
1920         default:
1921             goto bad_reg;
1922         }
1923         break;
1924     case 1: /* System configuration.  */
1925         switch (crm) {
1926         case 0:
1927         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1928             op2 = 0;
1929         switch (op2) {
1930         case 0: /* Control register.  */
1931             return env->cp15.c1_sys;
1932         case 1: /* Auxiliary control register.  */
1933             if (arm_feature(env, ARM_FEATURE_XSCALE))
1934                 return env->cp15.c1_xscaleauxcr;
1935             if (!arm_feature(env, ARM_FEATURE_AUXCR))
1936                 goto bad_reg;
1937             switch (ARM_CPUID(env)) {
1938             case ARM_CPUID_ARM1026:
1939                 return 1;
1940             case ARM_CPUID_ARM1136:
1941             case ARM_CPUID_ARM1136_R2:
1942                 return 7;
1943             case ARM_CPUID_ARM11MPCORE:
1944                 return 1;
1945             case ARM_CPUID_CORTEXA8:
1946                 case ARM_CPUID_CORTEXA8_R2:
1947                 return 2;
1948                 case ARM_CPUID_CORTEXA9:
1949                     return 0;
1950             default:
1951                 goto bad_reg;
1952             }
1953                 break;
1954         case 2: /* Coprocessor access register.  */
1955             if (arm_feature(env, ARM_FEATURE_XSCALE))
1956                 goto bad_reg;
1957             return env->cp15.c1_coproc;
1958         default:
1959             goto bad_reg;
1960         }
1961             break;
1962         case 1:
1963             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
1964                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
1965                 goto bad_reg;
1966             switch (op2) {
1967             case 0: /* Secure configuration register. */
1968                 if (env->cp15.c1_secfg & 1)
1969                     goto bad_reg;
1970                 return env->cp15.c1_secfg;
1971             case 1: /* Secure debug enable register. */
1972                 if (env->cp15.c1_secfg & 1)
1973                     goto bad_reg;
1974                 return env->cp15.c1_sedbg;
1975             case 2: /* Nonsecure access control register. */
1976                 return env->cp15.c1_nseac;
1977             default:
1978                 goto bad_reg;
1979             }
1980             break;
1981         default:
1982             goto bad_reg;
1983         }
1984         break;
1985     case 2: /* MMU Page table control / MPU cache control.  */
1986         if (arm_feature(env, ARM_FEATURE_MPU)) {
1987             switch (op2) {
1988             case 0:
1989                 return env->cp15.c2_data;
1990                 break;
1991             case 1:
1992                 return env->cp15.c2_insn;
1993                 break;
1994             default:
1995                 goto bad_reg;
1996             }
1997         } else {
1998 	    switch (op2) {
1999 	    case 0:
2000 		return env->cp15.c2_base0;
2001 	    case 1:
2002 		return env->cp15.c2_base1;
2003 	    case 2:
2004                 return env->cp15.c2_control;
2005 	    default:
2006 		goto bad_reg;
2007 	    }
2008 	}
2009     case 3: /* MMU Domain access control / MPU write buffer control.  */
2010         return env->cp15.c3;
2011     case 4: /* Reserved.  */
2012         goto bad_reg;
2013     case 5: /* MMU Fault status / MPU access permission.  */
2014         if (arm_feature(env, ARM_FEATURE_OMAPCP))
2015             op2 = 0;
2016         switch (op2) {
2017         case 0:
2018             if (arm_feature(env, ARM_FEATURE_MPU))
2019                 return simple_mpu_ap_bits(env->cp15.c5_data);
2020             return env->cp15.c5_data;
2021         case 1:
2022             if (arm_feature(env, ARM_FEATURE_MPU))
2023                 return simple_mpu_ap_bits(env->cp15.c5_data);
2024             return env->cp15.c5_insn;
2025         case 2:
2026             if (!arm_feature(env, ARM_FEATURE_MPU))
2027                 goto bad_reg;
2028             return env->cp15.c5_data;
2029         case 3:
2030             if (!arm_feature(env, ARM_FEATURE_MPU))
2031                 goto bad_reg;
2032             return env->cp15.c5_insn;
2033         default:
2034             goto bad_reg;
2035         }
2036     case 6: /* MMU Fault address.  */
2037         if (arm_feature(env, ARM_FEATURE_MPU)) {
2038             if (crm >= 8)
2039                 goto bad_reg;
2040             return env->cp15.c6_region[crm];
2041         } else {
2042             if (arm_feature(env, ARM_FEATURE_OMAPCP))
2043                 op2 = 0;
2044 	    switch (op2) {
2045 	    case 0:
2046 		return env->cp15.c6_data;
2047 	    case 1:
2048 		if (arm_feature(env, ARM_FEATURE_V6)) {
2049 		    /* Watchpoint Fault Adrress.  */
2050 		    return 0; /* Not implemented.  */
2051                 }
2052 		    /* Instruction Fault Adrress.  */
2053 		    /* Arm9 doesn't have an IFAR, but implementing it anyway
2054 		       shouldn't do any harm.  */
2055 		    return env->cp15.c6_insn;
2056 	    case 2:
2057 		if (arm_feature(env, ARM_FEATURE_V6)) {
2058 		    /* Instruction Fault Adrress.  */
2059 		    return env->cp15.c6_insn;
2060 		}
2061                 goto bad_reg;
2062 	    default:
2063 		goto bad_reg;
2064 	    }
2065         }
2066     case 7: /* Cache control.  */
2067         if (crm == 4 && op1 == 0 && op2 == 0) {
2068             return env->cp15.c7_par;
2069         }
2070         if (((insn >> 12) & 0xf) == 0xf) /* clear ZF only if destination is r15 */
2071         env->ZF = 0;
2072         return 0;
2073     case 8: /* MMU TLB control.  */
2074         goto bad_reg;
2075     case 9: /* Cache lockdown.  */
2076         switch (op1) {
2077         case 0:
2078 	    if (arm_feature(env, ARM_FEATURE_OMAPCP))
2079 		return 0;
2080             switch (crm) {
2081             case 0: /* L1 cache */
2082             switch (op2) {
2083             case 0:
2084                 return env->cp15.c9_data;
2085             case 1:
2086                 return env->cp15.c9_insn;
2087             default:
2088                 goto bad_reg;
2089             }
2090                 break;
2091             case 12:
2092                 switch (op2) {
2093                 case 0:
2094                     return env->cp15.c9_pmcr_data;
2095                 default:
2096                     goto bad_reg;
2097                 }
2098                 break;
2099             case 14: /* performance monitor control */
2100                 if (arm_feature(env, ARM_FEATURE_V7)) {
2101                     switch (op2) {
2102                     case 0: /* user enable */
2103                         return env->cp15.c9_useren;
2104                     case 1: /* interrupt enable set */
2105                     case 2: /* interrupt enable clear */
2106                         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
2107                             goto bad_reg;
2108                         }
2109                         return env->cp15.c9_inten;
2110                     default:
2111                         goto bad_reg;
2112                     }
2113                 } else {
2114                     goto bad_reg;
2115                 }
2116                 break;
2117             default:
2118                 goto bad_reg;
2119             }
2120             break;
2121         case 1: /* L2 cache */
2122             if (crm != 0)
2123                 goto bad_reg;
2124             /* L2 Lockdown and Auxiliary control.  */
2125             return 0;
2126         default:
2127             goto bad_reg;
2128         }
2129     case 10: /* MMU TLB lockdown.  */
2130         /* ??? TLB lockdown not implemented.  */
2131         return 0;
2132     case 11: /* TCM DMA control.  */
2133     case 12: /* Reserved.  */
2134         if (!op1 && !crm) {
2135             switch (op2) {
2136             case 0: /* secure or nonsecure vector base address */
2137                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
2138                     return env->cp15.c12_vbar;
2139                 }
2140                 break;
2141             case 1: /* monitor vector base address */
2142                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
2143                     return env->cp15.c12_mvbar;
2144                 }
2145                 break;
2146             default:
2147                 break;
2148             }
2149         }
2150         goto bad_reg;
2151     case 13: /* Process ID.  */
2152         switch (op2) {
2153         case 0:
2154             return env->cp15.c13_fcse;
2155         case 1:
2156             return env->cp15.c13_context;
2157         default:
2158             goto bad_reg;
2159         }
2160     case 14: /* Reserved.  */
2161         goto bad_reg;
2162     case 15: /* Implementation specific.  */
2163         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2164             if (op2 == 0 && crm == 1)
2165                 return env->cp15.c15_cpar;
2166 
2167             goto bad_reg;
2168         }
2169         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2170             switch (crm) {
2171             case 0:
2172                 return 0;
2173             case 1: /* Read TI925T configuration.  */
2174                 return env->cp15.c15_ticonfig;
2175             case 2: /* Read I_max.  */
2176                 return env->cp15.c15_i_max;
2177             case 3: /* Read I_min.  */
2178                 return env->cp15.c15_i_min;
2179             case 4: /* Read thread-ID.  */
2180                 return env->cp15.c15_threadid;
2181             case 8: /* TI925T_status */
2182                 return 0;
2183             }
2184             /* TODO: Peripheral port remap register:
2185              * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2186              * controller base address at $rn & ~0xfff and map size of
2187              * 0x200 << ($rn & 0xfff), when MMU is off.  */
2188             goto bad_reg;
2189         }
2190         return 0;
2191     }
2192 bad_reg:
2193     /* ??? For debugging only.  Should raise illegal instruction exception.  */
2194     cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2195               (insn >> 16) & 0xf, crm, op1, op2);
2196     return 0;
2197 }
2198 
HELPER(set_r13_banked)2199 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
2200 {
2201     if ((env->uncached_cpsr & CPSR_M) == mode) {
2202         env->regs[13] = val;
2203     } else {
2204     env->banked_r13[bank_number(mode)] = val;
2205 }
2206 }
2207 
HELPER(get_r13_banked)2208 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
2209 {
2210     if ((env->uncached_cpsr & CPSR_M) == mode) {
2211         return env->regs[13];
2212     } else {
2213     return env->banked_r13[bank_number(mode)];
2214     }
2215 }
2216 
HELPER(v7m_mrs)2217 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
2218 {
2219     switch (reg) {
2220     case 0: /* APSR */
2221         return xpsr_read(env) & 0xf8000000;
2222     case 1: /* IAPSR */
2223         return xpsr_read(env) & 0xf80001ff;
2224     case 2: /* EAPSR */
2225         return xpsr_read(env) & 0xff00fc00;
2226     case 3: /* xPSR */
2227         return xpsr_read(env) & 0xff00fdff;
2228     case 5: /* IPSR */
2229         return xpsr_read(env) & 0x000001ff;
2230     case 6: /* EPSR */
2231         return xpsr_read(env) & 0x0700fc00;
2232     case 7: /* IEPSR */
2233         return xpsr_read(env) & 0x0700edff;
2234     case 8: /* MSP */
2235         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2236     case 9: /* PSP */
2237         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2238     case 16: /* PRIMASK */
2239         return (env->uncached_cpsr & CPSR_I) != 0;
2240     case 17: /* FAULTMASK */
2241         return (env->uncached_cpsr & CPSR_F) != 0;
2242     case 18: /* BASEPRI */
2243     case 19: /* BASEPRI_MAX */
2244         return env->v7m.basepri;
2245     case 20: /* CONTROL */
2246         return env->v7m.control;
2247     default:
2248         /* ??? For debugging only.  */
2249         cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2250         return 0;
2251     }
2252 }
2253 
HELPER(v7m_msr)2254 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
2255 {
2256     switch (reg) {
2257     case 0: /* APSR */
2258         xpsr_write(env, val, 0xf8000000);
2259         break;
2260     case 1: /* IAPSR */
2261         xpsr_write(env, val, 0xf8000000);
2262         break;
2263     case 2: /* EAPSR */
2264         xpsr_write(env, val, 0xfe00fc00);
2265         break;
2266     case 3: /* xPSR */
2267         xpsr_write(env, val, 0xfe00fc00);
2268         break;
2269     case 5: /* IPSR */
2270         /* IPSR bits are readonly.  */
2271         break;
2272     case 6: /* EPSR */
2273         xpsr_write(env, val, 0x0600fc00);
2274         break;
2275     case 7: /* IEPSR */
2276         xpsr_write(env, val, 0x0600fc00);
2277         break;
2278     case 8: /* MSP */
2279         if (env->v7m.current_sp)
2280             env->v7m.other_sp = val;
2281         else
2282             env->regs[13] = val;
2283         break;
2284     case 9: /* PSP */
2285         if (env->v7m.current_sp)
2286             env->regs[13] = val;
2287         else
2288             env->v7m.other_sp = val;
2289         break;
2290     case 16: /* PRIMASK */
2291         if (val & 1)
2292             env->uncached_cpsr |= CPSR_I;
2293         else
2294             env->uncached_cpsr &= ~CPSR_I;
2295         break;
2296     case 17: /* FAULTMASK */
2297         if (val & 1)
2298             env->uncached_cpsr |= CPSR_F;
2299         else
2300             env->uncached_cpsr &= ~CPSR_F;
2301         break;
2302     case 18: /* BASEPRI */
2303         env->v7m.basepri = val & 0xff;
2304         break;
2305     case 19: /* BASEPRI_MAX */
2306         val &= 0xff;
2307         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2308             env->v7m.basepri = val;
2309         break;
2310     case 20: /* CONTROL */
2311         env->v7m.control = val & 3;
2312         switch_v7m_sp(env, (val & 2) != 0);
2313         break;
2314     default:
2315         /* ??? For debugging only.  */
2316         cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2317         return;
2318     }
2319 }
2320 
cpu_arm_set_cp_io(CPUARMState * env,int cpnum,ARMReadCPFunc * cp_read,ARMWriteCPFunc * cp_write,void * opaque)2321 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2322                 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2323                 void *opaque)
2324 {
2325     if (cpnum < 0 || cpnum > 14) {
2326         cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2327         return;
2328     }
2329 
2330     env->cp[cpnum].cp_read = cp_read;
2331     env->cp[cpnum].cp_write = cp_write;
2332     env->cp[cpnum].opaque = opaque;
2333 }
2334 
2335 #endif
2336 
2337 /* Note that signed overflow is undefined in C.  The following routines are
2338    careful to use unsigned types where modulo arithmetic is required.
2339    Failure to do so _will_ break on newer gcc.  */
2340 
2341 /* Signed saturating arithmetic.  */
2342 
2343 /* Perform 16-bit signed saturating addition.  */
add16_sat(uint16_t a,uint16_t b)2344 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2345 {
2346     uint16_t res;
2347 
2348     res = a + b;
2349     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2350         if (a & 0x8000)
2351             res = 0x8000;
2352         else
2353             res = 0x7fff;
2354     }
2355     return res;
2356 }
2357 
2358 /* Perform 8-bit signed saturating addition.  */
add8_sat(uint8_t a,uint8_t b)2359 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2360 {
2361     uint8_t res;
2362 
2363     res = a + b;
2364     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2365         if (a & 0x80)
2366             res = 0x80;
2367         else
2368             res = 0x7f;
2369     }
2370     return res;
2371 }
2372 
2373 /* Perform 16-bit signed saturating subtraction.  */
sub16_sat(uint16_t a,uint16_t b)2374 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2375 {
2376     uint16_t res;
2377 
2378     res = a - b;
2379     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2380         if (a & 0x8000)
2381             res = 0x8000;
2382         else
2383             res = 0x7fff;
2384     }
2385     return res;
2386 }
2387 
2388 /* Perform 8-bit signed saturating subtraction.  */
sub8_sat(uint8_t a,uint8_t b)2389 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2390 {
2391     uint8_t res;
2392 
2393     res = a - b;
2394     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2395         if (a & 0x80)
2396             res = 0x80;
2397         else
2398             res = 0x7f;
2399     }
2400     return res;
2401 }
2402 
2403 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2404 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2405 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2406 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2407 #define PFX q
2408 
2409 #include "op_addsub.h"
2410 
2411 /* Unsigned saturating arithmetic.  */
add16_usat(uint16_t a,uint16_t b)2412 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2413 {
2414     uint16_t res;
2415     res = a + b;
2416     if (res < a)
2417         res = 0xffff;
2418     return res;
2419 }
2420 
sub16_usat(uint16_t a,uint16_t b)2421 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2422 {
2423     if (a > b)
2424         return a - b;
2425     else
2426         return 0;
2427 }
2428 
add8_usat(uint8_t a,uint8_t b)2429 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2430 {
2431     uint8_t res;
2432     res = a + b;
2433     if (res < a)
2434         res = 0xff;
2435     return res;
2436 }
2437 
sub8_usat(uint8_t a,uint8_t b)2438 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2439 {
2440     if (a > b)
2441         return a - b;
2442     else
2443         return 0;
2444 }
2445 
2446 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2447 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2448 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2449 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2450 #define PFX uq
2451 
2452 #include "op_addsub.h"
2453 
2454 /* Signed modulo arithmetic.  */
2455 #define SARITH16(a, b, n, op) do { \
2456     int32_t sum; \
2457     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2458     RESULT(sum, n, 16); \
2459     if (sum >= 0) \
2460         ge |= 3 << (n * 2); \
2461     } while(0)
2462 
2463 #define SARITH8(a, b, n, op) do { \
2464     int32_t sum; \
2465     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2466     RESULT(sum, n, 8); \
2467     if (sum >= 0) \
2468         ge |= 1 << n; \
2469     } while(0)
2470 
2471 
2472 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2473 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2474 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
2475 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
2476 #define PFX s
2477 #define ARITH_GE
2478 
2479 #include "op_addsub.h"
2480 
2481 /* Unsigned modulo arithmetic.  */
2482 #define ADD16(a, b, n) do { \
2483     uint32_t sum; \
2484     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2485     RESULT(sum, n, 16); \
2486     if ((sum >> 16) == 1) \
2487         ge |= 3 << (n * 2); \
2488     } while(0)
2489 
2490 #define ADD8(a, b, n) do { \
2491     uint32_t sum; \
2492     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2493     RESULT(sum, n, 8); \
2494     if ((sum >> 8) == 1) \
2495         ge |= 1 << n; \
2496     } while(0)
2497 
2498 #define SUB16(a, b, n) do { \
2499     uint32_t sum; \
2500     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2501     RESULT(sum, n, 16); \
2502     if ((sum >> 16) == 0) \
2503         ge |= 3 << (n * 2); \
2504     } while(0)
2505 
2506 #define SUB8(a, b, n) do { \
2507     uint32_t sum; \
2508     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2509     RESULT(sum, n, 8); \
2510     if ((sum >> 8) == 0) \
2511         ge |= 1 << n; \
2512     } while(0)
2513 
2514 #define PFX u
2515 #define ARITH_GE
2516 
2517 #include "op_addsub.h"
2518 
2519 /* Halved signed arithmetic.  */
2520 #define ADD16(a, b, n) \
2521   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2522 #define SUB16(a, b, n) \
2523   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2524 #define ADD8(a, b, n) \
2525   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2526 #define SUB8(a, b, n) \
2527   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2528 #define PFX sh
2529 
2530 #include "op_addsub.h"
2531 
2532 /* Halved unsigned arithmetic.  */
2533 #define ADD16(a, b, n) \
2534   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2535 #define SUB16(a, b, n) \
2536   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2537 #define ADD8(a, b, n) \
2538   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2539 #define SUB8(a, b, n) \
2540   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2541 #define PFX uh
2542 
2543 #include "op_addsub.h"
2544 
do_usad(uint8_t a,uint8_t b)2545 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2546 {
2547     if (a > b)
2548         return a - b;
2549     else
2550         return b - a;
2551 }
2552 
2553 /* Unsigned sum of absolute byte differences.  */
HELPER(usad8)2554 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2555 {
2556     uint32_t sum;
2557     sum = do_usad(a, b);
2558     sum += do_usad(a >> 8, b >> 8);
2559     sum += do_usad(a >> 16, b >>16);
2560     sum += do_usad(a >> 24, b >> 24);
2561     return sum;
2562 }
2563 
2564 /* For ARMv6 SEL instruction.  */
HELPER(sel_flags)2565 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2566 {
2567     uint32_t mask;
2568 
2569     mask = 0;
2570     if (flags & 1)
2571         mask |= 0xff;
2572     if (flags & 2)
2573         mask |= 0xff00;
2574     if (flags & 4)
2575         mask |= 0xff0000;
2576     if (flags & 8)
2577         mask |= 0xff000000;
2578     return (a & mask) | (b & ~mask);
2579 }
2580 
HELPER(logicq_cc)2581 uint32_t HELPER(logicq_cc)(uint64_t val)
2582 {
2583     return (val >> 32) | (val != 0);
2584 }
2585 
2586 /* VFP support.  We follow the convention used for VFP instrunctions:
2587    Single precition routines have a "s" suffix, double precision a
2588    "d" suffix.  */
2589 
2590 /* Convert host exception flags to vfp form.  */
vfp_exceptbits_from_host(int host_bits)2591 static inline int vfp_exceptbits_from_host(int host_bits)
2592 {
2593     int target_bits = 0;
2594 
2595     if (host_bits & float_flag_invalid)
2596         target_bits |= 1;
2597     if (host_bits & float_flag_divbyzero)
2598         target_bits |= 2;
2599     if (host_bits & float_flag_overflow)
2600         target_bits |= 4;
2601     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2602         target_bits |= 8;
2603     if (host_bits & float_flag_inexact)
2604         target_bits |= 0x10;
2605     if (host_bits & float_flag_input_denormal)
2606         target_bits |= 0x80;
2607     return target_bits;
2608 }
2609 
HELPER(vfp_get_fpscr)2610 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2611 {
2612     int i;
2613     uint32_t fpscr;
2614 
2615     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2616             | (env->vfp.vec_len << 16)
2617             | (env->vfp.vec_stride << 20);
2618     i = get_float_exception_flags(&env->vfp.fp_status);
2619     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2620     fpscr |= vfp_exceptbits_from_host(i);
2621     return fpscr;
2622 }
2623 
vfp_get_fpscr(CPUState * env)2624 uint32_t vfp_get_fpscr(CPUState *env)
2625 {
2626     return HELPER(vfp_get_fpscr)(env);
2627 }
2628 
2629 /* Convert vfp exception flags to target form.  */
vfp_exceptbits_to_host(int target_bits)2630 static inline int vfp_exceptbits_to_host(int target_bits)
2631 {
2632     int host_bits = 0;
2633 
2634     if (target_bits & 1)
2635         host_bits |= float_flag_invalid;
2636     if (target_bits & 2)
2637         host_bits |= float_flag_divbyzero;
2638     if (target_bits & 4)
2639         host_bits |= float_flag_overflow;
2640     if (target_bits & 8)
2641         host_bits |= float_flag_underflow;
2642     if (target_bits & 0x10)
2643         host_bits |= float_flag_inexact;
2644     if (target_bits & 0x80)
2645         host_bits |= float_flag_input_denormal;
2646     return host_bits;
2647 }
2648 
HELPER(vfp_set_fpscr)2649 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2650 {
2651     int i;
2652     uint32_t changed;
2653 
2654     changed = env->vfp.xregs[ARM_VFP_FPSCR];
2655     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2656     env->vfp.vec_len = (val >> 16) & 7;
2657     env->vfp.vec_stride = (val >> 20) & 3;
2658 
2659     changed ^= val;
2660     if (changed & (3 << 22)) {
2661         i = (val >> 22) & 3;
2662         switch (i) {
2663         case 0:
2664             i = float_round_nearest_even;
2665             break;
2666         case 1:
2667             i = float_round_up;
2668             break;
2669         case 2:
2670             i = float_round_down;
2671             break;
2672         case 3:
2673             i = float_round_to_zero;
2674             break;
2675         }
2676         set_float_rounding_mode(i, &env->vfp.fp_status);
2677     }
2678     if (changed & (1 << 24)) {
2679         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2680         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2681     }
2682     if (changed & (1 << 25))
2683         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2684 
2685     i = vfp_exceptbits_to_host(val);
2686     set_float_exception_flags(i, &env->vfp.fp_status);
2687     set_float_exception_flags(0, &env->vfp.standard_fp_status);
2688 }
2689 
vfp_set_fpscr(CPUState * env,uint32_t val)2690 void vfp_set_fpscr(CPUState *env, uint32_t val)
2691 {
2692     HELPER(vfp_set_fpscr)(env, val);
2693 }
2694 
2695 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2696 
2697 #define VFP_BINOP(name) \
2698 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2699 { \
2700     return float32_ ## name (a, b, &env->vfp.fp_status); \
2701 } \
2702 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2703 { \
2704     return float64_ ## name (a, b, &env->vfp.fp_status); \
2705 }
2706 VFP_BINOP(add)
VFP_BINOP(sub)2707 VFP_BINOP(sub)
2708 VFP_BINOP(mul)
2709 VFP_BINOP(div)
2710 #undef VFP_BINOP
2711 
2712 float32 VFP_HELPER(neg, s)(float32 a)
2713 {
2714     return float32_chs(a);
2715 }
2716 
VFP_HELPER(neg,d)2717 float64 VFP_HELPER(neg, d)(float64 a)
2718 {
2719     return float64_chs(a);
2720 }
2721 
VFP_HELPER(abs,s)2722 float32 VFP_HELPER(abs, s)(float32 a)
2723 {
2724     return float32_abs(a);
2725 }
2726 
VFP_HELPER(abs,d)2727 float64 VFP_HELPER(abs, d)(float64 a)
2728 {
2729     return float64_abs(a);
2730 }
2731 
VFP_HELPER(sqrt,s)2732 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2733 {
2734     return float32_sqrt(a, &env->vfp.fp_status);
2735 }
2736 
VFP_HELPER(sqrt,d)2737 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2738 {
2739     return float64_sqrt(a, &env->vfp.fp_status);
2740 }
2741 
2742 /* XXX: check quiet/signaling case */
2743 #define DO_VFP_cmp(p, type) \
2744 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2745 { \
2746     uint32_t flags; \
2747     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2748     case 0: flags = 0x6; break; \
2749     case -1: flags = 0x8; break; \
2750     case 1: flags = 0x2; break; \
2751     default: case 2: flags = 0x3; break; \
2752     } \
2753     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2754         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2755 } \
2756 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2757 { \
2758     uint32_t flags; \
2759     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2760     case 0: flags = 0x6; break; \
2761     case -1: flags = 0x8; break; \
2762     case 1: flags = 0x2; break; \
2763     default: case 2: flags = 0x3; break; \
2764     } \
2765     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2766         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2767 }
DO_VFP_cmp(s,float32)2768 DO_VFP_cmp(s, float32)
2769 DO_VFP_cmp(d, float64)
2770 #undef DO_VFP_cmp
2771 
2772 /* Integer to float and float to integer conversions */
2773 
2774 #define CONV_ITOF(name, fsz, sign) \
2775     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2776 { \
2777     float_status *fpst = fpstp; \
2778     return sign##int32_to_##float##fsz(x, fpst); \
2779 }
2780 
2781 #define CONV_FTOI(name, fsz, sign, round) \
2782 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2783 { \
2784     float_status *fpst = fpstp; \
2785     if (float##fsz##_is_any_nan(x)) { \
2786         float_raise(float_flag_invalid, fpst); \
2787         return 0; \
2788     } \
2789     return float##fsz##_to_##sign##int32##round(x, fpst); \
2790 }
2791 
2792 #define FLOAT_CONVS(name, p, fsz, sign) \
2793 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2794 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2795 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2796 
2797 FLOAT_CONVS(si, s, 32, )
2798 FLOAT_CONVS(si, d, 64, )
2799 FLOAT_CONVS(ui, s, 32, u)
2800 FLOAT_CONVS(ui, d, 64, u)
2801 
2802 #undef CONV_ITOF
2803 #undef CONV_FTOI
2804 #undef FLOAT_CONVS
2805 
2806 /* floating point conversion */
2807 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2808 {
2809     float64 r = float32_to_float64(x, &env->vfp.fp_status);
2810     /* ARM requires that S<->D conversion of any kind of NaN generates
2811      * a quiet NaN by forcing the most significant frac bit to 1.
2812      */
2813     return float64_maybe_silence_nan(r);
2814 }
2815 
VFP_HELPER(fcvts,d)2816 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2817 {
2818     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
2819     /* ARM requires that S<->D conversion of any kind of NaN generates
2820      * a quiet NaN by forcing the most significant frac bit to 1.
2821      */
2822     return float32_maybe_silence_nan(r);
2823 }
2824 
2825 /* VFP3 fixed point conversion.  */
2826 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2827 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
2828                                     void *fpstp) \
2829 { \
2830     float_status *fpst = fpstp; \
2831     float##fsz tmp; \
2832     tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2833     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2834 } \
2835 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2836                                        void *fpstp) \
2837 { \
2838     float_status *fpst = fpstp; \
2839     float##fsz tmp; \
2840     if (float##fsz##_is_any_nan(x)) { \
2841         float_raise(float_flag_invalid, fpst); \
2842         return 0; \
2843     } \
2844     tmp = float##fsz##_scalbn(x, shift, fpst); \
2845     return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2846 }
2847 
2848 VFP_CONV_FIX(sh, d, 64, int16, )
2849 VFP_CONV_FIX(sl, d, 64, int32, )
2850 VFP_CONV_FIX(uh, d, 64, uint16, u)
2851 VFP_CONV_FIX(ul, d, 64, uint32, u)
2852 VFP_CONV_FIX(sh, s, 32, int16, )
2853 VFP_CONV_FIX(sl, s, 32, int32, )
2854 VFP_CONV_FIX(uh, s, 32, uint16, u)
2855 VFP_CONV_FIX(ul, s, 32, uint32, u)
2856 #undef VFP_CONV_FIX
2857 
2858 /* Half precision conversions.  */
do_fcvt_f16_to_f32(uint32_t a,CPUState * env,float_status * s)2859 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
2860 {
2861     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2862     float32 r = float16_to_float32(make_float16(a), ieee, s);
2863     if (ieee) {
2864         return float32_maybe_silence_nan(r);
2865     }
2866     return r;
2867 }
2868 
do_fcvt_f32_to_f16(float32 a,CPUState * env,float_status * s)2869 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
2870 {
2871     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2872     float16 r = float32_to_float16(a, ieee, s);
2873     if (ieee) {
2874         r = float16_maybe_silence_nan(r);
2875     }
2876     return float16_val(r);
2877 }
2878 
HELPER(neon_fcvt_f16_to_f32)2879 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2880 {
2881     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2882 }
2883 
HELPER(neon_fcvt_f32_to_f16)2884 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2885 {
2886     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2887 }
2888 
HELPER(vfp_fcvt_f16_to_f32)2889 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2890 {
2891     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2892 }
2893 
HELPER(vfp_fcvt_f32_to_f16)2894 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2895 {
2896     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2897 }
2898 
2899 #define float32_two make_float32(0x40000000)
2900 #define float32_three make_float32(0x40400000)
2901 #define float32_one_point_five make_float32(0x3fc00000)
2902 
HELPER(recps_f32)2903 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2904 {
2905     float_status *s = &env->vfp.standard_fp_status;
2906     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2907         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2908         if (!(float32_is_zero(a) || float32_is_zero(b))) {
2909             float_raise(float_flag_input_denormal, s);
2910         }
2911         return float32_two;
2912     }
2913     return float32_sub(float32_two, float32_mul(a, b, s), s);
2914 }
2915 
HELPER(rsqrts_f32)2916 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2917 {
2918     float_status *s = &env->vfp.standard_fp_status;
2919     float32 product;
2920     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2921         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2922         if (!(float32_is_zero(a) || float32_is_zero(b))) {
2923             float_raise(float_flag_input_denormal, s);
2924         }
2925         return float32_one_point_five;
2926     }
2927     product = float32_mul(a, b, s);
2928     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2929 }
2930 
2931 /* NEON helpers.  */
2932 
2933 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2934  * int->float conversions at run-time.  */
2935 #define float64_256 make_float64(0x4070000000000000LL)
2936 #define float64_512 make_float64(0x4080000000000000LL)
2937 
2938 /* The algorithm that must be used to calculate the estimate
2939  * is specified by the ARM ARM.
2940  */
recip_estimate(float64 a,CPUState * env)2941 static float64 recip_estimate(float64 a, CPUState *env)
2942 {
2943     /* These calculations mustn't set any fp exception flags,
2944      * so we use a local copy of the fp_status.
2945      */
2946     float_status dummy_status = env->vfp.standard_fp_status;
2947     float_status *s = &dummy_status;
2948     /* q = (int)(a * 512.0) */
2949     float64 q = float64_mul(float64_512, a, s);
2950     int64_t q_int = float64_to_int64_round_to_zero(q, s);
2951 
2952     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2953     q = int64_to_float64(q_int, s);
2954     q = float64_add(q, float64_half, s);
2955     q = float64_div(q, float64_512, s);
2956     q = float64_div(float64_one, q, s);
2957 
2958     /* s = (int)(256.0 * r + 0.5) */
2959     q = float64_mul(q, float64_256, s);
2960     q = float64_add(q, float64_half, s);
2961     q_int = float64_to_int64_round_to_zero(q, s);
2962 
2963     /* return (double)s / 256.0 */
2964     return float64_div(int64_to_float64(q_int, s), float64_256, s);
2965 }
2966 
HELPER(recpe_f32)2967 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2968 {
2969     float_status *s = &env->vfp.standard_fp_status;
2970     float64 f64;
2971     uint32_t val32 = float32_val(a);
2972 
2973     int result_exp;
2974     int a_exp = (val32  & 0x7f800000) >> 23;
2975     int sign = val32 & 0x80000000;
2976 
2977     if (float32_is_any_nan(a)) {
2978         if (float32_is_signaling_nan(a)) {
2979             float_raise(float_flag_invalid, s);
2980         }
2981         return float32_default_nan;
2982     } else if (float32_is_infinity(a)) {
2983         return float32_set_sign(float32_zero, float32_is_neg(a));
2984     } else if (float32_is_zero_or_denormal(a)) {
2985         if (!float32_is_zero(a)) {
2986             float_raise(float_flag_input_denormal, s);
2987         }
2988         float_raise(float_flag_divbyzero, s);
2989         return float32_set_sign(float32_infinity, float32_is_neg(a));
2990     } else if (a_exp >= 253) {
2991         float_raise(float_flag_underflow, s);
2992         return float32_set_sign(float32_zero, float32_is_neg(a));
2993     }
2994 
2995     f64 = make_float64((0x3feULL << 52)
2996                        | ((int64_t)(val32 & 0x7fffff) << 29));
2997 
2998     result_exp = 253 - a_exp;
2999 
3000     f64 = recip_estimate(f64, env);
3001 
3002     val32 = sign
3003         | ((result_exp & 0xff) << 23)
3004         | ((float64_val(f64) >> 29) & 0x7fffff);
3005     return make_float32(val32);
3006 }
3007 
3008 /* The algorithm that must be used to calculate the estimate
3009  * is specified by the ARM ARM.
3010  */
recip_sqrt_estimate(float64 a,CPUState * env)3011 static float64 recip_sqrt_estimate(float64 a, CPUState *env)
3012 {
3013     /* These calculations mustn't set any fp exception flags,
3014      * so we use a local copy of the fp_status.
3015      */
3016     float_status dummy_status = env->vfp.standard_fp_status;
3017     float_status *s = &dummy_status;
3018     float64 q;
3019     int64_t q_int;
3020 
3021     if (float64_lt(a, float64_half, s)) {
3022         /* range 0.25 <= a < 0.5 */
3023 
3024         /* a in units of 1/512 rounded down */
3025         /* q0 = (int)(a * 512.0);  */
3026         q = float64_mul(float64_512, a, s);
3027         q_int = float64_to_int64_round_to_zero(q, s);
3028 
3029         /* reciprocal root r */
3030         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
3031         q = int64_to_float64(q_int, s);
3032         q = float64_add(q, float64_half, s);
3033         q = float64_div(q, float64_512, s);
3034         q = float64_sqrt(q, s);
3035         q = float64_div(float64_one, q, s);
3036     } else {
3037         /* range 0.5 <= a < 1.0 */
3038 
3039         /* a in units of 1/256 rounded down */
3040         /* q1 = (int)(a * 256.0); */
3041         q = float64_mul(float64_256, a, s);
3042         int64_t q_int = float64_to_int64_round_to_zero(q, s);
3043 
3044         /* reciprocal root r */
3045         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3046         q = int64_to_float64(q_int, s);
3047         q = float64_add(q, float64_half, s);
3048         q = float64_div(q, float64_256, s);
3049         q = float64_sqrt(q, s);
3050         q = float64_div(float64_one, q, s);
3051     }
3052     /* r in units of 1/256 rounded to nearest */
3053     /* s = (int)(256.0 * r + 0.5); */
3054 
3055     q = float64_mul(q, float64_256,s );
3056     q = float64_add(q, float64_half, s);
3057     q_int = float64_to_int64_round_to_zero(q, s);
3058 
3059     /* return (double)s / 256.0;*/
3060     return float64_div(int64_to_float64(q_int, s), float64_256, s);
3061 }
3062 
HELPER(rsqrte_f32)3063 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
3064 {
3065     float_status *s = &env->vfp.standard_fp_status;
3066     int result_exp;
3067     float64 f64;
3068     uint32_t val;
3069     uint64_t val64;
3070 
3071     val = float32_val(a);
3072 
3073     if (float32_is_any_nan(a)) {
3074         if (float32_is_signaling_nan(a)) {
3075             float_raise(float_flag_invalid, s);
3076         }
3077         return float32_default_nan;
3078     } else if (float32_is_zero_or_denormal(a)) {
3079         if (!float32_is_zero(a)) {
3080             float_raise(float_flag_input_denormal, s);
3081         }
3082         float_raise(float_flag_divbyzero, s);
3083         return float32_set_sign(float32_infinity, float32_is_neg(a));
3084     } else if (float32_is_neg(a)) {
3085         float_raise(float_flag_invalid, s);
3086         return float32_default_nan;
3087     } else if (float32_is_infinity(a)) {
3088         return float32_zero;
3089     }
3090 
3091     /* Normalize to a double-precision value between 0.25 and 1.0,
3092      * preserving the parity of the exponent.  */
3093     if ((val & 0x800000) == 0) {
3094         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3095                            | (0x3feULL << 52)
3096                            | ((uint64_t)(val & 0x7fffff) << 29));
3097     } else {
3098         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3099                            | (0x3fdULL << 52)
3100                            | ((uint64_t)(val & 0x7fffff) << 29));
3101     }
3102 
3103     result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3104 
3105     f64 = recip_sqrt_estimate(f64, env);
3106 
3107     val64 = float64_val(f64);
3108 
3109     val = ((val64 >> 63)  & 0x80000000)
3110         | ((result_exp & 0xff) << 23)
3111         | ((val64 >> 29)  & 0x7fffff);
3112     return make_float32(val);
3113 }
3114 
HELPER(recpe_u32)3115 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
3116 {
3117     float64 f64;
3118 
3119     if ((a & 0x80000000) == 0) {
3120         return 0xffffffff;
3121     }
3122 
3123     f64 = make_float64((0x3feULL << 52)
3124                        | ((int64_t)(a & 0x7fffffff) << 21));
3125 
3126     f64 = recip_estimate (f64, env);
3127 
3128     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3129 }
3130 
HELPER(rsqrte_u32)3131 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
3132 {
3133     float64 f64;
3134 
3135     if ((a & 0xc0000000) == 0) {
3136         return 0xffffffff;
3137     }
3138 
3139     if (a & 0x80000000) {
3140         f64 = make_float64((0x3feULL << 52)
3141                            | ((uint64_t)(a & 0x7fffffff) << 21));
3142     } else { /* bits 31-30 == '01' */
3143         f64 = make_float64((0x3fdULL << 52)
3144                            | ((uint64_t)(a & 0x3fffffff) << 22));
3145     }
3146 
3147     f64 = recip_sqrt_estimate(f64, env);
3148 
3149     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3150 }
3151 
HELPER(set_teecr)3152 void HELPER(set_teecr)(CPUState *env, uint32_t val)
3153 {
3154     val &= 1;
3155     if (env->teecr != val) {
3156         env->teecr = val;
3157         tb_flush(env);
3158     }
3159 }
3160