• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2008 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkPathMeasure.h"
11 #include "SkGeometry.h"
12 #include "SkPath.h"
13 #include "SkTSearch.h"
14 
15 // these must be 0,1,2 since they are in our 2-bit field
16 enum {
17     kLine_SegType,
18     kQuad_SegType,
19     kCubic_SegType
20 };
21 
22 #define kMaxTValue  32767
23 
tValue2Scalar(int t)24 static inline SkScalar tValue2Scalar(int t) {
25     SkASSERT((unsigned)t <= kMaxTValue);
26 
27 #ifdef SK_SCALAR_IS_FLOAT
28     return t * 3.05185e-5f; // t / 32767
29 #else
30     return (t + (t >> 14)) << 1;
31 #endif
32 }
33 
getScalarT() const34 SkScalar SkPathMeasure::Segment::getScalarT() const {
35     return tValue2Scalar(fTValue);
36 }
37 
NextSegment(const Segment * seg)38 const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) {
39     unsigned ptIndex = seg->fPtIndex;
40 
41     do {
42         ++seg;
43     } while (seg->fPtIndex == ptIndex);
44     return seg;
45 }
46 
47 ///////////////////////////////////////////////////////////////////////////////
48 
tspan_big_enough(int tspan)49 static inline int tspan_big_enough(int tspan) {
50     SkASSERT((unsigned)tspan <= kMaxTValue);
51     return tspan >> 10;
52 }
53 
54 // can't use tangents, since we need [0..1..................2] to be seen
55 // as definitely not a line (it is when drawn, but not parametrically)
56 // so we compare midpoints
57 #define CHEAP_DIST_LIMIT    (SK_Scalar1/2)  // just made this value up
58 
quad_too_curvy(const SkPoint pts[3])59 static bool quad_too_curvy(const SkPoint pts[3]) {
60     // diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
61     // diff = -a/4 + b/2 - c/4
62     SkScalar dx = SkScalarHalf(pts[1].fX) -
63                         SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX));
64     SkScalar dy = SkScalarHalf(pts[1].fY) -
65                         SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY));
66 
67     SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy));
68     return dist > CHEAP_DIST_LIMIT;
69 }
70 
cheap_dist_exceeds_limit(const SkPoint & pt,SkScalar x,SkScalar y)71 static bool cheap_dist_exceeds_limit(const SkPoint& pt,
72                                      SkScalar x, SkScalar y) {
73     SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
74     // just made up the 1/2
75     return dist > CHEAP_DIST_LIMIT;
76 }
77 
cubic_too_curvy(const SkPoint pts[4])78 static bool cubic_too_curvy(const SkPoint pts[4]) {
79     return  cheap_dist_exceeds_limit(pts[1],
80                          SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3),
81                          SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3))
82                          ||
83             cheap_dist_exceeds_limit(pts[2],
84                          SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3),
85                          SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
86 }
87 
compute_quad_segs(const SkPoint pts[3],SkScalar distance,int mint,int maxt,int ptIndex)88 SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
89                           SkScalar distance, int mint, int maxt, int ptIndex) {
90     if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) {
91         SkPoint tmp[5];
92         int     halft = (mint + maxt) >> 1;
93 
94         SkChopQuadAtHalf(pts, tmp);
95         distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex);
96         distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex);
97     } else {
98         SkScalar d = SkPoint::Distance(pts[0], pts[2]);
99         SkScalar prevD = distance;
100         distance += d;
101         if (distance > prevD) {
102             Segment* seg = fSegments.append();
103             seg->fDistance = distance;
104             seg->fPtIndex = ptIndex;
105             seg->fType = kQuad_SegType;
106             seg->fTValue = maxt;
107         }
108     }
109     return distance;
110 }
111 
compute_cubic_segs(const SkPoint pts[4],SkScalar distance,int mint,int maxt,int ptIndex)112 SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
113                            SkScalar distance, int mint, int maxt, int ptIndex) {
114     if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) {
115         SkPoint tmp[7];
116         int     halft = (mint + maxt) >> 1;
117 
118         SkChopCubicAtHalf(pts, tmp);
119         distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex);
120         distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex);
121     } else {
122         SkScalar d = SkPoint::Distance(pts[0], pts[3]);
123         SkScalar prevD = distance;
124         distance += d;
125         if (distance > prevD) {
126             Segment* seg = fSegments.append();
127             seg->fDistance = distance;
128             seg->fPtIndex = ptIndex;
129             seg->fType = kCubic_SegType;
130             seg->fTValue = maxt;
131         }
132     }
133     return distance;
134 }
135 
buildSegments()136 void SkPathMeasure::buildSegments() {
137     SkPoint         pts[4];
138     int             ptIndex = fFirstPtIndex;
139     SkScalar        distance = 0;
140     bool            isClosed = fForceClosed;
141     bool            firstMoveTo = ptIndex < 0;
142     Segment*        seg;
143 
144     /*  Note:
145      *  as we accumulate distance, we have to check that the result of +=
146      *  actually made it larger, since a very small delta might be > 0, but
147      *  still have no effect on distance (if distance >>> delta).
148      *
149      *  We do this check below, and in compute_quad_segs and compute_cubic_segs
150      */
151     fSegments.reset();
152     bool done = false;
153     do {
154         switch (fIter.next(pts)) {
155             case SkPath::kMove_Verb:
156                 ptIndex += 1;
157                 fPts.append(1, pts);
158                 if (!firstMoveTo) {
159                     done = true;
160                     break;
161                 }
162                 firstMoveTo = false;
163                 break;
164 
165             case SkPath::kLine_Verb: {
166                 SkScalar d = SkPoint::Distance(pts[0], pts[1]);
167                 SkASSERT(d >= 0);
168                 SkScalar prevD = distance;
169                 distance += d;
170                 if (distance > prevD) {
171                     seg = fSegments.append();
172                     seg->fDistance = distance;
173                     seg->fPtIndex = ptIndex;
174                     seg->fType = kLine_SegType;
175                     seg->fTValue = kMaxTValue;
176                     fPts.append(1, pts + 1);
177                     ptIndex++;
178                 }
179             } break;
180 
181             case SkPath::kQuad_Verb: {
182                 SkScalar prevD = distance;
183                 distance = this->compute_quad_segs(pts, distance, 0,
184                                                    kMaxTValue, ptIndex);
185                 if (distance > prevD) {
186                     fPts.append(2, pts + 1);
187                     ptIndex += 2;
188                 }
189             } break;
190 
191             case SkPath::kCubic_Verb: {
192                 SkScalar prevD = distance;
193                 distance = this->compute_cubic_segs(pts, distance, 0,
194                                                     kMaxTValue, ptIndex);
195                 if (distance > prevD) {
196                     fPts.append(3, pts + 1);
197                     ptIndex += 3;
198                 }
199             } break;
200 
201             case SkPath::kClose_Verb:
202                 isClosed = true;
203                 break;
204 
205             case SkPath::kDone_Verb:
206                 done = true;
207                 break;
208         }
209     } while (!done);
210 
211     fLength = distance;
212     fIsClosed = isClosed;
213     fFirstPtIndex = ptIndex;
214 
215 #ifdef SK_DEBUG
216     {
217         const Segment* seg = fSegments.begin();
218         const Segment* stop = fSegments.end();
219         unsigned        ptIndex = 0;
220         SkScalar        distance = 0;
221 
222         while (seg < stop) {
223             SkASSERT(seg->fDistance > distance);
224             SkASSERT(seg->fPtIndex >= ptIndex);
225             SkASSERT(seg->fTValue > 0);
226 
227             const Segment* s = seg;
228             while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex) {
229                 SkASSERT(s[0].fType == s[1].fType);
230                 SkASSERT(s[0].fTValue < s[1].fTValue);
231                 s += 1;
232             }
233 
234             distance = seg->fDistance;
235             ptIndex = seg->fPtIndex;
236             seg += 1;
237         }
238     //  SkDebugf("\n");
239     }
240 #endif
241 }
242 
compute_pos_tan(const SkPoint pts[],int segType,SkScalar t,SkPoint * pos,SkVector * tangent)243 static void compute_pos_tan(const SkPoint pts[], int segType,
244                             SkScalar t, SkPoint* pos, SkVector* tangent) {
245     switch (segType) {
246         case kLine_SegType:
247             if (pos) {
248                 pos->set(SkScalarInterp(pts[0].fX, pts[1].fX, t),
249                          SkScalarInterp(pts[0].fY, pts[1].fY, t));
250             }
251             if (tangent) {
252                 tangent->setNormalize(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY);
253             }
254             break;
255         case kQuad_SegType:
256             SkEvalQuadAt(pts, t, pos, tangent);
257             if (tangent) {
258                 tangent->normalize();
259             }
260             break;
261         case kCubic_SegType:
262             SkEvalCubicAt(pts, t, pos, tangent, NULL);
263             if (tangent) {
264                 tangent->normalize();
265             }
266             break;
267         default:
268             SkDEBUGFAIL("unknown segType");
269     }
270 }
271 
seg_to(const SkPoint pts[],int segType,SkScalar startT,SkScalar stopT,SkPath * dst)272 static void seg_to(const SkPoint pts[], int segType,
273                    SkScalar startT, SkScalar stopT, SkPath* dst) {
274     SkASSERT(startT >= 0 && startT <= SK_Scalar1);
275     SkASSERT(stopT >= 0 && stopT <= SK_Scalar1);
276     SkASSERT(startT <= stopT);
277 
278     if (startT == stopT) {
279         return; // should we report this, to undo a moveTo?
280     }
281 
282     SkPoint         tmp0[7], tmp1[7];
283 
284     switch (segType) {
285         case kLine_SegType:
286             if (stopT == kMaxTValue) {
287                 dst->lineTo(pts[1]);
288             } else {
289                 dst->lineTo(SkScalarInterp(pts[0].fX, pts[1].fX, stopT),
290                             SkScalarInterp(pts[0].fY, pts[1].fY, stopT));
291             }
292             break;
293         case kQuad_SegType:
294             if (startT == 0) {
295                 if (stopT == SK_Scalar1) {
296                     dst->quadTo(pts[1], pts[2]);
297                 } else {
298                     SkChopQuadAt(pts, tmp0, stopT);
299                     dst->quadTo(tmp0[1], tmp0[2]);
300                 }
301             } else {
302                 SkChopQuadAt(pts, tmp0, startT);
303                 if (stopT == SK_Scalar1) {
304                     dst->quadTo(tmp0[3], tmp0[4]);
305                 } else {
306                     SkChopQuadAt(&tmp0[2], tmp1, SkScalarDiv(stopT - startT,
307                                                          SK_Scalar1 - startT));
308                     dst->quadTo(tmp1[1], tmp1[2]);
309                 }
310             }
311             break;
312         case kCubic_SegType:
313             if (startT == 0) {
314                 if (stopT == SK_Scalar1) {
315                     dst->cubicTo(pts[1], pts[2], pts[3]);
316                 } else {
317                     SkChopCubicAt(pts, tmp0, stopT);
318                     dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]);
319                 }
320             } else {
321                 SkChopCubicAt(pts, tmp0, startT);
322                 if (stopT == SK_Scalar1) {
323                     dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]);
324                 } else {
325                     SkChopCubicAt(&tmp0[3], tmp1, SkScalarDiv(stopT - startT,
326                                                         SK_Scalar1 - startT));
327                     dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]);
328                 }
329             }
330             break;
331         default:
332             SkDEBUGFAIL("unknown segType");
333             sk_throw();
334     }
335 }
336 
337 ////////////////////////////////////////////////////////////////////////////////
338 ////////////////////////////////////////////////////////////////////////////////
339 
SkPathMeasure()340 SkPathMeasure::SkPathMeasure() {
341     fPath = NULL;
342     fLength = -1;   // signal we need to compute it
343     fForceClosed = false;
344     fFirstPtIndex = -1;
345 }
346 
SkPathMeasure(const SkPath & path,bool forceClosed)347 SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed) {
348     fPath = &path;
349     fLength = -1;   // signal we need to compute it
350     fForceClosed = forceClosed;
351     fFirstPtIndex = -1;
352 
353     fIter.setPath(path, forceClosed);
354 }
355 
~SkPathMeasure()356 SkPathMeasure::~SkPathMeasure() {}
357 
358 /** Assign a new path, or null to have none.
359 */
setPath(const SkPath * path,bool forceClosed)360 void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) {
361     fPath = path;
362     fLength = -1;   // signal we need to compute it
363     fForceClosed = forceClosed;
364     fFirstPtIndex = -1;
365 
366     if (path) {
367         fIter.setPath(*path, forceClosed);
368     }
369     fSegments.reset();
370     fPts.reset();
371 }
372 
getLength()373 SkScalar SkPathMeasure::getLength() {
374     if (fPath == NULL) {
375         return 0;
376     }
377     if (fLength < 0) {
378         this->buildSegments();
379     }
380     SkASSERT(fLength >= 0);
381     return fLength;
382 }
383 
distanceToSegment(SkScalar distance,SkScalar * t)384 const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment(
385                                             SkScalar distance, SkScalar* t) {
386     SkDEBUGCODE(SkScalar length = ) this->getLength();
387     SkASSERT(distance >= 0 && distance <= length);
388 
389     const Segment*  seg = fSegments.begin();
390     int             count = fSegments.count();
391 
392     int index = SkTSearch<SkScalar>(&seg->fDistance, count, distance,
393                                     sizeof(Segment));
394     // don't care if we hit an exact match or not, so we xor index if it is negative
395     index ^= (index >> 31);
396     seg = &seg[index];
397 
398     // now interpolate t-values with the prev segment (if possible)
399     SkScalar    startT = 0, startD = 0;
400     // check if the prev segment is legal, and references the same set of points
401     if (index > 0) {
402         startD = seg[-1].fDistance;
403         if (seg[-1].fPtIndex == seg->fPtIndex) {
404             SkASSERT(seg[-1].fType == seg->fType);
405             startT = seg[-1].getScalarT();
406         }
407     }
408 
409     SkASSERT(seg->getScalarT() > startT);
410     SkASSERT(distance >= startD);
411     SkASSERT(seg->fDistance > startD);
412 
413     *t = startT + SkScalarMulDiv(seg->getScalarT() - startT,
414                                  distance - startD,
415                                  seg->fDistance - startD);
416     return seg;
417 }
418 
getPosTan(SkScalar distance,SkPoint * pos,SkVector * tangent)419 bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos,
420                               SkVector* tangent) {
421     if (NULL == fPath) {
422         return false;
423     }
424 
425     SkScalar    length = this->getLength(); // call this to force computing it
426     int         count = fSegments.count();
427 
428     if (count == 0 || length == 0) {
429         return false;
430     }
431 
432     // pin the distance to a legal range
433     if (distance < 0) {
434         distance = 0;
435     } else if (distance > length) {
436         distance = length;
437     }
438 
439     SkScalar        t;
440     const Segment*  seg = this->distanceToSegment(distance, &t);
441 
442     compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, t, pos, tangent);
443     return true;
444 }
445 
getMatrix(SkScalar distance,SkMatrix * matrix,MatrixFlags flags)446 bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix,
447                               MatrixFlags flags) {
448     if (NULL == fPath) {
449         return false;
450     }
451 
452     SkPoint     position;
453     SkVector    tangent;
454 
455     if (this->getPosTan(distance, &position, &tangent)) {
456         if (matrix) {
457             if (flags & kGetTangent_MatrixFlag) {
458                 matrix->setSinCos(tangent.fY, tangent.fX, 0, 0);
459             } else {
460                 matrix->reset();
461             }
462             if (flags & kGetPosition_MatrixFlag) {
463                 matrix->postTranslate(position.fX, position.fY);
464             }
465         }
466         return true;
467     }
468     return false;
469 }
470 
getSegment(SkScalar startD,SkScalar stopD,SkPath * dst,bool startWithMoveTo)471 bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
472                                bool startWithMoveTo) {
473     SkASSERT(dst);
474 
475     SkScalar length = this->getLength();    // ensure we have built our segments
476 
477     if (startD < 0) {
478         startD = 0;
479     }
480     if (stopD > length) {
481         stopD = length;
482     }
483     if (startD >= stopD) {
484         return false;
485     }
486 
487     SkPoint  p;
488     SkScalar startT, stopT;
489     const Segment* seg = this->distanceToSegment(startD, &startT);
490     const Segment* stopSeg = this->distanceToSegment(stopD, &stopT);
491     SkASSERT(seg <= stopSeg);
492 
493     if (startWithMoveTo) {
494         compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, startT, &p, NULL);
495         dst->moveTo(p);
496     }
497 
498     if (seg->fPtIndex == stopSeg->fPtIndex) {
499         seg_to(&fPts[seg->fPtIndex], seg->fType, startT, stopT, dst);
500     } else {
501         do {
502             seg_to(&fPts[seg->fPtIndex], seg->fType, startT, SK_Scalar1, dst);
503             seg = SkPathMeasure::NextSegment(seg);
504             startT = 0;
505         } while (seg->fPtIndex < stopSeg->fPtIndex);
506         seg_to(&fPts[seg->fPtIndex], seg->fType, 0, stopT, dst);
507     }
508     return true;
509 }
510 
isClosed()511 bool SkPathMeasure::isClosed() {
512     (void)this->getLength();
513     return fIsClosed;
514 }
515 
516 /** Move to the next contour in the path. Return true if one exists, or false if
517     we're done with the path.
518 */
nextContour()519 bool SkPathMeasure::nextContour() {
520     fLength = -1;
521     return this->getLength() > 0;
522 }
523 
524 ///////////////////////////////////////////////////////////////////////////////
525 ///////////////////////////////////////////////////////////////////////////////
526 
527 #ifdef SK_DEBUG
528 
dump()529 void SkPathMeasure::dump() {
530     SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count());
531 
532     for (int i = 0; i < fSegments.count(); i++) {
533         const Segment* seg = &fSegments[i];
534         SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n",
535                 i, seg->fDistance, seg->fPtIndex, seg->getScalarT(),
536                  seg->fType);
537     }
538 }
539 
540 #endif
541