• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2012 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 #ifndef SkRTree_DEFINED
10 #define SkRTree_DEFINED
11 
12 #include "SkRect.h"
13 #include "SkTDArray.h"
14 #include "SkChunkAlloc.h"
15 #include "SkBBoxHierarchy.h"
16 
17 /**
18  * An R-Tree implementation. In short, it is a balanced n-ary tree containing a hierarchy of
19  * bounding rectangles.
20  *
21  * Much like a B-Tree it maintains balance by enforcing minimum and maximum child counts, and
22  * splitting nodes when they become overfull. Unlike B-trees, however, we're using spatial data; so
23  * there isn't a canonical ordering to use when choosing insertion locations and splitting
24  * distributions. A variety of heuristics have been proposed for these problems; here, we're using
25  * something resembling an R*-tree, which attempts to minimize area and overlap during insertion,
26  * and aims to minimize a combination of margin, overlap, and area when splitting.
27  *
28  * One detail that is thus far unimplemented that may improve tree quality is attempting to remove
29  * and reinsert nodes when they become full, instead of immediately splitting (nodes that may have
30  * been placed well early on may hurt the tree later when more nodes have been added; removing
31  * and reinserting nodes generally helps reduce overlap and make a better tree). Deletion of nodes
32  * is also unimplemented.
33  *
34  * For more details see:
35  *
36  *  Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990). "The R*-tree:
37  *      an efficient and robust access method for points and rectangles"
38  *
39  * It also supports bulk-loading from a batch of bounds and values; if you don't require the tree
40  * to be usable in its intermediate states while it is being constructed, this is significantly
41  * quicker than individual insertions and produces more consistent trees.
42  */
43 class SkRTree : public SkBBoxHierarchy {
44 public:
45     SK_DECLARE_INST_COUNT(SkRTree)
46 
47     /**
48      * Create a new R-Tree with specified min/max child counts.
49      * The child counts are valid iff:
50      * - (max + 1) / 2 >= min (splitting an overfull node must be enough to populate 2 nodes)
51      * - min < max
52      * - min > 0
53      * - max < SK_MaxU16
54      * If you have some prior information about the distribution of bounds you're expecting, you
55      * can provide an optional aspect ratio parameter. This allows the bulk-load algorithm to create
56      * better proportioned tiles of rectangles.
57      */
58     static SkRTree* Create(int minChildren, int maxChildren, SkScalar aspectRatio = 1);
59     virtual ~SkRTree();
60 
61     /**
62      * Insert a node, consisting of bounds and a data value into the tree, if we don't immediately
63      * need to use the tree; we may allow the insert to be deferred (this can allow us to bulk-load
64      * a large batch of nodes at once, which tends to be faster and produce a better tree).
65      *  @param data The data value
66      *  @param bounds The corresponding bounding box
67      *  @param defer Can this insert be deferred? (this may be ignored)
68      */
69     virtual void insert(void* data, const SkIRect& bounds, bool defer = false);
70 
71     /**
72      * If any inserts have been deferred, this will add them into the tree
73      */
74     virtual void flushDeferredInserts();
75 
76     /**
77      * Given a query rectangle, populates the passed-in array with the elements it intersects
78      */
79     virtual void search(const SkIRect& query, SkTDArray<void*>* results);
80 
81     virtual void clear();
isEmpty()82     bool isEmpty() const { return 0 == fCount; }
getDepth()83     int getDepth() const { return this->isEmpty() ? 0 : fRoot.fChild.subtree->fLevel + 1; }
84 
85     /**
86      * This gets the insertion count (rather than the node count)
87      */
getCount()88     virtual int getCount() const { return fCount; }
89 
90 private:
91 
92     struct Node;
93 
94     /**
95      * A branch of the tree, this may contain a pointer to another interior node, or a data value
96      */
97     struct Branch {
98         union {
99             Node* subtree;
100             void* data;
101         } fChild;
102         SkIRect fBounds;
103     };
104 
105     /**
106      * A node in the tree, has between fMinChildren and fMaxChildren (the root is a special case)
107      */
108     struct Node {
109         uint16_t fNumChildren;
110         uint16_t fLevel;
isLeafNode111         bool isLeaf() { return 0 == fLevel; }
112         // Since we want to be able to pick min/max child counts at runtime, we assume the creator
113         // has allocated sufficient space directly after us in memory, and index into that space
childNode114         Branch* child(size_t index) {
115             return reinterpret_cast<Branch*>(this + 1) + index;
116         }
117     };
118 
119     typedef int32_t SkIRect::*SortSide;
120 
121     // Helper for sorting our children arrays by sides of their rects
122     struct RectLessThan {
RectLessThanRectLessThan123         RectLessThan(SkRTree::SortSide side) : fSide(side) { }
operatorRectLessThan124         bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) const {
125             return lhs.fBounds.*fSide < rhs.fBounds.*fSide;
126         }
127     private:
128         const SkRTree::SortSide fSide;
129     };
130 
131     struct RectLessX {
operatorRectLessX132         bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) {
133             return ((lhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1) <
134                    ((rhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1);
135         }
136     };
137 
138     struct RectLessY {
operatorRectLessY139         bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) {
140             return ((lhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1) <
141                    ((rhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1);
142         }
143     };
144 
145     SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio);
146 
147     /**
148      * Recursively descend the tree to find an insertion position for 'branch', updates
149      * bounding boxes on the way up.
150      */
151     Branch* insert(Node* root, Branch* branch, uint16_t level = 0);
152 
153     int chooseSubtree(Node* root, Branch* branch);
154     SkIRect computeBounds(Node* n);
155     int distributeChildren(Branch* children);
156     void search(Node* root, const SkIRect query, SkTDArray<void*>* results) const;
157 
158     /**
159      * This performs a bottom-up bulk load using the STR (sort-tile-recursive) algorithm, this
160      * seems to generally produce better, more consistent trees at significantly lower cost than
161      * repeated insertions.
162      *
163      * This consumes the input array.
164      *
165      * TODO: Experiment with other bulk-load algorithms (in particular the Hilbert pack variant,
166      * which groups rects by position on the Hilbert curve, is probably worth a look). There also
167      * exist top-down bulk load variants (VAMSplit, TopDownGreedy, etc).
168      */
169     Branch bulkLoad(SkTDArray<Branch>* branches, int level = 0);
170 
171     void validate();
172     int validateSubtree(Node* root, SkIRect bounds, bool isRoot = false);
173 
174     const int fMinChildren;
175     const int fMaxChildren;
176     const size_t fNodeSize;
177 
178     // This is the count of data elements (rather than total nodes in the tree)
179     size_t fCount;
180 
181     Branch fRoot;
182     SkChunkAlloc fNodes;
183     SkTDArray<Branch> fDeferredInserts;
184     SkScalar fAspectRatio;
185 
186     Node* allocateNode(uint16_t level);
187 
188     typedef SkBBoxHierarchy INHERITED;
189 };
190 
191 #endif
192