• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkTSort_DEFINED
11 #define SkTSort_DEFINED
12 
13 #include "SkTypes.h"
14 #include "SkMath.h"
15 #include <stddef.h>
16 
17 /* A comparison functor which performs the comparison 'a < b'. */
18 template <typename T> struct SkTCompareLT {
operatorSkTCompareLT19     bool operator()(const T a, const T b) const { return a < b; }
20 };
21 
22 /* A comparison functor which performs the comparison '*a < *b'. */
23 template <typename T> struct SkTPointerCompareLT {
operatorSkTPointerCompareLT24     bool operator()(const T* a, const T* b) const { return *a < *b; }
25 };
26 
27 ///////////////////////////////////////////////////////////////////////////////
28 
29 /*  Sifts a broken heap. The input array is a heap from root to bottom
30  *  except that the root entry may be out of place.
31  *
32  *  Sinks a hole from array[root] to leaf and then sifts the original array[root] element
33  *  from the leaf level up.
34  *
35  *  This version does extra work, in that it copies child to parent on the way down,
36  *  then copies parent to child on the way back up. When copies are inexpensive,
37  *  this is an optimization as this sift variant should only be used when
38  *  the potentially out of place root entry value is expected to be small.
39  *
40  *  @param root the one based index into array of the out-of-place root of the heap.
41  *  @param bottom the one based index in the array of the last entry in the heap.
42  */
43 template <typename T, typename C>
SkTHeapSort_SiftUp(T array[],size_t root,size_t bottom,C lessThan)44 void SkTHeapSort_SiftUp(T array[], size_t root, size_t bottom, C lessThan) {
45     T x = array[root-1];
46     size_t start = root;
47     size_t j = root << 1;
48     while (j <= bottom) {
49         if (j < bottom && lessThan(array[j-1], array[j])) {
50             ++j;
51         }
52         array[root-1] = array[j-1];
53         root = j;
54         j = root << 1;
55     }
56     j = root >> 1;
57     while (j >= start) {
58         if (lessThan(array[j-1], x)) {
59             array[root-1] = array[j-1];
60             root = j;
61             j = root >> 1;
62         } else {
63             break;
64         }
65     }
66     array[root-1] = x;
67 }
68 
69 /*  Sifts a broken heap. The input array is a heap from root to bottom
70  *  except that the root entry may be out of place.
71  *
72  *  Sifts the array[root] element from the root down.
73  *
74  *  @param root the one based index into array of the out-of-place root of the heap.
75  *  @param bottom the one based index in the array of the last entry in the heap.
76  */
77 template <typename T, typename C>
SkTHeapSort_SiftDown(T array[],size_t root,size_t bottom,C lessThan)78 void SkTHeapSort_SiftDown(T array[], size_t root, size_t bottom, C lessThan) {
79     T x = array[root-1];
80     size_t child = root << 1;
81     while (child <= bottom) {
82         if (child < bottom && lessThan(array[child-1], array[child])) {
83             ++child;
84         }
85         if (lessThan(x, array[child-1])) {
86             array[root-1] = array[child-1];
87             root = child;
88             child = root << 1;
89         } else {
90             break;
91         }
92     }
93     array[root-1] = x;
94 }
95 
96 /** Sorts the array of size count using comparator lessThan using a Heap Sort algorithm
97  *
98  *  @param array the array to be sorted.
99  *  @param count the number of elements in the array.
100  *  @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
101  */
SkTHeapSort(T array[],size_t count,C lessThan)102 template <typename T, typename C> void SkTHeapSort(T array[], size_t count, C lessThan) {
103     for (size_t i = count >> 1; i > 0; --i) {
104         SkTHeapSort_SiftDown(array, i, count, lessThan);
105     }
106 
107     for (size_t i = count - 1; i > 0; --i) {
108         SkTSwap<T>(array[0], array[i]);
109         SkTHeapSort_SiftUp(array, 1, i, lessThan);
110     }
111 }
112 
113 /** Sorts the array of size count using comparator '<' using a Heap Sort algorithm. */
SkTHeapSort(T array[],size_t count)114 template <typename T> void SkTHeapSort(T array[], size_t count) {
115     SkTHeapSort(array, count, SkTCompareLT<T>());
116 }
117 
118 ///////////////////////////////////////////////////////////////////////////////
119 
120 /** Sorts the array of size count using comparator lessThan using an Insertion Sort algorithm. */
SkTInsertionSort(T * left,T * right,C lessThan)121 template <typename T, typename C> static void SkTInsertionSort(T* left, T* right, C lessThan) {
122     for (T* next = left + 1; next <= right; ++next) {
123         T insert = *next;
124         T* hole = next;
125         while (left < hole && lessThan(insert, *(hole - 1))) {
126             *hole = *(hole - 1);
127             --hole;
128         }
129         *hole = insert;
130     }
131 }
132 
133 ///////////////////////////////////////////////////////////////////////////////
134 
135 template <typename T, typename C>
SkTQSort_Partition(T * left,T * right,T * pivot,C lessThan)136 static T* SkTQSort_Partition(T* left, T* right, T* pivot, C lessThan) {
137     T pivotValue = *pivot;
138     SkTSwap(*pivot, *right);
139     T* newPivot = left;
140     while (left < right) {
141         if (lessThan(*left, pivotValue)) {
142             SkTSwap(*left, *newPivot);
143             newPivot += 1;
144         }
145         left += 1;
146     }
147     SkTSwap(*newPivot, *right);
148     return newPivot;
149 }
150 
151 /*  Intro Sort is a modified Quick Sort.
152  *  It recurses on the smaller region after pivoting and loops on the larger.
153  *  When the region to be sorted is a small constant size it uses Insertion Sort.
154  *  When depth becomes zero, it switches over to Heap Sort.
155  */
SkTIntroSort(int depth,T * left,T * right,C lessThan)156 template <typename T, typename C> void SkTIntroSort(int depth, T* left, T* right, C lessThan) {
157     while (left < right) {
158         if (depth == 0) {
159             SkTHeapSort<T>(left, right - left + 1, lessThan);
160             return;
161         }
162         --depth;
163 
164         T* pivot = left + ((right - left) >> 1);
165         pivot = SkTQSort_Partition(left, right, pivot, lessThan);
166 
167         ptrdiff_t leftSize = pivot - left;
168         ptrdiff_t rightSize = right - pivot;
169         if (leftSize < rightSize) {
170             if (leftSize < 8) {
171                 SkTInsertionSort(left, pivot - 1, lessThan);
172             } else {
173                 SkTIntroSort(depth, left, pivot - 1, lessThan);
174             }
175             left = pivot + 1;
176         } else {
177             if (rightSize < 8) {
178                 SkTInsertionSort(pivot + 1, right, lessThan);
179             } else {
180                 SkTIntroSort(depth, pivot + 1, right, lessThan);
181             }
182             right = pivot - 1;
183         }
184     }
185 }
186 
187 /** Sorts the region from left to right using comparator lessThan using a Quick Sort algorithm.
188  *
189  *  @param left the beginning of the region to be sorted.
190  *  @param right the end of the region to be sorted (inclusive).
191  *  @param lessThan a functor with bool operator()(T a, T b) which returns true if a comes before b.
192  */
SkTQSort(T * left,T * right,C lessThan)193 template <typename T, typename C> void SkTQSort(T* left, T* right, C lessThan) {
194     if (left >= right) {
195         return;
196     }
197     ptrdiff_t size = right - left;
198     int depth = SkNextLog2(SkToU32(size));
199     SkTIntroSort(depth * 2, left, right, lessThan);
200 }
201 
202 /** Sorts the region from left to right using comparator '<' using a Quick Sort algorithm. */
SkTQSort(T * left,T * right)203 template <typename T> void SkTQSort(T* left, T* right) {
204     SkTQSort(left, right, SkTCompareLT<T>());
205 }
206 
207 /** Sorts the region from left to right using comparator '* < *' using a Quick Sort algorithm. */
SkTQSort(T ** left,T ** right)208 template <typename T> void SkTQSort(T** left, T** right) {
209     SkTQSort(left, right, SkTPointerCompareLT<T>());
210 }
211 
212 #endif
213