1
2 /*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "SkDashPathEffect.h"
11 #include "SkFlattenableBuffers.h"
12 #include "SkPathMeasure.h"
13
is_even(int x)14 static inline int is_even(int x) {
15 return (~x) << 31;
16 }
17
FindFirstInterval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)18 static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase,
19 int32_t* index, int count) {
20 for (int i = 0; i < count; ++i) {
21 if (phase > intervals[i]) {
22 phase -= intervals[i];
23 } else {
24 *index = i;
25 return intervals[i] - phase;
26 }
27 }
28 // If we get here, phase "appears" to be larger than our length. This
29 // shouldn't happen with perfect precision, but we can accumulate errors
30 // during the initial length computation (rounding can make our sum be too
31 // big or too small. In that event, we just have to eat the error here.
32 *index = 0;
33 return intervals[0];
34 }
35
SkDashPathEffect(const SkScalar intervals[],int count,SkScalar phase,bool scaleToFit)36 SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count,
37 SkScalar phase, bool scaleToFit)
38 : fScaleToFit(scaleToFit) {
39 SkASSERT(intervals);
40 SkASSERT(count > 1 && SkAlign2(count) == count);
41
42 fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count);
43 fCount = count;
44
45 SkScalar len = 0;
46 for (int i = 0; i < count; i++) {
47 SkASSERT(intervals[i] >= 0);
48 fIntervals[i] = intervals[i];
49 len += intervals[i];
50 }
51 fIntervalLength = len;
52
53 // watch out for values that might make us go out of bounds
54 if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
55
56 // Adjust phase to be between 0 and len, "flipping" phase if negative.
57 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
58 if (phase < 0) {
59 phase = -phase;
60 if (phase > len) {
61 phase = SkScalarMod(phase, len);
62 }
63 phase = len - phase;
64
65 // Due to finite precision, it's possible that phase == len,
66 // even after the subtract (if len >>> phase), so fix that here.
67 // This fixes http://crbug.com/124652 .
68 SkASSERT(phase <= len);
69 if (phase == len) {
70 phase = 0;
71 }
72 } else if (phase >= len) {
73 phase = SkScalarMod(phase, len);
74 }
75 SkASSERT(phase >= 0 && phase < len);
76
77 fInitialDashLength = FindFirstInterval(intervals, phase,
78 &fInitialDashIndex, count);
79
80 SkASSERT(fInitialDashLength >= 0);
81 SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount);
82 } else {
83 fInitialDashLength = -1; // signal bad dash intervals
84 }
85 }
86
~SkDashPathEffect()87 SkDashPathEffect::~SkDashPathEffect() {
88 sk_free(fIntervals);
89 }
90
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)91 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
92 SkScalar radius = SkScalarHalf(rec.getWidth());
93 if (0 == radius) {
94 radius = SK_Scalar1; // hairlines
95 }
96 if (SkPaint::kMiter_Join == rec.getJoin()) {
97 radius = SkScalarMul(radius, rec.getMiter());
98 }
99 rect->outset(radius, radius);
100 }
101
102 // Only handles lines for now. If returns true, dstPath is the new (smaller)
103 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)104 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
105 const SkRect* cullRect, SkScalar intervalLength,
106 SkPath* dstPath) {
107 if (NULL == cullRect) {
108 return false;
109 }
110
111 SkPoint pts[2];
112 if (!srcPath.isLine(pts)) {
113 return false;
114 }
115
116 SkRect bounds = *cullRect;
117 outset_for_stroke(&bounds, rec);
118
119 SkScalar dx = pts[1].x() - pts[0].x();
120 SkScalar dy = pts[1].y() - pts[0].y();
121
122 // just do horizontal lines for now (lazy)
123 if (dy) {
124 return false;
125 }
126
127 SkScalar minX = pts[0].fX;
128 SkScalar maxX = pts[1].fX;
129
130 if (maxX < bounds.fLeft || minX > bounds.fRight) {
131 return false;
132 }
133
134 if (dx < 0) {
135 SkTSwap(minX, maxX);
136 }
137
138 // Now we actually perform the chop, removing the excess to the left and
139 // right of the bounds (keeping our new line "in phase" with the dash,
140 // hence the (mod intervalLength).
141
142 if (minX < bounds.fLeft) {
143 minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
144 intervalLength);
145 }
146 if (maxX > bounds.fRight) {
147 maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
148 intervalLength);
149 }
150
151 SkASSERT(maxX >= minX);
152 if (dx < 0) {
153 SkTSwap(minX, maxX);
154 }
155 pts[0].fX = minX;
156 pts[1].fX = maxX;
157
158 dstPath->moveTo(pts[0]);
159 dstPath->lineTo(pts[1]);
160 return true;
161 }
162
163 class SpecialLineRec {
164 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)165 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
166 int intervalCount, SkScalar intervalLength) {
167 if (rec->isHairlineStyle() || !src.isLine(fPts)) {
168 return false;
169 }
170
171 // can relax this in the future, if we handle square and round caps
172 if (SkPaint::kButt_Cap != rec->getCap()) {
173 return false;
174 }
175
176 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
177
178 fTangent = fPts[1] - fPts[0];
179 if (fTangent.isZero()) {
180 return false;
181 }
182
183 fPathLength = pathLength;
184 fTangent.scale(SkScalarInvert(pathLength));
185 fTangent.rotateCCW(&fNormal);
186 fNormal.scale(SkScalarHalf(rec->getWidth()));
187
188 // now estimate how many quads will be added to the path
189 // resulting segments = pathLen * intervalCount / intervalLen
190 // resulting points = 4 * segments
191
192 SkScalar ptCount = SkScalarMulDiv(pathLength,
193 SkIntToScalar(intervalCount),
194 intervalLength);
195 int n = SkScalarCeilToInt(ptCount) << 2;
196 dst->incReserve(n);
197
198 // we will take care of the stroking
199 rec->setFillStyle();
200 return true;
201 }
202
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const203 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
204 SkASSERT(d0 < fPathLength);
205 // clamp the segment to our length
206 if (d1 > fPathLength) {
207 d1 = fPathLength;
208 }
209
210 SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
211 SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
212 SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
213 SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
214
215 SkPoint pts[4];
216 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
217 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
218 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
219 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
220
221 path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
222 }
223
224 private:
225 SkPoint fPts[2];
226 SkVector fTangent;
227 SkVector fNormal;
228 SkScalar fPathLength;
229 };
230
filterPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect) const231 bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src,
232 SkStrokeRec* rec, const SkRect* cullRect) const {
233
234 #ifdef SK_IGNORE_LARGE_DASH_OPT
235 cullRect = NULL;
236 #endif
237
238 // we do nothing if the src wants to be filled, or if our dashlength is 0
239 if (rec->isFillStyle() || fInitialDashLength < 0) {
240 return false;
241 }
242
243 const SkScalar* intervals = fIntervals;
244 SkScalar dashCount = 0;
245
246 SkPath cullPathStorage;
247 const SkPath* srcPtr = &src;
248 if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) {
249 srcPtr = &cullPathStorage;
250 }
251
252 SpecialLineRec lineRec;
253 bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength);
254
255 SkPathMeasure meas(*srcPtr, false);
256
257 do {
258 bool skipFirstSegment = meas.isClosed();
259 bool addedSegment = false;
260 SkScalar length = meas.getLength();
261 int index = fInitialDashIndex;
262 SkScalar scale = SK_Scalar1;
263
264 // Since the path length / dash length ratio may be arbitrarily large, we can exert
265 // significant memory pressure while attempting to build the filtered path. To avoid this,
266 // we simply give up dashing beyond a certain threshold.
267 //
268 // The original bug report (http://crbug.com/165432) is based on a path yielding more than
269 // 90 million dash segments and crashing the memory allocator. A limit of 1 million
270 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
271 // maximum dash memory overhead at roughly 17MB per path.
272 static const SkScalar kMaxDashCount = 1000000;
273 dashCount += length * (fCount >> 1) / fIntervalLength;
274 if (dashCount > kMaxDashCount) {
275 dst->reset();
276 return false;
277 }
278
279 if (fScaleToFit) {
280 if (fIntervalLength >= length) {
281 scale = SkScalarDiv(length, fIntervalLength);
282 } else {
283 SkScalar div = SkScalarDiv(length, fIntervalLength);
284 int n = SkScalarFloor(div);
285 scale = SkScalarDiv(length, n * fIntervalLength);
286 }
287 }
288
289 // Using double precision to avoid looping indefinitely due to single precision rounding
290 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
291 double distance = 0;
292 double dlen = SkScalarMul(fInitialDashLength, scale);
293
294 while (distance < length) {
295 SkASSERT(dlen >= 0);
296 addedSegment = false;
297 if (is_even(index) && dlen > 0 && !skipFirstSegment) {
298 addedSegment = true;
299
300 if (specialLine) {
301 lineRec.addSegment(SkDoubleToScalar(distance),
302 SkDoubleToScalar(distance + dlen),
303 dst);
304 } else {
305 meas.getSegment(SkDoubleToScalar(distance),
306 SkDoubleToScalar(distance + dlen),
307 dst, true);
308 }
309 }
310 distance += dlen;
311
312 // clear this so we only respect it the first time around
313 skipFirstSegment = false;
314
315 // wrap around our intervals array if necessary
316 index += 1;
317 SkASSERT(index <= fCount);
318 if (index == fCount) {
319 index = 0;
320 }
321
322 // fetch our next dlen
323 dlen = SkScalarMul(intervals[index], scale);
324 }
325
326 // extend if we ended on a segment and we need to join up with the (skipped) initial segment
327 if (meas.isClosed() && is_even(fInitialDashIndex) &&
328 fInitialDashLength > 0) {
329 meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment);
330 }
331 } while (meas.nextContour());
332
333 return true;
334 }
335
336 // Currently asPoints is more restrictive then it needs to be. In the future
337 // we need to:
338 // allow kRound_Cap capping (could allow rotations in the matrix with this)
339 // allow paths to be returned
asPoints(PointData * results,const SkPath & src,const SkStrokeRec & rec,const SkMatrix & matrix,const SkRect * cullRect) const340 bool SkDashPathEffect::asPoints(PointData* results,
341 const SkPath& src,
342 const SkStrokeRec& rec,
343 const SkMatrix& matrix,
344 const SkRect* cullRect) const {
345 // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out
346 if (fInitialDashLength < 0 || 0 >= rec.getWidth()) {
347 return false;
348 }
349
350 // TODO: this next test could be eased up. We could allow any number of
351 // intervals as long as all the ons match and all the offs match.
352 // Additionally, they do not necessarily need to be integers.
353 // We cannot allow arbitrary intervals since we want the returned points
354 // to be uniformly sized.
355 if (fCount != 2 ||
356 !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) ||
357 !SkScalarIsInt(fIntervals[0]) ||
358 !SkScalarIsInt(fIntervals[1])) {
359 return false;
360 }
361
362 // TODO: this next test could be eased up. The rescaling should not impact
363 // the equality of the ons & offs. However, we would need to remove the
364 // integer intervals restriction first
365 if (fScaleToFit) {
366 return false;
367 }
368
369 SkPoint pts[2];
370
371 if (!src.isLine(pts)) {
372 return false;
373 }
374
375 // TODO: this test could be eased up to allow circles
376 if (SkPaint::kButt_Cap != rec.getCap()) {
377 return false;
378 }
379
380 // TODO: this test could be eased up for circles. Rotations could be allowed.
381 if (!matrix.rectStaysRect()) {
382 return false;
383 }
384
385 SkScalar length = SkPoint::Distance(pts[1], pts[0]);
386
387 SkVector tangent = pts[1] - pts[0];
388 if (tangent.isZero()) {
389 return false;
390 }
391
392 tangent.scale(SkScalarInvert(length));
393
394 // TODO: make this test for horizontal & vertical lines more robust
395 bool isXAxis = true;
396 if (SK_Scalar1 == tangent.fX || -SK_Scalar1 == tangent.fX) {
397 results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth()));
398 } else if (SK_Scalar1 == tangent.fY || -SK_Scalar1 == tangent.fY) {
399 results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0]));
400 isXAxis = false;
401 } else if (SkPaint::kRound_Cap != rec.getCap()) {
402 // Angled lines don't have axis-aligned boxes.
403 return false;
404 }
405
406 if (NULL != results) {
407 results->fFlags = 0;
408 SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength);
409
410 if (SkPaint::kRound_Cap == rec.getCap()) {
411 results->fFlags |= PointData::kCircles_PointFlag;
412 }
413
414 results->fNumPoints = 0;
415 SkScalar len2 = length;
416 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
417 SkASSERT(len2 >= clampedInitialDashLength);
418 if (0 == fInitialDashIndex) {
419 if (clampedInitialDashLength > 0) {
420 if (clampedInitialDashLength >= fIntervals[0]) {
421 ++results->fNumPoints; // partial first dash
422 }
423 len2 -= clampedInitialDashLength;
424 }
425 len2 -= fIntervals[1]; // also skip first space
426 if (len2 < 0) {
427 len2 = 0;
428 }
429 } else {
430 len2 -= clampedInitialDashLength; // skip initial partial empty
431 }
432 }
433 int numMidPoints = SkScalarFloorToInt(SkScalarDiv(len2, fIntervalLength));
434 results->fNumPoints += numMidPoints;
435 len2 -= numMidPoints * fIntervalLength;
436 bool partialLast = false;
437 if (len2 > 0) {
438 if (len2 < fIntervals[0]) {
439 partialLast = true;
440 } else {
441 ++numMidPoints;
442 ++results->fNumPoints;
443 }
444 }
445
446 results->fPoints = new SkPoint[results->fNumPoints];
447
448 SkScalar distance = 0;
449 int curPt = 0;
450
451 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
452 SkASSERT(clampedInitialDashLength <= length);
453
454 if (0 == fInitialDashIndex) {
455 if (clampedInitialDashLength > 0) {
456 // partial first block
457 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
458 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength));
459 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength));
460 SkScalar halfWidth, halfHeight;
461 if (isXAxis) {
462 halfWidth = SkScalarHalf(clampedInitialDashLength);
463 halfHeight = SkScalarHalf(rec.getWidth());
464 } else {
465 halfWidth = SkScalarHalf(rec.getWidth());
466 halfHeight = SkScalarHalf(clampedInitialDashLength);
467 }
468 if (clampedInitialDashLength < fIntervals[0]) {
469 // This one will not be like the others
470 results->fFirst.addRect(x - halfWidth, y - halfHeight,
471 x + halfWidth, y + halfHeight);
472 } else {
473 SkASSERT(curPt < results->fNumPoints);
474 results->fPoints[curPt].set(x, y);
475 ++curPt;
476 }
477
478 distance += clampedInitialDashLength;
479 }
480
481 distance += fIntervals[1]; // skip over the next blank block too
482 } else {
483 distance += clampedInitialDashLength;
484 }
485 }
486
487 if (0 != numMidPoints) {
488 distance += SkScalarHalf(fIntervals[0]);
489
490 for (int i = 0; i < numMidPoints; ++i) {
491 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance);
492 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance);
493
494 SkASSERT(curPt < results->fNumPoints);
495 results->fPoints[curPt].set(x, y);
496 ++curPt;
497
498 distance += fIntervalLength;
499 }
500
501 distance -= SkScalarHalf(fIntervals[0]);
502 }
503
504 if (partialLast) {
505 // partial final block
506 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
507 SkScalar temp = length - distance;
508 SkASSERT(temp < fIntervals[0]);
509 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp));
510 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp));
511 SkScalar halfWidth, halfHeight;
512 if (isXAxis) {
513 halfWidth = SkScalarHalf(temp);
514 halfHeight = SkScalarHalf(rec.getWidth());
515 } else {
516 halfWidth = SkScalarHalf(rec.getWidth());
517 halfHeight = SkScalarHalf(temp);
518 }
519 results->fLast.addRect(x - halfWidth, y - halfHeight,
520 x + halfWidth, y + halfHeight);
521 }
522
523 SkASSERT(curPt == results->fNumPoints);
524 }
525
526 return true;
527 }
528
getFactory()529 SkFlattenable::Factory SkDashPathEffect::getFactory() {
530 return fInitialDashLength < 0 ? NULL : CreateProc;
531 }
532
flatten(SkFlattenableWriteBuffer & buffer) const533 void SkDashPathEffect::flatten(SkFlattenableWriteBuffer& buffer) const {
534 SkASSERT(fInitialDashLength >= 0);
535
536 this->INHERITED::flatten(buffer);
537 buffer.writeInt(fInitialDashIndex);
538 buffer.writeScalar(fInitialDashLength);
539 buffer.writeScalar(fIntervalLength);
540 buffer.writeBool(fScaleToFit);
541 buffer.writeScalarArray(fIntervals, fCount);
542 }
543
CreateProc(SkFlattenableReadBuffer & buffer)544 SkFlattenable* SkDashPathEffect::CreateProc(SkFlattenableReadBuffer& buffer) {
545 return SkNEW_ARGS(SkDashPathEffect, (buffer));
546 }
547
SkDashPathEffect(SkFlattenableReadBuffer & buffer)548 SkDashPathEffect::SkDashPathEffect(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
549 fInitialDashIndex = buffer.readInt();
550 fInitialDashLength = buffer.readScalar();
551 fIntervalLength = buffer.readScalar();
552 fScaleToFit = buffer.readBool();
553
554 fCount = buffer.getArrayCount();
555 fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * fCount);
556 buffer.readScalarArray(fIntervals);
557 }
558