1
2 /*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "GrPathUtils.h"
11 #include "GrPoint.h"
12 #include "SkGeometry.h"
13
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const GrRect & pathBounds)14 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
15 const SkMatrix& viewM,
16 const GrRect& pathBounds) {
17 // In order to tesselate the path we get a bound on how much the matrix can
18 // stretch when mapping to screen coordinates.
19 SkScalar stretch = viewM.getMaxStretch();
20 SkScalar srcTol = devTol;
21
22 if (stretch < 0) {
23 // take worst case mapRadius amoung four corners.
24 // (less than perfect)
25 for (int i = 0; i < 4; ++i) {
26 SkMatrix mat;
27 mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
28 (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
29 mat.postConcat(viewM);
30 stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
31 }
32 }
33 srcTol = SkScalarDiv(srcTol, stretch);
34 return srcTol;
35 }
36
37 static const int MAX_POINTS_PER_CURVE = 1 << 10;
38 static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
39
quadraticPointCount(const GrPoint points[],SkScalar tol)40 uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
41 SkScalar tol) {
42 if (tol < gMinCurveTol) {
43 tol = gMinCurveTol;
44 }
45 GrAssert(tol > 0);
46
47 SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
48 if (d <= tol) {
49 return 1;
50 } else {
51 // Each time we subdivide, d should be cut in 4. So we need to
52 // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
53 // points.
54 // 2^(log4(x)) = sqrt(x);
55 int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
56 int pow2 = GrNextPow2(temp);
57 // Because of NaNs & INFs we can wind up with a degenerate temp
58 // such that pow2 comes out negative. Also, our point generator
59 // will always output at least one pt.
60 if (pow2 < 1) {
61 pow2 = 1;
62 }
63 return GrMin(pow2, MAX_POINTS_PER_CURVE);
64 }
65 }
66
generateQuadraticPoints(const GrPoint & p0,const GrPoint & p1,const GrPoint & p2,SkScalar tolSqd,GrPoint ** points,uint32_t pointsLeft)67 uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
68 const GrPoint& p1,
69 const GrPoint& p2,
70 SkScalar tolSqd,
71 GrPoint** points,
72 uint32_t pointsLeft) {
73 if (pointsLeft < 2 ||
74 (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
75 (*points)[0] = p2;
76 *points += 1;
77 return 1;
78 }
79
80 GrPoint q[] = {
81 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
82 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
83 };
84 GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
85
86 pointsLeft >>= 1;
87 uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
88 uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
89 return a + b;
90 }
91
cubicPointCount(const GrPoint points[],SkScalar tol)92 uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
93 SkScalar tol) {
94 if (tol < gMinCurveTol) {
95 tol = gMinCurveTol;
96 }
97 GrAssert(tol > 0);
98
99 SkScalar d = GrMax(
100 points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
101 points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
102 d = SkScalarSqrt(d);
103 if (d <= tol) {
104 return 1;
105 } else {
106 int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
107 int pow2 = GrNextPow2(temp);
108 // Because of NaNs & INFs we can wind up with a degenerate temp
109 // such that pow2 comes out negative. Also, our point generator
110 // will always output at least one pt.
111 if (pow2 < 1) {
112 pow2 = 1;
113 }
114 return GrMin(pow2, MAX_POINTS_PER_CURVE);
115 }
116 }
117
generateCubicPoints(const GrPoint & p0,const GrPoint & p1,const GrPoint & p2,const GrPoint & p3,SkScalar tolSqd,GrPoint ** points,uint32_t pointsLeft)118 uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
119 const GrPoint& p1,
120 const GrPoint& p2,
121 const GrPoint& p3,
122 SkScalar tolSqd,
123 GrPoint** points,
124 uint32_t pointsLeft) {
125 if (pointsLeft < 2 ||
126 (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
127 p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
128 (*points)[0] = p3;
129 *points += 1;
130 return 1;
131 }
132 GrPoint q[] = {
133 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
134 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
135 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
136 };
137 GrPoint r[] = {
138 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
139 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
140 };
141 GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
142 pointsLeft >>= 1;
143 uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
144 uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
145 return a + b;
146 }
147
worstCasePointCount(const SkPath & path,int * subpaths,SkScalar tol)148 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
149 SkScalar tol) {
150 if (tol < gMinCurveTol) {
151 tol = gMinCurveTol;
152 }
153 GrAssert(tol > 0);
154
155 int pointCount = 0;
156 *subpaths = 1;
157
158 bool first = true;
159
160 SkPath::Iter iter(path, false);
161 GrPathCmd cmd;
162
163 GrPoint pts[4];
164 while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) {
165
166 switch (cmd) {
167 case kLine_PathCmd:
168 pointCount += 1;
169 break;
170 case kQuadratic_PathCmd:
171 pointCount += quadraticPointCount(pts, tol);
172 break;
173 case kCubic_PathCmd:
174 pointCount += cubicPointCount(pts, tol);
175 break;
176 case kMove_PathCmd:
177 pointCount += 1;
178 if (!first) {
179 ++(*subpaths);
180 }
181 break;
182 default:
183 break;
184 }
185 first = false;
186 }
187 return pointCount;
188 }
189
set(const GrPoint qPts[3])190 void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
191 // can't make this static, no cons :(
192 SkMatrix UVpts;
193 #ifndef SK_SCALAR_IS_FLOAT
194 GrCrash("Expected scalar is float.");
195 #endif
196 SkMatrix m;
197 // We want M such that M * xy_pt = uv_pt
198 // We know M * control_pts = [0 1/2 1]
199 // [0 0 1]
200 // [1 1 1]
201 // We invert the control pt matrix and post concat to both sides to get M.
202 UVpts.setAll(0, SK_ScalarHalf, SK_Scalar1,
203 0, 0, SK_Scalar1,
204 SkScalarToPersp(SK_Scalar1),
205 SkScalarToPersp(SK_Scalar1),
206 SkScalarToPersp(SK_Scalar1));
207 m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
208 qPts[0].fY, qPts[1].fY, qPts[2].fY,
209 SkScalarToPersp(SK_Scalar1),
210 SkScalarToPersp(SK_Scalar1),
211 SkScalarToPersp(SK_Scalar1));
212 if (!m.invert(&m)) {
213 // The quad is degenerate. Hopefully this is rare. Find the pts that are
214 // farthest apart to compute a line (unless it is really a pt).
215 SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
216 int maxEdge = 0;
217 SkScalar d = qPts[1].distanceToSqd(qPts[2]);
218 if (d > maxD) {
219 maxD = d;
220 maxEdge = 1;
221 }
222 d = qPts[2].distanceToSqd(qPts[0]);
223 if (d > maxD) {
224 maxD = d;
225 maxEdge = 2;
226 }
227 // We could have a tolerance here, not sure if it would improve anything
228 if (maxD > 0) {
229 // Set the matrix to give (u = 0, v = distance_to_line)
230 GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
231 // when looking from the point 0 down the line we want positive
232 // distances to be to the left. This matches the non-degenerate
233 // case.
234 lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
235 lineVec.dot(qPts[0]);
236 // first row
237 fM[0] = 0;
238 fM[1] = 0;
239 fM[2] = 0;
240 // second row
241 fM[3] = lineVec.fX;
242 fM[4] = lineVec.fY;
243 fM[5] = -lineVec.dot(qPts[maxEdge]);
244 } else {
245 // It's a point. It should cover zero area. Just set the matrix such
246 // that (u, v) will always be far away from the quad.
247 fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
248 fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
249 }
250 } else {
251 m.postConcat(UVpts);
252
253 // The matrix should not have perspective.
254 SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
255 GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
256 GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
257
258 // It may not be normalized to have 1.0 in the bottom right
259 float m33 = m.get(SkMatrix::kMPersp2);
260 if (1.f != m33) {
261 m33 = 1.f / m33;
262 fM[0] = m33 * m.get(SkMatrix::kMScaleX);
263 fM[1] = m33 * m.get(SkMatrix::kMSkewX);
264 fM[2] = m33 * m.get(SkMatrix::kMTransX);
265 fM[3] = m33 * m.get(SkMatrix::kMSkewY);
266 fM[4] = m33 * m.get(SkMatrix::kMScaleY);
267 fM[5] = m33 * m.get(SkMatrix::kMTransY);
268 } else {
269 fM[0] = m.get(SkMatrix::kMScaleX);
270 fM[1] = m.get(SkMatrix::kMSkewX);
271 fM[2] = m.get(SkMatrix::kMTransX);
272 fM[3] = m.get(SkMatrix::kMSkewY);
273 fM[4] = m.get(SkMatrix::kMScaleY);
274 fM[5] = m.get(SkMatrix::kMTransY);
275 }
276 }
277 }
278
279 namespace {
280
281 // a is the first control point of the cubic.
282 // ab is the vector from a to the second control point.
283 // dc is the vector from the fourth to the third control point.
284 // d is the fourth control point.
285 // p is the candidate quadratic control point.
286 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPath::Direction dir,const SkPoint p)287 bool is_point_within_cubic_tangents(const SkPoint& a,
288 const SkVector& ab,
289 const SkVector& dc,
290 const SkPoint& d,
291 SkPath::Direction dir,
292 const SkPoint p) {
293 SkVector ap = p - a;
294 SkScalar apXab = ap.cross(ab);
295 if (SkPath::kCW_Direction == dir) {
296 if (apXab > 0) {
297 return false;
298 }
299 } else {
300 GrAssert(SkPath::kCCW_Direction == dir);
301 if (apXab < 0) {
302 return false;
303 }
304 }
305
306 SkVector dp = p - d;
307 SkScalar dpXdc = dp.cross(dc);
308 if (SkPath::kCW_Direction == dir) {
309 if (dpXdc < 0) {
310 return false;
311 }
312 } else {
313 GrAssert(SkPath::kCCW_Direction == dir);
314 if (dpXdc > 0) {
315 return false;
316 }
317 }
318 return true;
319 }
320
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,bool constrainWithinTangents,SkPath::Direction dir,SkTArray<SkPoint,true> * quads,int sublevel=0)321 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
322 SkScalar toleranceSqd,
323 bool constrainWithinTangents,
324 SkPath::Direction dir,
325 SkTArray<SkPoint, true>* quads,
326 int sublevel = 0) {
327
328 // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
329 // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
330
331 SkVector ab = p[1] - p[0];
332 SkVector dc = p[2] - p[3];
333
334 if (ab.isZero()) {
335 if (dc.isZero()) {
336 SkPoint* degQuad = quads->push_back_n(3);
337 degQuad[0] = p[0];
338 degQuad[1] = p[0];
339 degQuad[2] = p[3];
340 return;
341 }
342 ab = p[2] - p[0];
343 }
344 if (dc.isZero()) {
345 dc = p[1] - p[3];
346 }
347
348 // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
349 // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
350 // the max subdivision count. However, in this case the cubic is approaching a line and the
351 // accuracy of the quad point isn't so important. We check if the two middle cubic control
352 // points are very close to the baseline vector. If so then we just pick quadratic points on the
353 // control polygon.
354
355 if (constrainWithinTangents) {
356 SkVector da = p[0] - p[3];
357 SkScalar invDALengthSqd = da.lengthSqd();
358 if (invDALengthSqd > SK_ScalarNearlyZero) {
359 invDALengthSqd = SkScalarInvert(invDALengthSqd);
360 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
361 // same goed for point c using vector cd.
362 SkScalar detABSqd = ab.cross(da);
363 detABSqd = SkScalarSquare(detABSqd);
364 SkScalar detDCSqd = dc.cross(da);
365 detDCSqd = SkScalarSquare(detDCSqd);
366 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
367 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
368 SkPoint b = p[0] + ab;
369 SkPoint c = p[3] + dc;
370 SkPoint mid = b + c;
371 mid.scale(SK_ScalarHalf);
372 // Insert two quadratics to cover the case when ab points away from d and/or dc
373 // points away from a.
374 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
375 SkPoint* qpts = quads->push_back_n(6);
376 qpts[0] = p[0];
377 qpts[1] = b;
378 qpts[2] = mid;
379 qpts[3] = mid;
380 qpts[4] = c;
381 qpts[5] = p[3];
382 } else {
383 SkPoint* qpts = quads->push_back_n(3);
384 qpts[0] = p[0];
385 qpts[1] = mid;
386 qpts[2] = p[3];
387 }
388 return;
389 }
390 }
391 }
392
393 static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
394 static const int kMaxSubdivs = 10;
395
396 ab.scale(kLengthScale);
397 dc.scale(kLengthScale);
398
399 // e0 and e1 are extrapolations along vectors ab and dc.
400 SkVector c0 = p[0];
401 c0 += ab;
402 SkVector c1 = p[3];
403 c1 += dc;
404
405 SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
406 if (dSqd < toleranceSqd) {
407 SkPoint cAvg = c0;
408 cAvg += c1;
409 cAvg.scale(SK_ScalarHalf);
410
411 bool subdivide = false;
412
413 if (constrainWithinTangents &&
414 !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
415 // choose a new cAvg that is the intersection of the two tangent lines.
416 ab.setOrthog(ab);
417 SkScalar z0 = -ab.dot(p[0]);
418 dc.setOrthog(dc);
419 SkScalar z1 = -dc.dot(p[3]);
420 cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
421 cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
422 SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
423 z = SkScalarInvert(z);
424 cAvg.fX *= z;
425 cAvg.fY *= z;
426 if (sublevel <= kMaxSubdivs) {
427 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
428 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
429 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
430 // the distances and tolerance can't be negative.
431 // (d0 + d1)^2 > toleranceSqd
432 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
433 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
434 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
435 }
436 }
437 if (!subdivide) {
438 SkPoint* pts = quads->push_back_n(3);
439 pts[0] = p[0];
440 pts[1] = cAvg;
441 pts[2] = p[3];
442 return;
443 }
444 }
445 SkPoint choppedPts[7];
446 SkChopCubicAtHalf(p, choppedPts);
447 convert_noninflect_cubic_to_quads(choppedPts + 0,
448 toleranceSqd,
449 constrainWithinTangents,
450 dir,
451 quads,
452 sublevel + 1);
453 convert_noninflect_cubic_to_quads(choppedPts + 3,
454 toleranceSqd,
455 constrainWithinTangents,
456 dir,
457 quads,
458 sublevel + 1);
459 }
460 }
461
convertCubicToQuads(const GrPoint p[4],SkScalar tolScale,bool constrainWithinTangents,SkPath::Direction dir,SkTArray<SkPoint,true> * quads)462 void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
463 SkScalar tolScale,
464 bool constrainWithinTangents,
465 SkPath::Direction dir,
466 SkTArray<SkPoint, true>* quads) {
467 SkPoint chopped[10];
468 int count = SkChopCubicAtInflections(p, chopped);
469
470 // base tolerance is 1 pixel.
471 static const SkScalar kTolerance = SK_Scalar1;
472 const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
473
474 for (int i = 0; i < count; ++i) {
475 SkPoint* cubic = chopped + 3*i;
476 convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
477 }
478
479 }
480