• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2011 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef GrRedBlackTree_DEFINED
11 #define GrRedBlackTree_DEFINED
12 
13 #include "GrNoncopyable.h"
14 
15 template <typename T>
16 class GrLess {
17 public:
operator()18     bool operator()(const T& a, const T& b) const { return a < b; }
19 };
20 
21 template <typename T>
22 class GrLess<T*> {
23 public:
operator()24     bool operator()(const T* a, const T* b) const { return *a < *b; }
25 };
26 
27 /**
28  * In debug build this will cause full traversals of the tree when the validate
29  * is called on insert and remove. Useful for debugging but very slow.
30  */
31 #define DEEP_VALIDATE 0
32 
33 /**
34  * A sorted tree that uses the red-black tree algorithm. Allows duplicate
35  * entries. Data is of type T and is compared using functor C. A single C object
36  * will be created and used for all comparisons.
37  */
38 template <typename T, typename C = GrLess<T> >
39 class GrRedBlackTree : public GrNoncopyable {
40 public:
41     /**
42      * Creates an empty tree.
43      */
44     GrRedBlackTree();
45     virtual ~GrRedBlackTree();
46 
47     /**
48      * Class used to iterater through the tree. The valid range of the tree
49      * is given by [begin(), end()). It is legal to dereference begin() but not
50      * end(). The iterator has preincrement and predecrement operators, it is
51      * legal to decerement end() if the tree is not empty to get the last
52      * element. However, a last() helper is provided.
53      */
54     class Iter;
55 
56     /**
57      * Add an element to the tree. Duplicates are allowed.
58      * @param t     the item to add.
59      * @return  an iterator to the item.
60      */
61     Iter insert(const T& t);
62 
63     /**
64      * Removes all items in the tree.
65      */
66     void reset();
67 
68     /**
69      * @return true if there are no items in the tree, false otherwise.
70      */
empty()71     bool empty() const {return 0 == fCount;}
72 
73     /**
74      * @return the number of items in the tree.
75      */
count()76     int  count() const {return fCount;}
77 
78     /**
79      * @return  an iterator to the first item in sorted order, or end() if empty
80      */
81     Iter begin();
82     /**
83      * Gets the last valid iterator. This is always valid, even on an empty.
84      * However, it can never be dereferenced. Useful as a loop terminator.
85      * @return  an iterator that is just beyond the last item in sorted order.
86      */
87     Iter end();
88     /**
89      * @return  an iterator that to the last item in sorted order, or end() if
90      * empty.
91      */
92     Iter last();
93 
94     /**
95      * Finds an occurrence of an item.
96      * @param t     the item to find.
97      * @return an iterator to a tree element equal to t or end() if none exists.
98      */
99     Iter find(const T& t);
100     /**
101      * Finds the first of an item in iterator order.
102      * @param t     the item to find.
103      * @return  an iterator to the first element equal to t or end() if
104      *          none exists.
105      */
106     Iter findFirst(const T& t);
107     /**
108      * Finds the last of an item in iterator order.
109      * @param t     the item to find.
110      * @return  an iterator to the last element equal to t or end() if
111      *          none exists.
112      */
113     Iter findLast(const T& t);
114     /**
115      * Gets the number of items in the tree equal to t.
116      * @param t     the item to count.
117      * @return  number of items equal to t in the tree
118      */
119     int countOf(const T& t) const;
120 
121     /**
122      * Removes the item indicated by an iterator. The iterator will not be valid
123      * afterwards.
124      *
125      * @param iter      iterator of item to remove. Must be valid (not end()).
126      */
remove(const Iter & iter)127     void remove(const Iter& iter) { deleteAtNode(iter.fN); }
128 
129     static void UnitTest();
130 
131 private:
132     enum Color {
133         kRed_Color,
134         kBlack_Color
135     };
136 
137     enum Child {
138         kLeft_Child  = 0,
139         kRight_Child = 1
140     };
141 
142     struct Node {
143         T       fItem;
144         Color   fColor;
145 
146         Node*   fParent;
147         Node*   fChildren[2];
148     };
149 
150     void rotateRight(Node* n);
151     void rotateLeft(Node* n);
152 
153     static Node* SuccessorNode(Node* x);
154     static Node* PredecessorNode(Node* x);
155 
156     void deleteAtNode(Node* x);
157     static void RecursiveDelete(Node* x);
158 
159     int onCountOf(const Node* n, const T& t) const;
160 
161 #if GR_DEBUG
162     void validate() const;
163     int checkNode(Node* n, int* blackHeight) const;
164     // checks relationship between a node and its children. allowRedRed means
165     // node may be in an intermediate state where a red parent has a red child.
166     bool validateChildRelations(const Node* n, bool allowRedRed) const;
167     // place to stick break point if validateChildRelations is failing.
validateChildRelationsFailed()168     bool validateChildRelationsFailed() const { return false; }
169 #else
validate()170     void validate() const {}
171 #endif
172 
173     int     fCount;
174     Node*   fRoot;
175     Node*   fFirst;
176     Node*   fLast;
177 
178     const C fComp;
179 };
180 
181 template <typename T, typename C>
182 class GrRedBlackTree<T,C>::Iter {
183 public:
Iter()184     Iter() {};
Iter(const Iter & i)185     Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
186     Iter& operator =(const Iter& i) {
187         fN = i.fN;
188         fTree = i.fTree;
189         return *this;
190     }
191     // altering the sort value of the item using this method will cause
192     // errors.
193     T& operator *() const { return fN->fItem; }
194     bool operator ==(const Iter& i) const {
195         return fN == i.fN && fTree == i.fTree;
196     }
197     bool operator !=(const Iter& i) const { return !(*this == i); }
198     Iter& operator ++() {
199         GrAssert(*this != fTree->end());
200         fN = SuccessorNode(fN);
201         return *this;
202     }
203     Iter& operator --() {
204         GrAssert(*this != fTree->begin());
205         if (NULL != fN) {
206             fN = PredecessorNode(fN);
207         } else {
208             *this = fTree->last();
209         }
210         return *this;
211     }
212 
213 private:
214     friend class GrRedBlackTree;
Iter(Node * n,GrRedBlackTree * tree)215     explicit Iter(Node* n, GrRedBlackTree* tree) {
216         fN = n;
217         fTree = tree;
218     }
219     Node* fN;
220     GrRedBlackTree* fTree;
221 };
222 
223 template <typename T, typename C>
GrRedBlackTree()224 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
225     fRoot = NULL;
226     fFirst = NULL;
227     fLast = NULL;
228     fCount = 0;
229     validate();
230 }
231 
232 template <typename T, typename C>
~GrRedBlackTree()233 GrRedBlackTree<T,C>::~GrRedBlackTree() {
234     RecursiveDelete(fRoot);
235 }
236 
237 template <typename T, typename C>
begin()238 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
239     return Iter(fFirst, this);
240 }
241 
242 template <typename T, typename C>
end()243 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
244     return Iter(NULL, this);
245 }
246 
247 template <typename T, typename C>
last()248 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
249     return Iter(fLast, this);
250 }
251 
252 template <typename T, typename C>
find(const T & t)253 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
254     Node* n = fRoot;
255     while (NULL != n) {
256         if (fComp(t, n->fItem)) {
257             n = n->fChildren[kLeft_Child];
258         } else {
259             if (!fComp(n->fItem, t)) {
260                 return Iter(n, this);
261             }
262             n = n->fChildren[kRight_Child];
263         }
264     }
265     return end();
266 }
267 
268 template <typename T, typename C>
findFirst(const T & t)269 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
270     Node* n = fRoot;
271     Node* leftMost = NULL;
272     while (NULL != n) {
273         if (fComp(t, n->fItem)) {
274             n = n->fChildren[kLeft_Child];
275         } else {
276             if (!fComp(n->fItem, t)) {
277                 // found one. check if another in left subtree.
278                 leftMost = n;
279                 n = n->fChildren[kLeft_Child];
280             } else {
281                 n = n->fChildren[kRight_Child];
282             }
283         }
284     }
285     return Iter(leftMost, this);
286 }
287 
288 template <typename T, typename C>
findLast(const T & t)289 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
290     Node* n = fRoot;
291     Node* rightMost = NULL;
292     while (NULL != n) {
293         if (fComp(t, n->fItem)) {
294             n = n->fChildren[kLeft_Child];
295         } else {
296             if (!fComp(n->fItem, t)) {
297                 // found one. check if another in right subtree.
298                 rightMost = n;
299             }
300             n = n->fChildren[kRight_Child];
301         }
302     }
303     return Iter(rightMost, this);
304 }
305 
306 template <typename T, typename C>
countOf(const T & t)307 int GrRedBlackTree<T,C>::countOf(const T& t) const {
308     return onCountOf(fRoot, t);
309 }
310 
311 template <typename T, typename C>
onCountOf(const Node * n,const T & t)312 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
313     // this is count*log(n) :(
314     while (NULL != n) {
315         if (fComp(t, n->fItem)) {
316             n = n->fChildren[kLeft_Child];
317         } else {
318             if (!fComp(n->fItem, t)) {
319                 int count = 1;
320                 count += onCountOf(n->fChildren[kLeft_Child], t);
321                 count += onCountOf(n->fChildren[kRight_Child], t);
322                 return count;
323             }
324             n = n->fChildren[kRight_Child];
325         }
326     }
327     return 0;
328 
329 }
330 
331 template <typename T, typename C>
reset()332 void GrRedBlackTree<T,C>::reset() {
333     RecursiveDelete(fRoot);
334     fRoot = NULL;
335     fFirst = NULL;
336     fLast = NULL;
337     fCount = 0;
338 }
339 
340 template <typename T, typename C>
insert(const T & t)341 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
342     validate();
343 
344     ++fCount;
345 
346     Node* x = SkNEW(Node);
347     x->fChildren[kLeft_Child] = NULL;
348     x->fChildren[kRight_Child] = NULL;
349     x->fItem = t;
350 
351     Node* returnNode = x;
352 
353     Node* gp = NULL;
354     Node* p = NULL;
355     Node* n = fRoot;
356     Child pc = kLeft_Child; // suppress uninit warning
357     Child gpc = kLeft_Child;
358 
359     bool first = true;
360     bool last = true;
361     while (NULL != n) {
362         gpc = pc;
363         pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
364         first = first && kLeft_Child == pc;
365         last = last && kRight_Child == pc;
366         gp = p;
367         p = n;
368         n = p->fChildren[pc];
369     }
370     if (last) {
371         fLast = x;
372     }
373     if (first) {
374         fFirst = x;
375     }
376 
377     if (NULL == p) {
378         fRoot = x;
379         x->fColor = kBlack_Color;
380         x->fParent = NULL;
381         GrAssert(1 == fCount);
382         return Iter(returnNode, this);
383     }
384     p->fChildren[pc] = x;
385     x->fColor = kRed_Color;
386     x->fParent = p;
387 
388     do {
389         // assumptions at loop start.
390         GrAssert(NULL != x);
391         GrAssert(kRed_Color == x->fColor);
392         // can't have a grandparent but no parent.
393         GrAssert(!(NULL != gp && NULL == p));
394         // make sure pc and gpc are correct
395         GrAssert(NULL == p  || p->fChildren[pc] == x);
396         GrAssert(NULL == gp || gp->fChildren[gpc] == p);
397 
398         // if x's parent is black then we didn't violate any of the
399         // red/black properties when we added x as red.
400         if (kBlack_Color == p->fColor) {
401             return Iter(returnNode, this);
402         }
403         // gp must be valid because if p was the root then it is black
404         GrAssert(NULL != gp);
405         // gp must be black since it's child, p, is red.
406         GrAssert(kBlack_Color == gp->fColor);
407 
408 
409         // x and its parent are red, violating red-black property.
410         Node* u = gp->fChildren[1-gpc];
411         // if x's uncle (p's sibling) is also red then we can flip
412         // p and u to black and make gp red. But then we have to recurse
413         // up to gp since it's parent may also be red.
414         if (NULL != u && kRed_Color == u->fColor) {
415             p->fColor = kBlack_Color;
416             u->fColor = kBlack_Color;
417             gp->fColor = kRed_Color;
418             x = gp;
419             p = x->fParent;
420             if (NULL == p) {
421                 // x (prev gp) is the root, color it black and be done.
422                 GrAssert(fRoot == x);
423                 x->fColor = kBlack_Color;
424                 validate();
425                 return Iter(returnNode, this);
426             }
427             gp = p->fParent;
428             pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
429                                                     kRight_Child;
430             if (NULL != gp) {
431                 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
432                                                           kRight_Child;
433             }
434             continue;
435         } break;
436     } while (true);
437     // Here p is red but u is black and we still have to resolve the fact
438     // that x and p are both red.
439     GrAssert(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
440     GrAssert(kRed_Color == x->fColor);
441     GrAssert(kRed_Color == p->fColor);
442     GrAssert(kBlack_Color == gp->fColor);
443 
444     // make x be on the same side of p as p is of gp. If it isn't already
445     // the case then rotate x up to p and swap their labels.
446     if (pc != gpc) {
447         if (kRight_Child == pc) {
448             rotateLeft(p);
449             Node* temp = p;
450             p = x;
451             x = temp;
452             pc = kLeft_Child;
453         } else {
454             rotateRight(p);
455             Node* temp = p;
456             p = x;
457             x = temp;
458             pc = kRight_Child;
459         }
460     }
461     // we now rotate gp down, pulling up p to be it's new parent.
462     // gp's child, u, that is not affected we know to be black. gp's new
463     // child is p's previous child (x's pre-rotation sibling) which must be
464     // black since p is red.
465     GrAssert(NULL == p->fChildren[1-pc] ||
466              kBlack_Color == p->fChildren[1-pc]->fColor);
467     // Since gp's two children are black it can become red if p is made
468     // black. This leaves the black-height of both of p's new subtrees
469     // preserved and removes the red/red parent child relationship.
470     p->fColor = kBlack_Color;
471     gp->fColor = kRed_Color;
472     if (kLeft_Child == pc) {
473         rotateRight(gp);
474     } else {
475         rotateLeft(gp);
476     }
477     validate();
478     return Iter(returnNode, this);
479 }
480 
481 
482 template <typename T, typename C>
rotateRight(Node * n)483 void GrRedBlackTree<T,C>::rotateRight(Node* n) {
484     /*            d?              d?
485      *           /               /
486      *          n               s
487      *         / \     --->    / \
488      *        s   a?          c?  n
489      *       / \                 / \
490      *      c?  b?              b?  a?
491      */
492     Node* d = n->fParent;
493     Node* s = n->fChildren[kLeft_Child];
494     GrAssert(NULL != s);
495     Node* b = s->fChildren[kRight_Child];
496 
497     if (NULL != d) {
498         Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
499                                              kRight_Child;
500         d->fChildren[c] = s;
501     } else {
502         GrAssert(fRoot == n);
503         fRoot = s;
504     }
505     s->fParent = d;
506     s->fChildren[kRight_Child] = n;
507     n->fParent = s;
508     n->fChildren[kLeft_Child] = b;
509     if (NULL != b) {
510         b->fParent = n;
511     }
512 
513     GR_DEBUGASSERT(validateChildRelations(d, true));
514     GR_DEBUGASSERT(validateChildRelations(s, true));
515     GR_DEBUGASSERT(validateChildRelations(n, false));
516     GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
517     GR_DEBUGASSERT(validateChildRelations(b, true));
518     GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
519 }
520 
521 template <typename T, typename C>
rotateLeft(Node * n)522 void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
523 
524     Node* d = n->fParent;
525     Node* s = n->fChildren[kRight_Child];
526     GrAssert(NULL != s);
527     Node* b = s->fChildren[kLeft_Child];
528 
529     if (NULL != d) {
530         Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
531                                                    kLeft_Child;
532         d->fChildren[c] = s;
533     } else {
534         GrAssert(fRoot == n);
535         fRoot = s;
536     }
537     s->fParent = d;
538     s->fChildren[kLeft_Child] = n;
539     n->fParent = s;
540     n->fChildren[kRight_Child] = b;
541     if (NULL != b) {
542         b->fParent = n;
543     }
544 
545     GR_DEBUGASSERT(validateChildRelations(d, true));
546     GR_DEBUGASSERT(validateChildRelations(s, true));
547     GR_DEBUGASSERT(validateChildRelations(n, true));
548     GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
549     GR_DEBUGASSERT(validateChildRelations(b, true));
550     GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
551 }
552 
553 template <typename T, typename C>
SuccessorNode(Node * x)554 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
555     GrAssert(NULL != x);
556     if (NULL != x->fChildren[kRight_Child]) {
557         x = x->fChildren[kRight_Child];
558         while (NULL != x->fChildren[kLeft_Child]) {
559             x = x->fChildren[kLeft_Child];
560         }
561         return x;
562     }
563     while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) {
564         x = x->fParent;
565     }
566     return x->fParent;
567 }
568 
569 template <typename T, typename C>
PredecessorNode(Node * x)570 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
571     GrAssert(NULL != x);
572     if (NULL != x->fChildren[kLeft_Child]) {
573         x = x->fChildren[kLeft_Child];
574         while (NULL != x->fChildren[kRight_Child]) {
575             x = x->fChildren[kRight_Child];
576         }
577         return x;
578     }
579     while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
580         x = x->fParent;
581     }
582     return x->fParent;
583 }
584 
585 template <typename T, typename C>
deleteAtNode(Node * x)586 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
587     GrAssert(NULL != x);
588     validate();
589     --fCount;
590 
591     bool hasLeft =  NULL != x->fChildren[kLeft_Child];
592     bool hasRight = NULL != x->fChildren[kRight_Child];
593     Child c = hasLeft ? kLeft_Child : kRight_Child;
594 
595     if (hasLeft && hasRight) {
596         // first and last can't have two children.
597         GrAssert(fFirst != x);
598         GrAssert(fLast != x);
599         // if x is an interior node then we find it's successor
600         // and swap them.
601         Node* s = x->fChildren[kRight_Child];
602         while (NULL != s->fChildren[kLeft_Child]) {
603             s = s->fChildren[kLeft_Child];
604         }
605         GrAssert(NULL != s);
606         // this might be expensive relative to swapping node ptrs around.
607         // depends on T.
608         x->fItem = s->fItem;
609         x = s;
610         c = kRight_Child;
611     } else if (NULL == x->fParent) {
612         // if x was the root we just replace it with its child and make
613         // the new root (if the tree is not empty) black.
614         GrAssert(fRoot == x);
615         fRoot = x->fChildren[c];
616         if (NULL != fRoot) {
617             fRoot->fParent = NULL;
618             fRoot->fColor = kBlack_Color;
619             if (x == fLast) {
620                 GrAssert(c == kLeft_Child);
621                 fLast = fRoot;
622             } else if (x == fFirst) {
623                 GrAssert(c == kRight_Child);
624                 fFirst = fRoot;
625             }
626         } else {
627             GrAssert(fFirst == fLast && x == fFirst);
628             fFirst = NULL;
629             fLast = NULL;
630             GrAssert(0 == fCount);
631         }
632         delete x;
633         validate();
634         return;
635     }
636 
637     Child pc;
638     Node* p = x->fParent;
639     pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
640 
641     if (NULL == x->fChildren[c]) {
642         if (fLast == x) {
643             fLast = p;
644             GrAssert(p == PredecessorNode(x));
645         } else if (fFirst == x) {
646             fFirst = p;
647             GrAssert(p == SuccessorNode(x));
648         }
649         // x has two implicit black children.
650         Color xcolor = x->fColor;
651         p->fChildren[pc] = NULL;
652         delete x;
653         x = NULL;
654         // when x is red it can be with an implicit black leaf without
655         // violating any of the red-black tree properties.
656         if (kRed_Color == xcolor) {
657             validate();
658             return;
659         }
660         // s is p's other child (x's sibling)
661         Node* s = p->fChildren[1-pc];
662 
663         //s cannot be an implicit black node because the original
664         // black-height at x was >= 2 and s's black-height must equal the
665         // initial black height of x.
666         GrAssert(NULL != s);
667         GrAssert(p == s->fParent);
668 
669         // assigned in loop
670         Node* sl;
671         Node* sr;
672         bool slRed;
673         bool srRed;
674 
675         do {
676             // When we start this loop x may already be deleted it is/was
677             // p's child on its pc side. x's children are/were black. The
678             // first time through the loop they are implict children.
679             // On later passes we will be walking up the tree and they will
680             // be real nodes.
681             // The x side of p has a black-height that is one less than the
682             // s side. It must be rebalanced.
683             GrAssert(NULL != s);
684             GrAssert(p == s->fParent);
685             GrAssert(NULL == x || x->fParent == p);
686 
687             //sl and sr are s's children, which may be implicit.
688             sl = s->fChildren[kLeft_Child];
689             sr = s->fChildren[kRight_Child];
690 
691             // if the s is red we will rotate s and p, swap their colors so
692             // that x's new sibling is black
693             if (kRed_Color == s->fColor) {
694                 // if s is red then it's parent must be black.
695                 GrAssert(kBlack_Color == p->fColor);
696                 // s's children must also be black since s is red. They can't
697                 // be implicit since s is red and it's black-height is >= 2.
698                 GrAssert(NULL != sl && kBlack_Color == sl->fColor);
699                 GrAssert(NULL != sr && kBlack_Color == sr->fColor);
700                 p->fColor = kRed_Color;
701                 s->fColor = kBlack_Color;
702                 if (kLeft_Child == pc) {
703                     rotateLeft(p);
704                     s = sl;
705                 } else {
706                     rotateRight(p);
707                     s = sr;
708                 }
709                 sl = s->fChildren[kLeft_Child];
710                 sr = s->fChildren[kRight_Child];
711             }
712             // x and s are now both black.
713             GrAssert(kBlack_Color == s->fColor);
714             GrAssert(NULL == x || kBlack_Color == x->fColor);
715             GrAssert(p == s->fParent);
716             GrAssert(NULL == x || p == x->fParent);
717 
718             // when x is deleted its subtree will have reduced black-height.
719             slRed = (NULL != sl && kRed_Color == sl->fColor);
720             srRed = (NULL != sr && kRed_Color == sr->fColor);
721             if (!slRed && !srRed) {
722                 // if s can be made red that will balance out x's removal
723                 // to make both subtrees of p have the same black-height.
724                 if (kBlack_Color == p->fColor) {
725                     s->fColor = kRed_Color;
726                     // now subtree at p has black-height of one less than
727                     // p's parent's other child's subtree. We move x up to
728                     // p and go through the loop again. At the top of loop
729                     // we assumed x and x's children are black, which holds
730                     // by above ifs.
731                     // if p is the root there is no other subtree to balance
732                     // against.
733                     x = p;
734                     p = x->fParent;
735                     if (NULL == p) {
736                         GrAssert(fRoot == x);
737                         validate();
738                         return;
739                     } else {
740                         pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
741                                                               kRight_Child;
742 
743                     }
744                     s = p->fChildren[1-pc];
745                     GrAssert(NULL != s);
746                     GrAssert(p == s->fParent);
747                     continue;
748                 } else if (kRed_Color == p->fColor) {
749                     // we can make p black and s red. This balance out p's
750                     // two subtrees and keep the same black-height as it was
751                     // before the delete.
752                     s->fColor = kRed_Color;
753                     p->fColor = kBlack_Color;
754                     validate();
755                     return;
756                 }
757             }
758             break;
759         } while (true);
760         // if we made it here one or both of sl and sr is red.
761         // s and x are black. We make sure that a red child is on
762         // the same side of s as s is of p.
763         GrAssert(slRed || srRed);
764         if (kLeft_Child == pc && !srRed) {
765             s->fColor = kRed_Color;
766             sl->fColor = kBlack_Color;
767             rotateRight(s);
768             sr = s;
769             s = sl;
770             //sl = s->fChildren[kLeft_Child]; don't need this
771         } else if (kRight_Child == pc && !slRed) {
772             s->fColor = kRed_Color;
773             sr->fColor = kBlack_Color;
774             rotateLeft(s);
775             sl = s;
776             s = sr;
777             //sr = s->fChildren[kRight_Child]; don't need this
778         }
779         // now p is either red or black, x and s are red and s's 1-pc
780         // child is red.
781         // We rotate p towards x, pulling s up to replace p. We make
782         // p be black and s takes p's old color.
783         // Whether p was red or black, we've increased its pc subtree
784         // rooted at x by 1 (balancing the imbalance at the start) and
785         // we've also its subtree rooted at s's black-height by 1. This
786         // can be balanced by making s's red child be black.
787         s->fColor = p->fColor;
788         p->fColor = kBlack_Color;
789         if (kLeft_Child == pc) {
790             GrAssert(NULL != sr && kRed_Color == sr->fColor);
791             sr->fColor = kBlack_Color;
792             rotateLeft(p);
793         } else {
794             GrAssert(NULL != sl && kRed_Color == sl->fColor);
795             sl->fColor = kBlack_Color;
796             rotateRight(p);
797         }
798     }
799     else {
800         // x has exactly one implicit black child. x cannot be red.
801         // Proof by contradiction: Assume X is red. Let c0 be x's implicit
802         // child and c1 be its non-implicit child. c1 must be black because
803         // red nodes always have two black children. Then the two subtrees
804         // of x rooted at c0 and c1 will have different black-heights.
805         GrAssert(kBlack_Color == x->fColor);
806         // So we know x is black and has one implicit black child, c0. c1
807         // must be red, otherwise the subtree at c1 will have a different
808         // black-height than the subtree rooted at c0.
809         GrAssert(kRed_Color == x->fChildren[c]->fColor);
810         // replace x with c1, making c1 black, preserves all red-black tree
811         // props.
812         Node* c1 = x->fChildren[c];
813         if (x == fFirst) {
814             GrAssert(c == kRight_Child);
815             fFirst = c1;
816             while (NULL != fFirst->fChildren[kLeft_Child]) {
817                 fFirst = fFirst->fChildren[kLeft_Child];
818             }
819             GrAssert(fFirst == SuccessorNode(x));
820         } else if (x == fLast) {
821             GrAssert(c == kLeft_Child);
822             fLast = c1;
823             while (NULL != fLast->fChildren[kRight_Child]) {
824                 fLast = fLast->fChildren[kRight_Child];
825             }
826             GrAssert(fLast == PredecessorNode(x));
827         }
828         c1->fParent = p;
829         p->fChildren[pc] = c1;
830         c1->fColor = kBlack_Color;
831         delete x;
832         validate();
833     }
834     validate();
835 }
836 
837 template <typename T, typename C>
RecursiveDelete(Node * x)838 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
839     if (NULL != x) {
840         RecursiveDelete(x->fChildren[kLeft_Child]);
841         RecursiveDelete(x->fChildren[kRight_Child]);
842         delete x;
843     }
844 }
845 
846 #if GR_DEBUG
847 template <typename T, typename C>
validate()848 void GrRedBlackTree<T,C>::validate() const {
849     if (fCount) {
850         GrAssert(NULL == fRoot->fParent);
851         GrAssert(NULL != fFirst);
852         GrAssert(NULL != fLast);
853 
854         GrAssert(kBlack_Color == fRoot->fColor);
855         if (1 == fCount) {
856             GrAssert(fFirst == fRoot);
857             GrAssert(fLast == fRoot);
858             GrAssert(0 == fRoot->fChildren[kLeft_Child]);
859             GrAssert(0 == fRoot->fChildren[kRight_Child]);
860         }
861     } else {
862         GrAssert(NULL == fRoot);
863         GrAssert(NULL == fFirst);
864         GrAssert(NULL == fLast);
865     }
866 #if DEEP_VALIDATE
867     int bh;
868     int count = checkNode(fRoot, &bh);
869     GrAssert(count == fCount);
870 #endif
871 }
872 
873 template <typename T, typename C>
checkNode(Node * n,int * bh)874 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
875     if (NULL != n) {
876         GrAssert(validateChildRelations(n, false));
877         if (kBlack_Color == n->fColor) {
878             *bh += 1;
879         }
880         GrAssert(!fComp(n->fItem, fFirst->fItem));
881         GrAssert(!fComp(fLast->fItem, n->fItem));
882         int leftBh = *bh;
883         int rightBh = *bh;
884         int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
885         int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
886         GrAssert(leftBh == rightBh);
887         *bh = leftBh;
888         return 1 + cl + cr;
889     }
890     return 0;
891 }
892 
893 template <typename T, typename C>
validateChildRelations(const Node * n,bool allowRedRed)894 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
895                                                  bool allowRedRed) const {
896     if (NULL != n) {
897         if (NULL != n->fChildren[kLeft_Child] ||
898             NULL != n->fChildren[kRight_Child]) {
899             if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
900                 return validateChildRelationsFailed();
901             }
902             if (n->fChildren[kLeft_Child] == n->fParent &&
903                 NULL != n->fParent) {
904                 return validateChildRelationsFailed();
905             }
906             if (n->fChildren[kRight_Child] == n->fParent &&
907                 NULL != n->fParent) {
908                 return validateChildRelationsFailed();
909             }
910             if (NULL != n->fChildren[kLeft_Child]) {
911                 if (!allowRedRed &&
912                     kRed_Color == n->fChildren[kLeft_Child]->fColor &&
913                     kRed_Color == n->fColor) {
914                     return validateChildRelationsFailed();
915                 }
916                 if (n->fChildren[kLeft_Child]->fParent != n) {
917                     return validateChildRelationsFailed();
918                 }
919                 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
920                       (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
921                        !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
922                     return validateChildRelationsFailed();
923                 }
924             }
925             if (NULL != n->fChildren[kRight_Child]) {
926                 if (!allowRedRed &&
927                     kRed_Color == n->fChildren[kRight_Child]->fColor &&
928                     kRed_Color == n->fColor) {
929                     return validateChildRelationsFailed();
930                 }
931                 if (n->fChildren[kRight_Child]->fParent != n) {
932                     return validateChildRelationsFailed();
933                 }
934                 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
935                       (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
936                        !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
937                     return validateChildRelationsFailed();
938                 }
939             }
940         }
941     }
942     return true;
943 }
944 #endif
945 
946 #include "SkRandom.h"
947 
948 template <typename T, typename C>
UnitTest()949 void GrRedBlackTree<T,C>::UnitTest() {
950     GrRedBlackTree<int> tree;
951     typedef GrRedBlackTree<int>::Iter iter;
952 
953     SkRandom r;
954 
955     int count[100] = {0};
956     // add 10K ints
957     for (int i = 0; i < 10000; ++i) {
958         int x = r.nextU()%100;
959         SkDEBUGCODE(Iter xi = ) tree.insert(x);
960         GrAssert(*xi == x);
961         ++count[x];
962     }
963 
964     tree.insert(0);
965     ++count[0];
966     tree.insert(99);
967     ++count[99];
968     GrAssert(*tree.begin() == 0);
969     GrAssert(*tree.last() == 99);
970     GrAssert(--(++tree.begin()) == tree.begin());
971     GrAssert(--tree.end() == tree.last());
972     GrAssert(tree.count() == 10002);
973 
974     int c = 0;
975     // check that we iterate through the correct number of
976     // elements and they are properly sorted.
977     for (Iter a = tree.begin(); tree.end() != a; ++a) {
978         Iter b = a;
979         ++b;
980         ++c;
981         GrAssert(b == tree.end() || *a <= *b);
982     }
983     GrAssert(c == tree.count());
984 
985     // check that the tree reports the correct number of each int
986     // and that we can iterate through them correctly both forward
987     // and backward.
988     for (int i = 0; i < 100; ++i) {
989         int c;
990         c = tree.countOf(i);
991         GrAssert(c == count[i]);
992         c = 0;
993         Iter iter = tree.findFirst(i);
994         while (iter != tree.end() && *iter == i) {
995             ++c;
996             ++iter;
997         }
998         GrAssert(count[i] == c);
999         c = 0;
1000         iter = tree.findLast(i);
1001         if (iter != tree.end()) {
1002             do {
1003                 if (*iter == i) {
1004                     ++c;
1005                 } else {
1006                     break;
1007                 }
1008                 if (iter != tree.begin()) {
1009                     --iter;
1010                 } else {
1011                     break;
1012                 }
1013             } while (true);
1014         }
1015         GrAssert(c == count[i]);
1016     }
1017     // remove all the ints between 25 and 74. Randomly chose to remove
1018     // the first, last, or any entry for each.
1019     for (int i = 25; i < 75; ++i) {
1020         while (0 != tree.countOf(i)) {
1021             --count[i];
1022             int x = r.nextU() % 3;
1023             Iter iter;
1024             switch (x) {
1025             case 0:
1026                 iter = tree.findFirst(i);
1027                 break;
1028             case 1:
1029                 iter = tree.findLast(i);
1030                 break;
1031             case 2:
1032             default:
1033                 iter = tree.find(i);
1034                 break;
1035             }
1036             tree.remove(iter);
1037         }
1038         GrAssert(0 == count[i]);
1039         GrAssert(tree.findFirst(i) == tree.end());
1040         GrAssert(tree.findLast(i) == tree.end());
1041         GrAssert(tree.find(i) == tree.end());
1042     }
1043     // remove all of the 0 entries. (tests removing begin())
1044     GrAssert(*tree.begin() == 0);
1045     GrAssert(*(--tree.end()) == 99);
1046     while (0 != tree.countOf(0)) {
1047         --count[0];
1048         tree.remove(tree.find(0));
1049     }
1050     GrAssert(0 == count[0]);
1051     GrAssert(tree.findFirst(0) == tree.end());
1052     GrAssert(tree.findLast(0) == tree.end());
1053     GrAssert(tree.find(0) == tree.end());
1054     GrAssert(0 < *tree.begin());
1055 
1056     // remove all the 99 entries (tests removing last()).
1057     while (0 != tree.countOf(99)) {
1058         --count[99];
1059         tree.remove(tree.find(99));
1060     }
1061     GrAssert(0 == count[99]);
1062     GrAssert(tree.findFirst(99) == tree.end());
1063     GrAssert(tree.findLast(99) == tree.end());
1064     GrAssert(tree.find(99) == tree.end());
1065     GrAssert(99 > *(--tree.end()));
1066     GrAssert(tree.last() == --tree.end());
1067 
1068     // Make sure iteration still goes through correct number of entries
1069     // and is still sorted correctly.
1070     c = 0;
1071     for (Iter a = tree.begin(); tree.end() != a; ++a) {
1072         Iter b = a;
1073         ++b;
1074         ++c;
1075         GrAssert(b == tree.end() || *a <= *b);
1076     }
1077     GrAssert(c == tree.count());
1078 
1079     // repeat check that correct number of each entry is in the tree
1080     // and iterates correctly both forward and backward.
1081     for (int i = 0; i < 100; ++i) {
1082         GrAssert(tree.countOf(i) == count[i]);
1083         int c = 0;
1084         Iter iter = tree.findFirst(i);
1085         while (iter != tree.end() && *iter == i) {
1086             ++c;
1087             ++iter;
1088         }
1089         GrAssert(count[i] == c);
1090         c = 0;
1091         iter = tree.findLast(i);
1092         if (iter != tree.end()) {
1093             do {
1094                 if (*iter == i) {
1095                     ++c;
1096                 } else {
1097                     break;
1098                 }
1099                 if (iter != tree.begin()) {
1100                     --iter;
1101                 } else {
1102                     break;
1103                 }
1104             } while (true);
1105         }
1106         GrAssert(count[i] == c);
1107     }
1108 
1109     // remove all entries
1110     while (!tree.empty()) {
1111         tree.remove(tree.begin());
1112     }
1113 
1114     // test reset on empty tree.
1115     tree.reset();
1116 }
1117 
1118 #endif
1119