1
2 /*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #ifndef GrRedBlackTree_DEFINED
11 #define GrRedBlackTree_DEFINED
12
13 #include "GrNoncopyable.h"
14
15 template <typename T>
16 class GrLess {
17 public:
operator()18 bool operator()(const T& a, const T& b) const { return a < b; }
19 };
20
21 template <typename T>
22 class GrLess<T*> {
23 public:
operator()24 bool operator()(const T* a, const T* b) const { return *a < *b; }
25 };
26
27 /**
28 * In debug build this will cause full traversals of the tree when the validate
29 * is called on insert and remove. Useful for debugging but very slow.
30 */
31 #define DEEP_VALIDATE 0
32
33 /**
34 * A sorted tree that uses the red-black tree algorithm. Allows duplicate
35 * entries. Data is of type T and is compared using functor C. A single C object
36 * will be created and used for all comparisons.
37 */
38 template <typename T, typename C = GrLess<T> >
39 class GrRedBlackTree : public GrNoncopyable {
40 public:
41 /**
42 * Creates an empty tree.
43 */
44 GrRedBlackTree();
45 virtual ~GrRedBlackTree();
46
47 /**
48 * Class used to iterater through the tree. The valid range of the tree
49 * is given by [begin(), end()). It is legal to dereference begin() but not
50 * end(). The iterator has preincrement and predecrement operators, it is
51 * legal to decerement end() if the tree is not empty to get the last
52 * element. However, a last() helper is provided.
53 */
54 class Iter;
55
56 /**
57 * Add an element to the tree. Duplicates are allowed.
58 * @param t the item to add.
59 * @return an iterator to the item.
60 */
61 Iter insert(const T& t);
62
63 /**
64 * Removes all items in the tree.
65 */
66 void reset();
67
68 /**
69 * @return true if there are no items in the tree, false otherwise.
70 */
empty()71 bool empty() const {return 0 == fCount;}
72
73 /**
74 * @return the number of items in the tree.
75 */
count()76 int count() const {return fCount;}
77
78 /**
79 * @return an iterator to the first item in sorted order, or end() if empty
80 */
81 Iter begin();
82 /**
83 * Gets the last valid iterator. This is always valid, even on an empty.
84 * However, it can never be dereferenced. Useful as a loop terminator.
85 * @return an iterator that is just beyond the last item in sorted order.
86 */
87 Iter end();
88 /**
89 * @return an iterator that to the last item in sorted order, or end() if
90 * empty.
91 */
92 Iter last();
93
94 /**
95 * Finds an occurrence of an item.
96 * @param t the item to find.
97 * @return an iterator to a tree element equal to t or end() if none exists.
98 */
99 Iter find(const T& t);
100 /**
101 * Finds the first of an item in iterator order.
102 * @param t the item to find.
103 * @return an iterator to the first element equal to t or end() if
104 * none exists.
105 */
106 Iter findFirst(const T& t);
107 /**
108 * Finds the last of an item in iterator order.
109 * @param t the item to find.
110 * @return an iterator to the last element equal to t or end() if
111 * none exists.
112 */
113 Iter findLast(const T& t);
114 /**
115 * Gets the number of items in the tree equal to t.
116 * @param t the item to count.
117 * @return number of items equal to t in the tree
118 */
119 int countOf(const T& t) const;
120
121 /**
122 * Removes the item indicated by an iterator. The iterator will not be valid
123 * afterwards.
124 *
125 * @param iter iterator of item to remove. Must be valid (not end()).
126 */
remove(const Iter & iter)127 void remove(const Iter& iter) { deleteAtNode(iter.fN); }
128
129 static void UnitTest();
130
131 private:
132 enum Color {
133 kRed_Color,
134 kBlack_Color
135 };
136
137 enum Child {
138 kLeft_Child = 0,
139 kRight_Child = 1
140 };
141
142 struct Node {
143 T fItem;
144 Color fColor;
145
146 Node* fParent;
147 Node* fChildren[2];
148 };
149
150 void rotateRight(Node* n);
151 void rotateLeft(Node* n);
152
153 static Node* SuccessorNode(Node* x);
154 static Node* PredecessorNode(Node* x);
155
156 void deleteAtNode(Node* x);
157 static void RecursiveDelete(Node* x);
158
159 int onCountOf(const Node* n, const T& t) const;
160
161 #if GR_DEBUG
162 void validate() const;
163 int checkNode(Node* n, int* blackHeight) const;
164 // checks relationship between a node and its children. allowRedRed means
165 // node may be in an intermediate state where a red parent has a red child.
166 bool validateChildRelations(const Node* n, bool allowRedRed) const;
167 // place to stick break point if validateChildRelations is failing.
validateChildRelationsFailed()168 bool validateChildRelationsFailed() const { return false; }
169 #else
validate()170 void validate() const {}
171 #endif
172
173 int fCount;
174 Node* fRoot;
175 Node* fFirst;
176 Node* fLast;
177
178 const C fComp;
179 };
180
181 template <typename T, typename C>
182 class GrRedBlackTree<T,C>::Iter {
183 public:
Iter()184 Iter() {};
Iter(const Iter & i)185 Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
186 Iter& operator =(const Iter& i) {
187 fN = i.fN;
188 fTree = i.fTree;
189 return *this;
190 }
191 // altering the sort value of the item using this method will cause
192 // errors.
193 T& operator *() const { return fN->fItem; }
194 bool operator ==(const Iter& i) const {
195 return fN == i.fN && fTree == i.fTree;
196 }
197 bool operator !=(const Iter& i) const { return !(*this == i); }
198 Iter& operator ++() {
199 GrAssert(*this != fTree->end());
200 fN = SuccessorNode(fN);
201 return *this;
202 }
203 Iter& operator --() {
204 GrAssert(*this != fTree->begin());
205 if (NULL != fN) {
206 fN = PredecessorNode(fN);
207 } else {
208 *this = fTree->last();
209 }
210 return *this;
211 }
212
213 private:
214 friend class GrRedBlackTree;
Iter(Node * n,GrRedBlackTree * tree)215 explicit Iter(Node* n, GrRedBlackTree* tree) {
216 fN = n;
217 fTree = tree;
218 }
219 Node* fN;
220 GrRedBlackTree* fTree;
221 };
222
223 template <typename T, typename C>
GrRedBlackTree()224 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
225 fRoot = NULL;
226 fFirst = NULL;
227 fLast = NULL;
228 fCount = 0;
229 validate();
230 }
231
232 template <typename T, typename C>
~GrRedBlackTree()233 GrRedBlackTree<T,C>::~GrRedBlackTree() {
234 RecursiveDelete(fRoot);
235 }
236
237 template <typename T, typename C>
begin()238 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
239 return Iter(fFirst, this);
240 }
241
242 template <typename T, typename C>
end()243 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
244 return Iter(NULL, this);
245 }
246
247 template <typename T, typename C>
last()248 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
249 return Iter(fLast, this);
250 }
251
252 template <typename T, typename C>
find(const T & t)253 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
254 Node* n = fRoot;
255 while (NULL != n) {
256 if (fComp(t, n->fItem)) {
257 n = n->fChildren[kLeft_Child];
258 } else {
259 if (!fComp(n->fItem, t)) {
260 return Iter(n, this);
261 }
262 n = n->fChildren[kRight_Child];
263 }
264 }
265 return end();
266 }
267
268 template <typename T, typename C>
findFirst(const T & t)269 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
270 Node* n = fRoot;
271 Node* leftMost = NULL;
272 while (NULL != n) {
273 if (fComp(t, n->fItem)) {
274 n = n->fChildren[kLeft_Child];
275 } else {
276 if (!fComp(n->fItem, t)) {
277 // found one. check if another in left subtree.
278 leftMost = n;
279 n = n->fChildren[kLeft_Child];
280 } else {
281 n = n->fChildren[kRight_Child];
282 }
283 }
284 }
285 return Iter(leftMost, this);
286 }
287
288 template <typename T, typename C>
findLast(const T & t)289 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
290 Node* n = fRoot;
291 Node* rightMost = NULL;
292 while (NULL != n) {
293 if (fComp(t, n->fItem)) {
294 n = n->fChildren[kLeft_Child];
295 } else {
296 if (!fComp(n->fItem, t)) {
297 // found one. check if another in right subtree.
298 rightMost = n;
299 }
300 n = n->fChildren[kRight_Child];
301 }
302 }
303 return Iter(rightMost, this);
304 }
305
306 template <typename T, typename C>
countOf(const T & t)307 int GrRedBlackTree<T,C>::countOf(const T& t) const {
308 return onCountOf(fRoot, t);
309 }
310
311 template <typename T, typename C>
onCountOf(const Node * n,const T & t)312 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
313 // this is count*log(n) :(
314 while (NULL != n) {
315 if (fComp(t, n->fItem)) {
316 n = n->fChildren[kLeft_Child];
317 } else {
318 if (!fComp(n->fItem, t)) {
319 int count = 1;
320 count += onCountOf(n->fChildren[kLeft_Child], t);
321 count += onCountOf(n->fChildren[kRight_Child], t);
322 return count;
323 }
324 n = n->fChildren[kRight_Child];
325 }
326 }
327 return 0;
328
329 }
330
331 template <typename T, typename C>
reset()332 void GrRedBlackTree<T,C>::reset() {
333 RecursiveDelete(fRoot);
334 fRoot = NULL;
335 fFirst = NULL;
336 fLast = NULL;
337 fCount = 0;
338 }
339
340 template <typename T, typename C>
insert(const T & t)341 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
342 validate();
343
344 ++fCount;
345
346 Node* x = SkNEW(Node);
347 x->fChildren[kLeft_Child] = NULL;
348 x->fChildren[kRight_Child] = NULL;
349 x->fItem = t;
350
351 Node* returnNode = x;
352
353 Node* gp = NULL;
354 Node* p = NULL;
355 Node* n = fRoot;
356 Child pc = kLeft_Child; // suppress uninit warning
357 Child gpc = kLeft_Child;
358
359 bool first = true;
360 bool last = true;
361 while (NULL != n) {
362 gpc = pc;
363 pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
364 first = first && kLeft_Child == pc;
365 last = last && kRight_Child == pc;
366 gp = p;
367 p = n;
368 n = p->fChildren[pc];
369 }
370 if (last) {
371 fLast = x;
372 }
373 if (first) {
374 fFirst = x;
375 }
376
377 if (NULL == p) {
378 fRoot = x;
379 x->fColor = kBlack_Color;
380 x->fParent = NULL;
381 GrAssert(1 == fCount);
382 return Iter(returnNode, this);
383 }
384 p->fChildren[pc] = x;
385 x->fColor = kRed_Color;
386 x->fParent = p;
387
388 do {
389 // assumptions at loop start.
390 GrAssert(NULL != x);
391 GrAssert(kRed_Color == x->fColor);
392 // can't have a grandparent but no parent.
393 GrAssert(!(NULL != gp && NULL == p));
394 // make sure pc and gpc are correct
395 GrAssert(NULL == p || p->fChildren[pc] == x);
396 GrAssert(NULL == gp || gp->fChildren[gpc] == p);
397
398 // if x's parent is black then we didn't violate any of the
399 // red/black properties when we added x as red.
400 if (kBlack_Color == p->fColor) {
401 return Iter(returnNode, this);
402 }
403 // gp must be valid because if p was the root then it is black
404 GrAssert(NULL != gp);
405 // gp must be black since it's child, p, is red.
406 GrAssert(kBlack_Color == gp->fColor);
407
408
409 // x and its parent are red, violating red-black property.
410 Node* u = gp->fChildren[1-gpc];
411 // if x's uncle (p's sibling) is also red then we can flip
412 // p and u to black and make gp red. But then we have to recurse
413 // up to gp since it's parent may also be red.
414 if (NULL != u && kRed_Color == u->fColor) {
415 p->fColor = kBlack_Color;
416 u->fColor = kBlack_Color;
417 gp->fColor = kRed_Color;
418 x = gp;
419 p = x->fParent;
420 if (NULL == p) {
421 // x (prev gp) is the root, color it black and be done.
422 GrAssert(fRoot == x);
423 x->fColor = kBlack_Color;
424 validate();
425 return Iter(returnNode, this);
426 }
427 gp = p->fParent;
428 pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
429 kRight_Child;
430 if (NULL != gp) {
431 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
432 kRight_Child;
433 }
434 continue;
435 } break;
436 } while (true);
437 // Here p is red but u is black and we still have to resolve the fact
438 // that x and p are both red.
439 GrAssert(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
440 GrAssert(kRed_Color == x->fColor);
441 GrAssert(kRed_Color == p->fColor);
442 GrAssert(kBlack_Color == gp->fColor);
443
444 // make x be on the same side of p as p is of gp. If it isn't already
445 // the case then rotate x up to p and swap their labels.
446 if (pc != gpc) {
447 if (kRight_Child == pc) {
448 rotateLeft(p);
449 Node* temp = p;
450 p = x;
451 x = temp;
452 pc = kLeft_Child;
453 } else {
454 rotateRight(p);
455 Node* temp = p;
456 p = x;
457 x = temp;
458 pc = kRight_Child;
459 }
460 }
461 // we now rotate gp down, pulling up p to be it's new parent.
462 // gp's child, u, that is not affected we know to be black. gp's new
463 // child is p's previous child (x's pre-rotation sibling) which must be
464 // black since p is red.
465 GrAssert(NULL == p->fChildren[1-pc] ||
466 kBlack_Color == p->fChildren[1-pc]->fColor);
467 // Since gp's two children are black it can become red if p is made
468 // black. This leaves the black-height of both of p's new subtrees
469 // preserved and removes the red/red parent child relationship.
470 p->fColor = kBlack_Color;
471 gp->fColor = kRed_Color;
472 if (kLeft_Child == pc) {
473 rotateRight(gp);
474 } else {
475 rotateLeft(gp);
476 }
477 validate();
478 return Iter(returnNode, this);
479 }
480
481
482 template <typename T, typename C>
rotateRight(Node * n)483 void GrRedBlackTree<T,C>::rotateRight(Node* n) {
484 /* d? d?
485 * / /
486 * n s
487 * / \ ---> / \
488 * s a? c? n
489 * / \ / \
490 * c? b? b? a?
491 */
492 Node* d = n->fParent;
493 Node* s = n->fChildren[kLeft_Child];
494 GrAssert(NULL != s);
495 Node* b = s->fChildren[kRight_Child];
496
497 if (NULL != d) {
498 Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
499 kRight_Child;
500 d->fChildren[c] = s;
501 } else {
502 GrAssert(fRoot == n);
503 fRoot = s;
504 }
505 s->fParent = d;
506 s->fChildren[kRight_Child] = n;
507 n->fParent = s;
508 n->fChildren[kLeft_Child] = b;
509 if (NULL != b) {
510 b->fParent = n;
511 }
512
513 GR_DEBUGASSERT(validateChildRelations(d, true));
514 GR_DEBUGASSERT(validateChildRelations(s, true));
515 GR_DEBUGASSERT(validateChildRelations(n, false));
516 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
517 GR_DEBUGASSERT(validateChildRelations(b, true));
518 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
519 }
520
521 template <typename T, typename C>
rotateLeft(Node * n)522 void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
523
524 Node* d = n->fParent;
525 Node* s = n->fChildren[kRight_Child];
526 GrAssert(NULL != s);
527 Node* b = s->fChildren[kLeft_Child];
528
529 if (NULL != d) {
530 Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
531 kLeft_Child;
532 d->fChildren[c] = s;
533 } else {
534 GrAssert(fRoot == n);
535 fRoot = s;
536 }
537 s->fParent = d;
538 s->fChildren[kLeft_Child] = n;
539 n->fParent = s;
540 n->fChildren[kRight_Child] = b;
541 if (NULL != b) {
542 b->fParent = n;
543 }
544
545 GR_DEBUGASSERT(validateChildRelations(d, true));
546 GR_DEBUGASSERT(validateChildRelations(s, true));
547 GR_DEBUGASSERT(validateChildRelations(n, true));
548 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
549 GR_DEBUGASSERT(validateChildRelations(b, true));
550 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
551 }
552
553 template <typename T, typename C>
SuccessorNode(Node * x)554 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
555 GrAssert(NULL != x);
556 if (NULL != x->fChildren[kRight_Child]) {
557 x = x->fChildren[kRight_Child];
558 while (NULL != x->fChildren[kLeft_Child]) {
559 x = x->fChildren[kLeft_Child];
560 }
561 return x;
562 }
563 while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) {
564 x = x->fParent;
565 }
566 return x->fParent;
567 }
568
569 template <typename T, typename C>
PredecessorNode(Node * x)570 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
571 GrAssert(NULL != x);
572 if (NULL != x->fChildren[kLeft_Child]) {
573 x = x->fChildren[kLeft_Child];
574 while (NULL != x->fChildren[kRight_Child]) {
575 x = x->fChildren[kRight_Child];
576 }
577 return x;
578 }
579 while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
580 x = x->fParent;
581 }
582 return x->fParent;
583 }
584
585 template <typename T, typename C>
deleteAtNode(Node * x)586 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
587 GrAssert(NULL != x);
588 validate();
589 --fCount;
590
591 bool hasLeft = NULL != x->fChildren[kLeft_Child];
592 bool hasRight = NULL != x->fChildren[kRight_Child];
593 Child c = hasLeft ? kLeft_Child : kRight_Child;
594
595 if (hasLeft && hasRight) {
596 // first and last can't have two children.
597 GrAssert(fFirst != x);
598 GrAssert(fLast != x);
599 // if x is an interior node then we find it's successor
600 // and swap them.
601 Node* s = x->fChildren[kRight_Child];
602 while (NULL != s->fChildren[kLeft_Child]) {
603 s = s->fChildren[kLeft_Child];
604 }
605 GrAssert(NULL != s);
606 // this might be expensive relative to swapping node ptrs around.
607 // depends on T.
608 x->fItem = s->fItem;
609 x = s;
610 c = kRight_Child;
611 } else if (NULL == x->fParent) {
612 // if x was the root we just replace it with its child and make
613 // the new root (if the tree is not empty) black.
614 GrAssert(fRoot == x);
615 fRoot = x->fChildren[c];
616 if (NULL != fRoot) {
617 fRoot->fParent = NULL;
618 fRoot->fColor = kBlack_Color;
619 if (x == fLast) {
620 GrAssert(c == kLeft_Child);
621 fLast = fRoot;
622 } else if (x == fFirst) {
623 GrAssert(c == kRight_Child);
624 fFirst = fRoot;
625 }
626 } else {
627 GrAssert(fFirst == fLast && x == fFirst);
628 fFirst = NULL;
629 fLast = NULL;
630 GrAssert(0 == fCount);
631 }
632 delete x;
633 validate();
634 return;
635 }
636
637 Child pc;
638 Node* p = x->fParent;
639 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
640
641 if (NULL == x->fChildren[c]) {
642 if (fLast == x) {
643 fLast = p;
644 GrAssert(p == PredecessorNode(x));
645 } else if (fFirst == x) {
646 fFirst = p;
647 GrAssert(p == SuccessorNode(x));
648 }
649 // x has two implicit black children.
650 Color xcolor = x->fColor;
651 p->fChildren[pc] = NULL;
652 delete x;
653 x = NULL;
654 // when x is red it can be with an implicit black leaf without
655 // violating any of the red-black tree properties.
656 if (kRed_Color == xcolor) {
657 validate();
658 return;
659 }
660 // s is p's other child (x's sibling)
661 Node* s = p->fChildren[1-pc];
662
663 //s cannot be an implicit black node because the original
664 // black-height at x was >= 2 and s's black-height must equal the
665 // initial black height of x.
666 GrAssert(NULL != s);
667 GrAssert(p == s->fParent);
668
669 // assigned in loop
670 Node* sl;
671 Node* sr;
672 bool slRed;
673 bool srRed;
674
675 do {
676 // When we start this loop x may already be deleted it is/was
677 // p's child on its pc side. x's children are/were black. The
678 // first time through the loop they are implict children.
679 // On later passes we will be walking up the tree and they will
680 // be real nodes.
681 // The x side of p has a black-height that is one less than the
682 // s side. It must be rebalanced.
683 GrAssert(NULL != s);
684 GrAssert(p == s->fParent);
685 GrAssert(NULL == x || x->fParent == p);
686
687 //sl and sr are s's children, which may be implicit.
688 sl = s->fChildren[kLeft_Child];
689 sr = s->fChildren[kRight_Child];
690
691 // if the s is red we will rotate s and p, swap their colors so
692 // that x's new sibling is black
693 if (kRed_Color == s->fColor) {
694 // if s is red then it's parent must be black.
695 GrAssert(kBlack_Color == p->fColor);
696 // s's children must also be black since s is red. They can't
697 // be implicit since s is red and it's black-height is >= 2.
698 GrAssert(NULL != sl && kBlack_Color == sl->fColor);
699 GrAssert(NULL != sr && kBlack_Color == sr->fColor);
700 p->fColor = kRed_Color;
701 s->fColor = kBlack_Color;
702 if (kLeft_Child == pc) {
703 rotateLeft(p);
704 s = sl;
705 } else {
706 rotateRight(p);
707 s = sr;
708 }
709 sl = s->fChildren[kLeft_Child];
710 sr = s->fChildren[kRight_Child];
711 }
712 // x and s are now both black.
713 GrAssert(kBlack_Color == s->fColor);
714 GrAssert(NULL == x || kBlack_Color == x->fColor);
715 GrAssert(p == s->fParent);
716 GrAssert(NULL == x || p == x->fParent);
717
718 // when x is deleted its subtree will have reduced black-height.
719 slRed = (NULL != sl && kRed_Color == sl->fColor);
720 srRed = (NULL != sr && kRed_Color == sr->fColor);
721 if (!slRed && !srRed) {
722 // if s can be made red that will balance out x's removal
723 // to make both subtrees of p have the same black-height.
724 if (kBlack_Color == p->fColor) {
725 s->fColor = kRed_Color;
726 // now subtree at p has black-height of one less than
727 // p's parent's other child's subtree. We move x up to
728 // p and go through the loop again. At the top of loop
729 // we assumed x and x's children are black, which holds
730 // by above ifs.
731 // if p is the root there is no other subtree to balance
732 // against.
733 x = p;
734 p = x->fParent;
735 if (NULL == p) {
736 GrAssert(fRoot == x);
737 validate();
738 return;
739 } else {
740 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
741 kRight_Child;
742
743 }
744 s = p->fChildren[1-pc];
745 GrAssert(NULL != s);
746 GrAssert(p == s->fParent);
747 continue;
748 } else if (kRed_Color == p->fColor) {
749 // we can make p black and s red. This balance out p's
750 // two subtrees and keep the same black-height as it was
751 // before the delete.
752 s->fColor = kRed_Color;
753 p->fColor = kBlack_Color;
754 validate();
755 return;
756 }
757 }
758 break;
759 } while (true);
760 // if we made it here one or both of sl and sr is red.
761 // s and x are black. We make sure that a red child is on
762 // the same side of s as s is of p.
763 GrAssert(slRed || srRed);
764 if (kLeft_Child == pc && !srRed) {
765 s->fColor = kRed_Color;
766 sl->fColor = kBlack_Color;
767 rotateRight(s);
768 sr = s;
769 s = sl;
770 //sl = s->fChildren[kLeft_Child]; don't need this
771 } else if (kRight_Child == pc && !slRed) {
772 s->fColor = kRed_Color;
773 sr->fColor = kBlack_Color;
774 rotateLeft(s);
775 sl = s;
776 s = sr;
777 //sr = s->fChildren[kRight_Child]; don't need this
778 }
779 // now p is either red or black, x and s are red and s's 1-pc
780 // child is red.
781 // We rotate p towards x, pulling s up to replace p. We make
782 // p be black and s takes p's old color.
783 // Whether p was red or black, we've increased its pc subtree
784 // rooted at x by 1 (balancing the imbalance at the start) and
785 // we've also its subtree rooted at s's black-height by 1. This
786 // can be balanced by making s's red child be black.
787 s->fColor = p->fColor;
788 p->fColor = kBlack_Color;
789 if (kLeft_Child == pc) {
790 GrAssert(NULL != sr && kRed_Color == sr->fColor);
791 sr->fColor = kBlack_Color;
792 rotateLeft(p);
793 } else {
794 GrAssert(NULL != sl && kRed_Color == sl->fColor);
795 sl->fColor = kBlack_Color;
796 rotateRight(p);
797 }
798 }
799 else {
800 // x has exactly one implicit black child. x cannot be red.
801 // Proof by contradiction: Assume X is red. Let c0 be x's implicit
802 // child and c1 be its non-implicit child. c1 must be black because
803 // red nodes always have two black children. Then the two subtrees
804 // of x rooted at c0 and c1 will have different black-heights.
805 GrAssert(kBlack_Color == x->fColor);
806 // So we know x is black and has one implicit black child, c0. c1
807 // must be red, otherwise the subtree at c1 will have a different
808 // black-height than the subtree rooted at c0.
809 GrAssert(kRed_Color == x->fChildren[c]->fColor);
810 // replace x with c1, making c1 black, preserves all red-black tree
811 // props.
812 Node* c1 = x->fChildren[c];
813 if (x == fFirst) {
814 GrAssert(c == kRight_Child);
815 fFirst = c1;
816 while (NULL != fFirst->fChildren[kLeft_Child]) {
817 fFirst = fFirst->fChildren[kLeft_Child];
818 }
819 GrAssert(fFirst == SuccessorNode(x));
820 } else if (x == fLast) {
821 GrAssert(c == kLeft_Child);
822 fLast = c1;
823 while (NULL != fLast->fChildren[kRight_Child]) {
824 fLast = fLast->fChildren[kRight_Child];
825 }
826 GrAssert(fLast == PredecessorNode(x));
827 }
828 c1->fParent = p;
829 p->fChildren[pc] = c1;
830 c1->fColor = kBlack_Color;
831 delete x;
832 validate();
833 }
834 validate();
835 }
836
837 template <typename T, typename C>
RecursiveDelete(Node * x)838 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
839 if (NULL != x) {
840 RecursiveDelete(x->fChildren[kLeft_Child]);
841 RecursiveDelete(x->fChildren[kRight_Child]);
842 delete x;
843 }
844 }
845
846 #if GR_DEBUG
847 template <typename T, typename C>
validate()848 void GrRedBlackTree<T,C>::validate() const {
849 if (fCount) {
850 GrAssert(NULL == fRoot->fParent);
851 GrAssert(NULL != fFirst);
852 GrAssert(NULL != fLast);
853
854 GrAssert(kBlack_Color == fRoot->fColor);
855 if (1 == fCount) {
856 GrAssert(fFirst == fRoot);
857 GrAssert(fLast == fRoot);
858 GrAssert(0 == fRoot->fChildren[kLeft_Child]);
859 GrAssert(0 == fRoot->fChildren[kRight_Child]);
860 }
861 } else {
862 GrAssert(NULL == fRoot);
863 GrAssert(NULL == fFirst);
864 GrAssert(NULL == fLast);
865 }
866 #if DEEP_VALIDATE
867 int bh;
868 int count = checkNode(fRoot, &bh);
869 GrAssert(count == fCount);
870 #endif
871 }
872
873 template <typename T, typename C>
checkNode(Node * n,int * bh)874 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
875 if (NULL != n) {
876 GrAssert(validateChildRelations(n, false));
877 if (kBlack_Color == n->fColor) {
878 *bh += 1;
879 }
880 GrAssert(!fComp(n->fItem, fFirst->fItem));
881 GrAssert(!fComp(fLast->fItem, n->fItem));
882 int leftBh = *bh;
883 int rightBh = *bh;
884 int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
885 int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
886 GrAssert(leftBh == rightBh);
887 *bh = leftBh;
888 return 1 + cl + cr;
889 }
890 return 0;
891 }
892
893 template <typename T, typename C>
validateChildRelations(const Node * n,bool allowRedRed)894 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
895 bool allowRedRed) const {
896 if (NULL != n) {
897 if (NULL != n->fChildren[kLeft_Child] ||
898 NULL != n->fChildren[kRight_Child]) {
899 if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
900 return validateChildRelationsFailed();
901 }
902 if (n->fChildren[kLeft_Child] == n->fParent &&
903 NULL != n->fParent) {
904 return validateChildRelationsFailed();
905 }
906 if (n->fChildren[kRight_Child] == n->fParent &&
907 NULL != n->fParent) {
908 return validateChildRelationsFailed();
909 }
910 if (NULL != n->fChildren[kLeft_Child]) {
911 if (!allowRedRed &&
912 kRed_Color == n->fChildren[kLeft_Child]->fColor &&
913 kRed_Color == n->fColor) {
914 return validateChildRelationsFailed();
915 }
916 if (n->fChildren[kLeft_Child]->fParent != n) {
917 return validateChildRelationsFailed();
918 }
919 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
920 (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
921 !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
922 return validateChildRelationsFailed();
923 }
924 }
925 if (NULL != n->fChildren[kRight_Child]) {
926 if (!allowRedRed &&
927 kRed_Color == n->fChildren[kRight_Child]->fColor &&
928 kRed_Color == n->fColor) {
929 return validateChildRelationsFailed();
930 }
931 if (n->fChildren[kRight_Child]->fParent != n) {
932 return validateChildRelationsFailed();
933 }
934 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
935 (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
936 !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
937 return validateChildRelationsFailed();
938 }
939 }
940 }
941 }
942 return true;
943 }
944 #endif
945
946 #include "SkRandom.h"
947
948 template <typename T, typename C>
UnitTest()949 void GrRedBlackTree<T,C>::UnitTest() {
950 GrRedBlackTree<int> tree;
951 typedef GrRedBlackTree<int>::Iter iter;
952
953 SkRandom r;
954
955 int count[100] = {0};
956 // add 10K ints
957 for (int i = 0; i < 10000; ++i) {
958 int x = r.nextU()%100;
959 SkDEBUGCODE(Iter xi = ) tree.insert(x);
960 GrAssert(*xi == x);
961 ++count[x];
962 }
963
964 tree.insert(0);
965 ++count[0];
966 tree.insert(99);
967 ++count[99];
968 GrAssert(*tree.begin() == 0);
969 GrAssert(*tree.last() == 99);
970 GrAssert(--(++tree.begin()) == tree.begin());
971 GrAssert(--tree.end() == tree.last());
972 GrAssert(tree.count() == 10002);
973
974 int c = 0;
975 // check that we iterate through the correct number of
976 // elements and they are properly sorted.
977 for (Iter a = tree.begin(); tree.end() != a; ++a) {
978 Iter b = a;
979 ++b;
980 ++c;
981 GrAssert(b == tree.end() || *a <= *b);
982 }
983 GrAssert(c == tree.count());
984
985 // check that the tree reports the correct number of each int
986 // and that we can iterate through them correctly both forward
987 // and backward.
988 for (int i = 0; i < 100; ++i) {
989 int c;
990 c = tree.countOf(i);
991 GrAssert(c == count[i]);
992 c = 0;
993 Iter iter = tree.findFirst(i);
994 while (iter != tree.end() && *iter == i) {
995 ++c;
996 ++iter;
997 }
998 GrAssert(count[i] == c);
999 c = 0;
1000 iter = tree.findLast(i);
1001 if (iter != tree.end()) {
1002 do {
1003 if (*iter == i) {
1004 ++c;
1005 } else {
1006 break;
1007 }
1008 if (iter != tree.begin()) {
1009 --iter;
1010 } else {
1011 break;
1012 }
1013 } while (true);
1014 }
1015 GrAssert(c == count[i]);
1016 }
1017 // remove all the ints between 25 and 74. Randomly chose to remove
1018 // the first, last, or any entry for each.
1019 for (int i = 25; i < 75; ++i) {
1020 while (0 != tree.countOf(i)) {
1021 --count[i];
1022 int x = r.nextU() % 3;
1023 Iter iter;
1024 switch (x) {
1025 case 0:
1026 iter = tree.findFirst(i);
1027 break;
1028 case 1:
1029 iter = tree.findLast(i);
1030 break;
1031 case 2:
1032 default:
1033 iter = tree.find(i);
1034 break;
1035 }
1036 tree.remove(iter);
1037 }
1038 GrAssert(0 == count[i]);
1039 GrAssert(tree.findFirst(i) == tree.end());
1040 GrAssert(tree.findLast(i) == tree.end());
1041 GrAssert(tree.find(i) == tree.end());
1042 }
1043 // remove all of the 0 entries. (tests removing begin())
1044 GrAssert(*tree.begin() == 0);
1045 GrAssert(*(--tree.end()) == 99);
1046 while (0 != tree.countOf(0)) {
1047 --count[0];
1048 tree.remove(tree.find(0));
1049 }
1050 GrAssert(0 == count[0]);
1051 GrAssert(tree.findFirst(0) == tree.end());
1052 GrAssert(tree.findLast(0) == tree.end());
1053 GrAssert(tree.find(0) == tree.end());
1054 GrAssert(0 < *tree.begin());
1055
1056 // remove all the 99 entries (tests removing last()).
1057 while (0 != tree.countOf(99)) {
1058 --count[99];
1059 tree.remove(tree.find(99));
1060 }
1061 GrAssert(0 == count[99]);
1062 GrAssert(tree.findFirst(99) == tree.end());
1063 GrAssert(tree.findLast(99) == tree.end());
1064 GrAssert(tree.find(99) == tree.end());
1065 GrAssert(99 > *(--tree.end()));
1066 GrAssert(tree.last() == --tree.end());
1067
1068 // Make sure iteration still goes through correct number of entries
1069 // and is still sorted correctly.
1070 c = 0;
1071 for (Iter a = tree.begin(); tree.end() != a; ++a) {
1072 Iter b = a;
1073 ++b;
1074 ++c;
1075 GrAssert(b == tree.end() || *a <= *b);
1076 }
1077 GrAssert(c == tree.count());
1078
1079 // repeat check that correct number of each entry is in the tree
1080 // and iterates correctly both forward and backward.
1081 for (int i = 0; i < 100; ++i) {
1082 GrAssert(tree.countOf(i) == count[i]);
1083 int c = 0;
1084 Iter iter = tree.findFirst(i);
1085 while (iter != tree.end() && *iter == i) {
1086 ++c;
1087 ++iter;
1088 }
1089 GrAssert(count[i] == c);
1090 c = 0;
1091 iter = tree.findLast(i);
1092 if (iter != tree.end()) {
1093 do {
1094 if (*iter == i) {
1095 ++c;
1096 } else {
1097 break;
1098 }
1099 if (iter != tree.begin()) {
1100 --iter;
1101 } else {
1102 break;
1103 }
1104 } while (true);
1105 }
1106 GrAssert(count[i] == c);
1107 }
1108
1109 // remove all entries
1110 while (!tree.empty()) {
1111 tree.remove(tree.begin());
1112 }
1113
1114 // test reset on empty tree.
1115 tree.reset();
1116 }
1117
1118 #endif
1119