1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <math.h>
29
30 #include "../include/v8stdint.h"
31 #include "checks.h"
32 #include "utils.h"
33
34 #include "double.h"
35 #include "fixed-dtoa.h"
36
37 namespace v8 {
38 namespace internal {
39
40 // Represents a 128bit type. This class should be replaced by a native type on
41 // platforms that support 128bit integers.
42 class UInt128 {
43 public:
UInt128()44 UInt128() : high_bits_(0), low_bits_(0) { }
UInt128(uint64_t high,uint64_t low)45 UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
46
Multiply(uint32_t multiplicand)47 void Multiply(uint32_t multiplicand) {
48 uint64_t accumulator;
49
50 accumulator = (low_bits_ & kMask32) * multiplicand;
51 uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
52 accumulator >>= 32;
53 accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
54 low_bits_ = (accumulator << 32) + part;
55 accumulator >>= 32;
56 accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
57 part = static_cast<uint32_t>(accumulator & kMask32);
58 accumulator >>= 32;
59 accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
60 high_bits_ = (accumulator << 32) + part;
61 ASSERT((accumulator >> 32) == 0);
62 }
63
Shift(int shift_amount)64 void Shift(int shift_amount) {
65 ASSERT(-64 <= shift_amount && shift_amount <= 64);
66 if (shift_amount == 0) {
67 return;
68 } else if (shift_amount == -64) {
69 high_bits_ = low_bits_;
70 low_bits_ = 0;
71 } else if (shift_amount == 64) {
72 low_bits_ = high_bits_;
73 high_bits_ = 0;
74 } else if (shift_amount <= 0) {
75 high_bits_ <<= -shift_amount;
76 high_bits_ += low_bits_ >> (64 + shift_amount);
77 low_bits_ <<= -shift_amount;
78 } else {
79 low_bits_ >>= shift_amount;
80 low_bits_ += high_bits_ << (64 - shift_amount);
81 high_bits_ >>= shift_amount;
82 }
83 }
84
85 // Modifies *this to *this MOD (2^power).
86 // Returns *this DIV (2^power).
DivModPowerOf2(int power)87 int DivModPowerOf2(int power) {
88 if (power >= 64) {
89 int result = static_cast<int>(high_bits_ >> (power - 64));
90 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
91 return result;
92 } else {
93 uint64_t part_low = low_bits_ >> power;
94 uint64_t part_high = high_bits_ << (64 - power);
95 int result = static_cast<int>(part_low + part_high);
96 high_bits_ = 0;
97 low_bits_ -= part_low << power;
98 return result;
99 }
100 }
101
IsZero() const102 bool IsZero() const {
103 return high_bits_ == 0 && low_bits_ == 0;
104 }
105
BitAt(int position)106 int BitAt(int position) {
107 if (position >= 64) {
108 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
109 } else {
110 return static_cast<int>(low_bits_ >> position) & 1;
111 }
112 }
113
114 private:
115 static const uint64_t kMask32 = 0xFFFFFFFF;
116 // Value == (high_bits_ << 64) + low_bits_
117 uint64_t high_bits_;
118 uint64_t low_bits_;
119 };
120
121
122 static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
123
124
FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)125 static void FillDigits32FixedLength(uint32_t number, int requested_length,
126 Vector<char> buffer, int* length) {
127 for (int i = requested_length - 1; i >= 0; --i) {
128 buffer[(*length) + i] = '0' + number % 10;
129 number /= 10;
130 }
131 *length += requested_length;
132 }
133
134
FillDigits32(uint32_t number,Vector<char> buffer,int * length)135 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
136 int number_length = 0;
137 // We fill the digits in reverse order and exchange them afterwards.
138 while (number != 0) {
139 int digit = number % 10;
140 number /= 10;
141 buffer[(*length) + number_length] = '0' + digit;
142 number_length++;
143 }
144 // Exchange the digits.
145 int i = *length;
146 int j = *length + number_length - 1;
147 while (i < j) {
148 char tmp = buffer[i];
149 buffer[i] = buffer[j];
150 buffer[j] = tmp;
151 i++;
152 j--;
153 }
154 *length += number_length;
155 }
156
157
FillDigits64FixedLength(uint64_t number,int requested_length,Vector<char> buffer,int * length)158 static void FillDigits64FixedLength(uint64_t number, int requested_length,
159 Vector<char> buffer, int* length) {
160 const uint32_t kTen7 = 10000000;
161 // For efficiency cut the number into 3 uint32_t parts, and print those.
162 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
163 number /= kTen7;
164 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
165 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
166
167 FillDigits32FixedLength(part0, 3, buffer, length);
168 FillDigits32FixedLength(part1, 7, buffer, length);
169 FillDigits32FixedLength(part2, 7, buffer, length);
170 }
171
172
FillDigits64(uint64_t number,Vector<char> buffer,int * length)173 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
174 const uint32_t kTen7 = 10000000;
175 // For efficiency cut the number into 3 uint32_t parts, and print those.
176 uint32_t part2 = static_cast<uint32_t>(number % kTen7);
177 number /= kTen7;
178 uint32_t part1 = static_cast<uint32_t>(number % kTen7);
179 uint32_t part0 = static_cast<uint32_t>(number / kTen7);
180
181 if (part0 != 0) {
182 FillDigits32(part0, buffer, length);
183 FillDigits32FixedLength(part1, 7, buffer, length);
184 FillDigits32FixedLength(part2, 7, buffer, length);
185 } else if (part1 != 0) {
186 FillDigits32(part1, buffer, length);
187 FillDigits32FixedLength(part2, 7, buffer, length);
188 } else {
189 FillDigits32(part2, buffer, length);
190 }
191 }
192
193
RoundUp(Vector<char> buffer,int * length,int * decimal_point)194 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
195 // An empty buffer represents 0.
196 if (*length == 0) {
197 buffer[0] = '1';
198 *decimal_point = 1;
199 *length = 1;
200 return;
201 }
202 // Round the last digit until we either have a digit that was not '9' or until
203 // we reached the first digit.
204 buffer[(*length) - 1]++;
205 for (int i = (*length) - 1; i > 0; --i) {
206 if (buffer[i] != '0' + 10) {
207 return;
208 }
209 buffer[i] = '0';
210 buffer[i - 1]++;
211 }
212 // If the first digit is now '0' + 10, we would need to set it to '0' and add
213 // a '1' in front. However we reach the first digit only if all following
214 // digits had been '9' before rounding up. Now all trailing digits are '0' and
215 // we simply switch the first digit to '1' and update the decimal-point
216 // (indicating that the point is now one digit to the right).
217 if (buffer[0] == '0' + 10) {
218 buffer[0] = '1';
219 (*decimal_point)++;
220 }
221 }
222
223
224 // The given fractionals number represents a fixed-point number with binary
225 // point at bit (-exponent).
226 // Preconditions:
227 // -128 <= exponent <= 0.
228 // 0 <= fractionals * 2^exponent < 1
229 // The buffer holds the result.
230 // The function will round its result. During the rounding-process digits not
231 // generated by this function might be updated, and the decimal-point variable
232 // might be updated. If this function generates the digits 99 and the buffer
233 // already contained "199" (thus yielding a buffer of "19999") then a
234 // rounding-up will change the contents of the buffer to "20000".
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)235 static void FillFractionals(uint64_t fractionals, int exponent,
236 int fractional_count, Vector<char> buffer,
237 int* length, int* decimal_point) {
238 ASSERT(-128 <= exponent && exponent <= 0);
239 // 'fractionals' is a fixed-point number, with binary point at bit
240 // (-exponent). Inside the function the non-converted remainder of fractionals
241 // is a fixed-point number, with binary point at bit 'point'.
242 if (-exponent <= 64) {
243 // One 64 bit number is sufficient.
244 ASSERT(fractionals >> 56 == 0);
245 int point = -exponent;
246 for (int i = 0; i < fractional_count; ++i) {
247 if (fractionals == 0) break;
248 // Instead of multiplying by 10 we multiply by 5 and adjust the point
249 // location. This way the fractionals variable will not overflow.
250 // Invariant at the beginning of the loop: fractionals < 2^point.
251 // Initially we have: point <= 64 and fractionals < 2^56
252 // After each iteration the point is decremented by one.
253 // Note that 5^3 = 125 < 128 = 2^7.
254 // Therefore three iterations of this loop will not overflow fractionals
255 // (even without the subtraction at the end of the loop body). At this
256 // time point will satisfy point <= 61 and therefore fractionals < 2^point
257 // and any further multiplication of fractionals by 5 will not overflow.
258 fractionals *= 5;
259 point--;
260 int digit = static_cast<int>(fractionals >> point);
261 buffer[*length] = '0' + digit;
262 (*length)++;
263 fractionals -= static_cast<uint64_t>(digit) << point;
264 }
265 // If the first bit after the point is set we have to round up.
266 if (((fractionals >> (point - 1)) & 1) == 1) {
267 RoundUp(buffer, length, decimal_point);
268 }
269 } else { // We need 128 bits.
270 ASSERT(64 < -exponent && -exponent <= 128);
271 UInt128 fractionals128 = UInt128(fractionals, 0);
272 fractionals128.Shift(-exponent - 64);
273 int point = 128;
274 for (int i = 0; i < fractional_count; ++i) {
275 if (fractionals128.IsZero()) break;
276 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
277 // point location.
278 // This multiplication will not overflow for the same reasons as before.
279 fractionals128.Multiply(5);
280 point--;
281 int digit = fractionals128.DivModPowerOf2(point);
282 buffer[*length] = '0' + digit;
283 (*length)++;
284 }
285 if (fractionals128.BitAt(point - 1) == 1) {
286 RoundUp(buffer, length, decimal_point);
287 }
288 }
289 }
290
291
292 // Removes leading and trailing zeros.
293 // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(Vector<char> buffer,int * length,int * decimal_point)294 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
295 while (*length > 0 && buffer[(*length) - 1] == '0') {
296 (*length)--;
297 }
298 int first_non_zero = 0;
299 while (first_non_zero < *length && buffer[first_non_zero] == '0') {
300 first_non_zero++;
301 }
302 if (first_non_zero != 0) {
303 for (int i = first_non_zero; i < *length; ++i) {
304 buffer[i - first_non_zero] = buffer[i];
305 }
306 *length -= first_non_zero;
307 *decimal_point -= first_non_zero;
308 }
309 }
310
311
FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)312 bool FastFixedDtoa(double v,
313 int fractional_count,
314 Vector<char> buffer,
315 int* length,
316 int* decimal_point) {
317 const uint32_t kMaxUInt32 = 0xFFFFFFFF;
318 uint64_t significand = Double(v).Significand();
319 int exponent = Double(v).Exponent();
320 // v = significand * 2^exponent (with significand a 53bit integer).
321 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
322 // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
323 // If necessary this limit could probably be increased, but we don't need
324 // more.
325 if (exponent > 20) return false;
326 if (fractional_count > 20) return false;
327 *length = 0;
328 // At most kDoubleSignificandSize bits of the significand are non-zero.
329 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
330 // bits: 0..11*..0xxx..53*..xx
331 if (exponent + kDoubleSignificandSize > 64) {
332 // The exponent must be > 11.
333 //
334 // We know that v = significand * 2^exponent.
335 // And the exponent > 11.
336 // We simplify the task by dividing v by 10^17.
337 // The quotient delivers the first digits, and the remainder fits into a 64
338 // bit number.
339 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
340 const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5); // 5^17
341 uint64_t divisor = kFive17;
342 int divisor_power = 17;
343 uint64_t dividend = significand;
344 uint32_t quotient;
345 uint64_t remainder;
346 // Let v = f * 2^e with f == significand and e == exponent.
347 // Then need q (quotient) and r (remainder) as follows:
348 // v = q * 10^17 + r
349 // f * 2^e = q * 10^17 + r
350 // f * 2^e = q * 5^17 * 2^17 + r
351 // If e > 17 then
352 // f * 2^(e-17) = q * 5^17 + r/2^17
353 // else
354 // f = q * 5^17 * 2^(17-e) + r/2^e
355 if (exponent > divisor_power) {
356 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
357 dividend <<= exponent - divisor_power;
358 quotient = static_cast<uint32_t>(dividend / divisor);
359 remainder = (dividend % divisor) << divisor_power;
360 } else {
361 divisor <<= divisor_power - exponent;
362 quotient = static_cast<uint32_t>(dividend / divisor);
363 remainder = (dividend % divisor) << exponent;
364 }
365 FillDigits32(quotient, buffer, length);
366 FillDigits64FixedLength(remainder, divisor_power, buffer, length);
367 *decimal_point = *length;
368 } else if (exponent >= 0) {
369 // 0 <= exponent <= 11
370 significand <<= exponent;
371 FillDigits64(significand, buffer, length);
372 *decimal_point = *length;
373 } else if (exponent > -kDoubleSignificandSize) {
374 // We have to cut the number.
375 uint64_t integrals = significand >> -exponent;
376 uint64_t fractionals = significand - (integrals << -exponent);
377 if (integrals > kMaxUInt32) {
378 FillDigits64(integrals, buffer, length);
379 } else {
380 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
381 }
382 *decimal_point = *length;
383 FillFractionals(fractionals, exponent, fractional_count,
384 buffer, length, decimal_point);
385 } else if (exponent < -128) {
386 // This configuration (with at most 20 digits) means that all digits must be
387 // 0.
388 ASSERT(fractional_count <= 20);
389 buffer[0] = '\0';
390 *length = 0;
391 *decimal_point = -fractional_count;
392 } else {
393 *decimal_point = 0;
394 FillFractionals(significand, exponent, fractional_count,
395 buffer, length, decimal_point);
396 }
397 TrimZeros(buffer, length, decimal_point);
398 buffer[*length] = '\0';
399 if ((*length) == 0) {
400 // The string is empty and the decimal_point thus has no importance. Mimick
401 // Gay's dtoa and and set it to -fractional_count.
402 *decimal_point = -fractional_count;
403 }
404 return true;
405 }
406
407 } } // namespace v8::internal
408