• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <math.h>
29 
30 #include "../include/v8stdint.h"
31 #include "checks.h"
32 #include "utils.h"
33 
34 #include "double.h"
35 #include "fixed-dtoa.h"
36 
37 namespace v8 {
38 namespace internal {
39 
40 // Represents a 128bit type. This class should be replaced by a native type on
41 // platforms that support 128bit integers.
42 class UInt128 {
43  public:
UInt128()44   UInt128() : high_bits_(0), low_bits_(0) { }
UInt128(uint64_t high,uint64_t low)45   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
46 
Multiply(uint32_t multiplicand)47   void Multiply(uint32_t multiplicand) {
48     uint64_t accumulator;
49 
50     accumulator = (low_bits_ & kMask32) * multiplicand;
51     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
52     accumulator >>= 32;
53     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
54     low_bits_ = (accumulator << 32) + part;
55     accumulator >>= 32;
56     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
57     part = static_cast<uint32_t>(accumulator & kMask32);
58     accumulator >>= 32;
59     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
60     high_bits_ = (accumulator << 32) + part;
61     ASSERT((accumulator >> 32) == 0);
62   }
63 
Shift(int shift_amount)64   void Shift(int shift_amount) {
65     ASSERT(-64 <= shift_amount && shift_amount <= 64);
66     if (shift_amount == 0) {
67       return;
68     } else if (shift_amount == -64) {
69       high_bits_ = low_bits_;
70       low_bits_ = 0;
71     } else if (shift_amount == 64) {
72       low_bits_ = high_bits_;
73       high_bits_ = 0;
74     } else if (shift_amount <= 0) {
75       high_bits_ <<= -shift_amount;
76       high_bits_ += low_bits_ >> (64 + shift_amount);
77       low_bits_ <<= -shift_amount;
78     } else {
79       low_bits_ >>= shift_amount;
80       low_bits_ += high_bits_ << (64 - shift_amount);
81       high_bits_ >>= shift_amount;
82     }
83   }
84 
85   // Modifies *this to *this MOD (2^power).
86   // Returns *this DIV (2^power).
DivModPowerOf2(int power)87   int DivModPowerOf2(int power) {
88     if (power >= 64) {
89       int result = static_cast<int>(high_bits_ >> (power - 64));
90       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
91       return result;
92     } else {
93       uint64_t part_low = low_bits_ >> power;
94       uint64_t part_high = high_bits_ << (64 - power);
95       int result = static_cast<int>(part_low + part_high);
96       high_bits_ = 0;
97       low_bits_ -= part_low << power;
98       return result;
99     }
100   }
101 
IsZero() const102   bool IsZero() const {
103     return high_bits_ == 0 && low_bits_ == 0;
104   }
105 
BitAt(int position)106   int BitAt(int position) {
107     if (position >= 64) {
108       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
109     } else {
110       return static_cast<int>(low_bits_ >> position) & 1;
111     }
112   }
113 
114  private:
115   static const uint64_t kMask32 = 0xFFFFFFFF;
116   // Value == (high_bits_ << 64) + low_bits_
117   uint64_t high_bits_;
118   uint64_t low_bits_;
119 };
120 
121 
122 static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
123 
124 
FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)125 static void FillDigits32FixedLength(uint32_t number, int requested_length,
126                                     Vector<char> buffer, int* length) {
127   for (int i = requested_length - 1; i >= 0; --i) {
128     buffer[(*length) + i] = '0' + number % 10;
129     number /= 10;
130   }
131   *length += requested_length;
132 }
133 
134 
FillDigits32(uint32_t number,Vector<char> buffer,int * length)135 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
136   int number_length = 0;
137   // We fill the digits in reverse order and exchange them afterwards.
138   while (number != 0) {
139     int digit = number % 10;
140     number /= 10;
141     buffer[(*length) + number_length] = '0' + digit;
142     number_length++;
143   }
144   // Exchange the digits.
145   int i = *length;
146   int j = *length + number_length - 1;
147   while (i < j) {
148     char tmp = buffer[i];
149     buffer[i] = buffer[j];
150     buffer[j] = tmp;
151     i++;
152     j--;
153   }
154   *length += number_length;
155 }
156 
157 
FillDigits64FixedLength(uint64_t number,int requested_length,Vector<char> buffer,int * length)158 static void FillDigits64FixedLength(uint64_t number, int requested_length,
159                                     Vector<char> buffer, int* length) {
160   const uint32_t kTen7 = 10000000;
161   // For efficiency cut the number into 3 uint32_t parts, and print those.
162   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
163   number /= kTen7;
164   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
165   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
166 
167   FillDigits32FixedLength(part0, 3, buffer, length);
168   FillDigits32FixedLength(part1, 7, buffer, length);
169   FillDigits32FixedLength(part2, 7, buffer, length);
170 }
171 
172 
FillDigits64(uint64_t number,Vector<char> buffer,int * length)173 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
174   const uint32_t kTen7 = 10000000;
175   // For efficiency cut the number into 3 uint32_t parts, and print those.
176   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
177   number /= kTen7;
178   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
179   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
180 
181   if (part0 != 0) {
182     FillDigits32(part0, buffer, length);
183     FillDigits32FixedLength(part1, 7, buffer, length);
184     FillDigits32FixedLength(part2, 7, buffer, length);
185   } else if (part1 != 0) {
186     FillDigits32(part1, buffer, length);
187     FillDigits32FixedLength(part2, 7, buffer, length);
188   } else {
189     FillDigits32(part2, buffer, length);
190   }
191 }
192 
193 
RoundUp(Vector<char> buffer,int * length,int * decimal_point)194 static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
195   // An empty buffer represents 0.
196   if (*length == 0) {
197     buffer[0] = '1';
198     *decimal_point = 1;
199     *length = 1;
200     return;
201   }
202   // Round the last digit until we either have a digit that was not '9' or until
203   // we reached the first digit.
204   buffer[(*length) - 1]++;
205   for (int i = (*length) - 1; i > 0; --i) {
206     if (buffer[i] != '0' + 10) {
207       return;
208     }
209     buffer[i] = '0';
210     buffer[i - 1]++;
211   }
212   // If the first digit is now '0' + 10, we would need to set it to '0' and add
213   // a '1' in front. However we reach the first digit only if all following
214   // digits had been '9' before rounding up. Now all trailing digits are '0' and
215   // we simply switch the first digit to '1' and update the decimal-point
216   // (indicating that the point is now one digit to the right).
217   if (buffer[0] == '0' + 10) {
218     buffer[0] = '1';
219     (*decimal_point)++;
220   }
221 }
222 
223 
224 // The given fractionals number represents a fixed-point number with binary
225 // point at bit (-exponent).
226 // Preconditions:
227 //   -128 <= exponent <= 0.
228 //   0 <= fractionals * 2^exponent < 1
229 //   The buffer holds the result.
230 // The function will round its result. During the rounding-process digits not
231 // generated by this function might be updated, and the decimal-point variable
232 // might be updated. If this function generates the digits 99 and the buffer
233 // already contained "199" (thus yielding a buffer of "19999") then a
234 // rounding-up will change the contents of the buffer to "20000".
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)235 static void FillFractionals(uint64_t fractionals, int exponent,
236                             int fractional_count, Vector<char> buffer,
237                             int* length, int* decimal_point) {
238   ASSERT(-128 <= exponent && exponent <= 0);
239   // 'fractionals' is a fixed-point number, with binary point at bit
240   // (-exponent). Inside the function the non-converted remainder of fractionals
241   // is a fixed-point number, with binary point at bit 'point'.
242   if (-exponent <= 64) {
243     // One 64 bit number is sufficient.
244     ASSERT(fractionals >> 56 == 0);
245     int point = -exponent;
246     for (int i = 0; i < fractional_count; ++i) {
247       if (fractionals == 0) break;
248       // Instead of multiplying by 10 we multiply by 5 and adjust the point
249       // location. This way the fractionals variable will not overflow.
250       // Invariant at the beginning of the loop: fractionals < 2^point.
251       // Initially we have: point <= 64 and fractionals < 2^56
252       // After each iteration the point is decremented by one.
253       // Note that 5^3 = 125 < 128 = 2^7.
254       // Therefore three iterations of this loop will not overflow fractionals
255       // (even without the subtraction at the end of the loop body). At this
256       // time point will satisfy point <= 61 and therefore fractionals < 2^point
257       // and any further multiplication of fractionals by 5 will not overflow.
258       fractionals *= 5;
259       point--;
260       int digit = static_cast<int>(fractionals >> point);
261       buffer[*length] = '0' + digit;
262       (*length)++;
263       fractionals -= static_cast<uint64_t>(digit) << point;
264     }
265     // If the first bit after the point is set we have to round up.
266     if (((fractionals >> (point - 1)) & 1) == 1) {
267       RoundUp(buffer, length, decimal_point);
268     }
269   } else {  // We need 128 bits.
270     ASSERT(64 < -exponent && -exponent <= 128);
271     UInt128 fractionals128 = UInt128(fractionals, 0);
272     fractionals128.Shift(-exponent - 64);
273     int point = 128;
274     for (int i = 0; i < fractional_count; ++i) {
275       if (fractionals128.IsZero()) break;
276       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
277       // point location.
278       // This multiplication will not overflow for the same reasons as before.
279       fractionals128.Multiply(5);
280       point--;
281       int digit = fractionals128.DivModPowerOf2(point);
282       buffer[*length] = '0' + digit;
283       (*length)++;
284     }
285     if (fractionals128.BitAt(point - 1) == 1) {
286       RoundUp(buffer, length, decimal_point);
287     }
288   }
289 }
290 
291 
292 // Removes leading and trailing zeros.
293 // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(Vector<char> buffer,int * length,int * decimal_point)294 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
295   while (*length > 0 && buffer[(*length) - 1] == '0') {
296     (*length)--;
297   }
298   int first_non_zero = 0;
299   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
300     first_non_zero++;
301   }
302   if (first_non_zero != 0) {
303     for (int i = first_non_zero; i < *length; ++i) {
304       buffer[i - first_non_zero] = buffer[i];
305     }
306     *length -= first_non_zero;
307     *decimal_point -= first_non_zero;
308   }
309 }
310 
311 
FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)312 bool FastFixedDtoa(double v,
313                    int fractional_count,
314                    Vector<char> buffer,
315                    int* length,
316                    int* decimal_point) {
317   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
318   uint64_t significand = Double(v).Significand();
319   int exponent = Double(v).Exponent();
320   // v = significand * 2^exponent (with significand a 53bit integer).
321   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
322   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
323   // If necessary this limit could probably be increased, but we don't need
324   // more.
325   if (exponent > 20) return false;
326   if (fractional_count > 20) return false;
327   *length = 0;
328   // At most kDoubleSignificandSize bits of the significand are non-zero.
329   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
330   // bits:  0..11*..0xxx..53*..xx
331   if (exponent + kDoubleSignificandSize > 64) {
332     // The exponent must be > 11.
333     //
334     // We know that v = significand * 2^exponent.
335     // And the exponent > 11.
336     // We simplify the task by dividing v by 10^17.
337     // The quotient delivers the first digits, and the remainder fits into a 64
338     // bit number.
339     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
340     const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5);  // 5^17
341     uint64_t divisor = kFive17;
342     int divisor_power = 17;
343     uint64_t dividend = significand;
344     uint32_t quotient;
345     uint64_t remainder;
346     // Let v = f * 2^e with f == significand and e == exponent.
347     // Then need q (quotient) and r (remainder) as follows:
348     //   v            = q * 10^17       + r
349     //   f * 2^e      = q * 10^17       + r
350     //   f * 2^e      = q * 5^17 * 2^17 + r
351     // If e > 17 then
352     //   f * 2^(e-17) = q * 5^17        + r/2^17
353     // else
354     //   f  = q * 5^17 * 2^(17-e) + r/2^e
355     if (exponent > divisor_power) {
356       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
357       dividend <<= exponent - divisor_power;
358       quotient = static_cast<uint32_t>(dividend / divisor);
359       remainder = (dividend % divisor) << divisor_power;
360     } else {
361       divisor <<= divisor_power - exponent;
362       quotient = static_cast<uint32_t>(dividend / divisor);
363       remainder = (dividend % divisor) << exponent;
364     }
365     FillDigits32(quotient, buffer, length);
366     FillDigits64FixedLength(remainder, divisor_power, buffer, length);
367     *decimal_point = *length;
368   } else if (exponent >= 0) {
369     // 0 <= exponent <= 11
370     significand <<= exponent;
371     FillDigits64(significand, buffer, length);
372     *decimal_point = *length;
373   } else if (exponent > -kDoubleSignificandSize) {
374     // We have to cut the number.
375     uint64_t integrals = significand >> -exponent;
376     uint64_t fractionals = significand - (integrals << -exponent);
377     if (integrals > kMaxUInt32) {
378       FillDigits64(integrals, buffer, length);
379     } else {
380       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
381     }
382     *decimal_point = *length;
383     FillFractionals(fractionals, exponent, fractional_count,
384                     buffer, length, decimal_point);
385   } else if (exponent < -128) {
386     // This configuration (with at most 20 digits) means that all digits must be
387     // 0.
388     ASSERT(fractional_count <= 20);
389     buffer[0] = '\0';
390     *length = 0;
391     *decimal_point = -fractional_count;
392   } else {
393     *decimal_point = 0;
394     FillFractionals(significand, exponent, fractional_count,
395                     buffer, length, decimal_point);
396   }
397   TrimZeros(buffer, length, decimal_point);
398   buffer[*length] = '\0';
399   if ((*length) == 0) {
400     // The string is empty and the decimal_point thus has no importance. Mimick
401     // Gay's dtoa and and set it to -fractional_count.
402     *decimal_point = -fractional_count;
403   }
404   return true;
405 }
406 
407 } }  // namespace v8::internal
408