• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // Platform specific code for OpenBSD and NetBSD goes here. For the POSIX
29 // comaptible parts the implementation is in platform-posix.cc.
30 
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/time.h>
35 #include <sys/resource.h>
36 #include <sys/syscall.h>
37 #include <sys/types.h>
38 #include <stdlib.h>
39 
40 #include <sys/types.h>  // mmap & munmap
41 #include <sys/mman.h>   // mmap & munmap
42 #include <sys/stat.h>   // open
43 #include <fcntl.h>      // open
44 #include <unistd.h>     // sysconf
45 #include <execinfo.h>   // backtrace, backtrace_symbols
46 #include <strings.h>    // index
47 #include <errno.h>
48 #include <stdarg.h>
49 
50 #undef MAP_TYPE
51 
52 #include "v8.h"
53 
54 #include "platform-posix.h"
55 #include "platform.h"
56 #include "v8threads.h"
57 #include "vm-state-inl.h"
58 
59 
60 namespace v8 {
61 namespace internal {
62 
63 // 0 is never a valid thread id on Linux and OpenBSD since tids and pids share a
64 // name space and pid 0 is reserved (see man 2 kill).
65 static const pthread_t kNoThread = (pthread_t) 0;
66 
67 
ceiling(double x)68 double ceiling(double x) {
69   return ceil(x);
70 }
71 
72 
73 static Mutex* limit_mutex = NULL;
74 
75 
GetRandomMmapAddr()76 static void* GetRandomMmapAddr() {
77   Isolate* isolate = Isolate::UncheckedCurrent();
78   // Note that the current isolate isn't set up in a call path via
79   // CpuFeatures::Probe. We don't care about randomization in this case because
80   // the code page is immediately freed.
81   if (isolate != NULL) {
82 #ifdef V8_TARGET_ARCH_X64
83     uint64_t rnd1 = V8::RandomPrivate(isolate);
84     uint64_t rnd2 = V8::RandomPrivate(isolate);
85     uint64_t raw_addr = (rnd1 << 32) ^ rnd2;
86     // Currently available CPUs have 48 bits of virtual addressing.  Truncate
87     // the hint address to 46 bits to give the kernel a fighting chance of
88     // fulfilling our placement request.
89     raw_addr &= V8_UINT64_C(0x3ffffffff000);
90 #else
91     uint32_t raw_addr = V8::RandomPrivate(isolate);
92     // The range 0x20000000 - 0x60000000 is relatively unpopulated across a
93     // variety of ASLR modes (PAE kernel, NX compat mode, etc).
94     raw_addr &= 0x3ffff000;
95     raw_addr += 0x20000000;
96 #endif
97     return reinterpret_cast<void*>(raw_addr);
98   }
99   return NULL;
100 }
101 
102 
SetUp()103 void OS::SetUp() {
104   // Seed the random number generator. We preserve microsecond resolution.
105   uint64_t seed = Ticks() ^ (getpid() << 16);
106   srandom(static_cast<unsigned int>(seed));
107   limit_mutex = CreateMutex();
108 }
109 
110 
PostSetUp()111 void OS::PostSetUp() {
112   // Math functions depend on CPU features therefore they are initialized after
113   // CPU.
114   MathSetup();
115 }
116 
117 
CpuFeaturesImpliedByPlatform()118 uint64_t OS::CpuFeaturesImpliedByPlatform() {
119   return 0;
120 }
121 
122 
ActivationFrameAlignment()123 int OS::ActivationFrameAlignment() {
124   // With gcc 4.4 the tree vectorization optimizer can generate code
125   // that requires 16 byte alignment such as movdqa on x86.
126   return 16;
127 }
128 
129 
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)130 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
131   __asm__ __volatile__("" : : : "memory");
132   // An x86 store acts as a release barrier.
133   *ptr = value;
134 }
135 
136 
LocalTimezone(double time)137 const char* OS::LocalTimezone(double time) {
138   if (isnan(time)) return "";
139   time_t tv = static_cast<time_t>(floor(time/msPerSecond));
140   struct tm* t = localtime(&tv);
141   if (NULL == t) return "";
142   return t->tm_zone;
143 }
144 
145 
LocalTimeOffset()146 double OS::LocalTimeOffset() {
147   time_t tv = time(NULL);
148   struct tm* t = localtime(&tv);
149   // tm_gmtoff includes any daylight savings offset, so subtract it.
150   return static_cast<double>(t->tm_gmtoff * msPerSecond -
151                              (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
152 }
153 
154 
155 // We keep the lowest and highest addresses mapped as a quick way of
156 // determining that pointers are outside the heap (used mostly in assertions
157 // and verification).  The estimate is conservative, i.e., not all addresses in
158 // 'allocated' space are actually allocated to our heap.  The range is
159 // [lowest, highest), inclusive on the low and and exclusive on the high end.
160 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
161 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
162 
163 
UpdateAllocatedSpaceLimits(void * address,int size)164 static void UpdateAllocatedSpaceLimits(void* address, int size) {
165   ASSERT(limit_mutex != NULL);
166   ScopedLock lock(limit_mutex);
167 
168   lowest_ever_allocated = Min(lowest_ever_allocated, address);
169   highest_ever_allocated =
170       Max(highest_ever_allocated,
171           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
172 }
173 
174 
IsOutsideAllocatedSpace(void * address)175 bool OS::IsOutsideAllocatedSpace(void* address) {
176   return address < lowest_ever_allocated || address >= highest_ever_allocated;
177 }
178 
179 
AllocateAlignment()180 size_t OS::AllocateAlignment() {
181   return sysconf(_SC_PAGESIZE);
182 }
183 
184 
Allocate(const size_t requested,size_t * allocated,bool is_executable)185 void* OS::Allocate(const size_t requested,
186                    size_t* allocated,
187                    bool is_executable) {
188   const size_t msize = RoundUp(requested, AllocateAlignment());
189   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
190   void* addr = GetRandomMmapAddr();
191   void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
192   if (mbase == MAP_FAILED) {
193     LOG(i::Isolate::Current(),
194         StringEvent("OS::Allocate", "mmap failed"));
195     return NULL;
196   }
197   *allocated = msize;
198   UpdateAllocatedSpaceLimits(mbase, msize);
199   return mbase;
200 }
201 
202 
Free(void * address,const size_t size)203 void OS::Free(void* address, const size_t size) {
204   // TODO(1240712): munmap has a return value which is ignored here.
205   int result = munmap(address, size);
206   USE(result);
207   ASSERT(result == 0);
208 }
209 
210 
Sleep(int milliseconds)211 void OS::Sleep(int milliseconds) {
212   unsigned int ms = static_cast<unsigned int>(milliseconds);
213   usleep(1000 * ms);
214 }
215 
216 
Abort()217 void OS::Abort() {
218   // Redirect to std abort to signal abnormal program termination.
219   abort();
220 }
221 
222 
DebugBreak()223 void OS::DebugBreak() {
224   asm("int $3");
225 }
226 
227 
228 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
229  public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)230   PosixMemoryMappedFile(FILE* file, void* memory, int size)
231     : file_(file), memory_(memory), size_(size) { }
232   virtual ~PosixMemoryMappedFile();
memory()233   virtual void* memory() { return memory_; }
size()234   virtual int size() { return size_; }
235  private:
236   FILE* file_;
237   void* memory_;
238   int size_;
239 };
240 
241 
open(const char * name)242 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
243   FILE* file = fopen(name, "r+");
244   if (file == NULL) return NULL;
245 
246   fseek(file, 0, SEEK_END);
247   int size = ftell(file);
248 
249   void* memory =
250       mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
251   return new PosixMemoryMappedFile(file, memory, size);
252 }
253 
254 
create(const char * name,int size,void * initial)255 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
256     void* initial) {
257   FILE* file = fopen(name, "w+");
258   if (file == NULL) return NULL;
259   int result = fwrite(initial, size, 1, file);
260   if (result < 1) {
261     fclose(file);
262     return NULL;
263   }
264   void* memory =
265       mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
266   return new PosixMemoryMappedFile(file, memory, size);
267 }
268 
269 
~PosixMemoryMappedFile()270 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
271   if (memory_) OS::Free(memory_, size_);
272   fclose(file_);
273 }
274 
275 
LogSharedLibraryAddresses()276 void OS::LogSharedLibraryAddresses() {
277   // This function assumes that the layout of the file is as follows:
278   // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
279   // If we encounter an unexpected situation we abort scanning further entries.
280   FILE* fp = fopen("/proc/self/maps", "r");
281   if (fp == NULL) return;
282 
283   // Allocate enough room to be able to store a full file name.
284   const int kLibNameLen = FILENAME_MAX + 1;
285   char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
286 
287   i::Isolate* isolate = ISOLATE;
288   // This loop will terminate once the scanning hits an EOF.
289   while (true) {
290     uintptr_t start, end;
291     char attr_r, attr_w, attr_x, attr_p;
292     // Parse the addresses and permission bits at the beginning of the line.
293     if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
294     if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
295 
296     int c;
297     if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
298       // Found a read-only executable entry. Skip characters until we reach
299       // the beginning of the filename or the end of the line.
300       do {
301         c = getc(fp);
302       } while ((c != EOF) && (c != '\n') && (c != '/'));
303       if (c == EOF) break;  // EOF: Was unexpected, just exit.
304 
305       // Process the filename if found.
306       if (c == '/') {
307         ungetc(c, fp);  // Push the '/' back into the stream to be read below.
308 
309         // Read to the end of the line. Exit if the read fails.
310         if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
311 
312         // Drop the newline character read by fgets. We do not need to check
313         // for a zero-length string because we know that we at least read the
314         // '/' character.
315         lib_name[strlen(lib_name) - 1] = '\0';
316       } else {
317         // No library name found, just record the raw address range.
318         snprintf(lib_name, kLibNameLen,
319                  "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
320       }
321       LOG(isolate, SharedLibraryEvent(lib_name, start, end));
322     } else {
323       // Entry not describing executable data. Skip to end of line to set up
324       // reading the next entry.
325       do {
326         c = getc(fp);
327       } while ((c != EOF) && (c != '\n'));
328       if (c == EOF) break;
329     }
330   }
331   free(lib_name);
332   fclose(fp);
333 }
334 
335 
336 static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
337 
338 
SignalCodeMovingGC()339 void OS::SignalCodeMovingGC() {
340   // Support for ll_prof.py.
341   //
342   // The Linux profiler built into the kernel logs all mmap's with
343   // PROT_EXEC so that analysis tools can properly attribute ticks. We
344   // do a mmap with a name known by ll_prof.py and immediately munmap
345   // it. This injects a GC marker into the stream of events generated
346   // by the kernel and allows us to synchronize V8 code log and the
347   // kernel log.
348   int size = sysconf(_SC_PAGESIZE);
349   FILE* f = fopen(kGCFakeMmap, "w+");
350   void* addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE,
351                     fileno(f), 0);
352   ASSERT(addr != MAP_FAILED);
353   OS::Free(addr, size);
354   fclose(f);
355 }
356 
357 
StackWalk(Vector<OS::StackFrame> frames)358 int OS::StackWalk(Vector<OS::StackFrame> frames) {
359   // backtrace is a glibc extension.
360   int frames_size = frames.length();
361   ScopedVector<void*> addresses(frames_size);
362 
363   int frames_count = backtrace(addresses.start(), frames_size);
364 
365   char** symbols = backtrace_symbols(addresses.start(), frames_count);
366   if (symbols == NULL) {
367     return kStackWalkError;
368   }
369 
370   for (int i = 0; i < frames_count; i++) {
371     frames[i].address = addresses[i];
372     // Format a text representation of the frame based on the information
373     // available.
374     SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
375              "%s",
376              symbols[i]);
377     // Make sure line termination is in place.
378     frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
379   }
380 
381   free(symbols);
382 
383   return frames_count;
384 }
385 
386 
387 // Constants used for mmap.
388 static const int kMmapFd = -1;
389 static const int kMmapFdOffset = 0;
390 
VirtualMemory()391 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
392 
VirtualMemory(size_t size)393 VirtualMemory::VirtualMemory(size_t size) {
394   address_ = ReserveRegion(size);
395   size_ = size;
396 }
397 
398 
VirtualMemory(size_t size,size_t alignment)399 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
400     : address_(NULL), size_(0) {
401   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
402   size_t request_size = RoundUp(size + alignment,
403                                 static_cast<intptr_t>(OS::AllocateAlignment()));
404   void* reservation = mmap(GetRandomMmapAddr(),
405                            request_size,
406                            PROT_NONE,
407                            MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
408                            kMmapFd,
409                            kMmapFdOffset);
410   if (reservation == MAP_FAILED) return;
411 
412   Address base = static_cast<Address>(reservation);
413   Address aligned_base = RoundUp(base, alignment);
414   ASSERT_LE(base, aligned_base);
415 
416   // Unmap extra memory reserved before and after the desired block.
417   if (aligned_base != base) {
418     size_t prefix_size = static_cast<size_t>(aligned_base - base);
419     OS::Free(base, prefix_size);
420     request_size -= prefix_size;
421   }
422 
423   size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
424   ASSERT_LE(aligned_size, request_size);
425 
426   if (aligned_size != request_size) {
427     size_t suffix_size = request_size - aligned_size;
428     OS::Free(aligned_base + aligned_size, suffix_size);
429     request_size -= suffix_size;
430   }
431 
432   ASSERT(aligned_size == request_size);
433 
434   address_ = static_cast<void*>(aligned_base);
435   size_ = aligned_size;
436 }
437 
438 
~VirtualMemory()439 VirtualMemory::~VirtualMemory() {
440   if (IsReserved()) {
441     bool result = ReleaseRegion(address(), size());
442     ASSERT(result);
443     USE(result);
444   }
445 }
446 
447 
IsReserved()448 bool VirtualMemory::IsReserved() {
449   return address_ != NULL;
450 }
451 
452 
Reset()453 void VirtualMemory::Reset() {
454   address_ = NULL;
455   size_ = 0;
456 }
457 
458 
Commit(void * address,size_t size,bool is_executable)459 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
460   return CommitRegion(address, size, is_executable);
461 }
462 
463 
Uncommit(void * address,size_t size)464 bool VirtualMemory::Uncommit(void* address, size_t size) {
465   return UncommitRegion(address, size);
466 }
467 
468 
Guard(void * address)469 bool VirtualMemory::Guard(void* address) {
470   OS::Guard(address, OS::CommitPageSize());
471   return true;
472 }
473 
474 
ReserveRegion(size_t size)475 void* VirtualMemory::ReserveRegion(size_t size) {
476   void* result = mmap(GetRandomMmapAddr(),
477                       size,
478                       PROT_NONE,
479                       MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
480                       kMmapFd,
481                       kMmapFdOffset);
482 
483   if (result == MAP_FAILED) return NULL;
484 
485   return result;
486 }
487 
488 
CommitRegion(void * base,size_t size,bool is_executable)489 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
490   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
491   if (MAP_FAILED == mmap(base,
492                          size,
493                          prot,
494                          MAP_PRIVATE | MAP_ANON | MAP_FIXED,
495                          kMmapFd,
496                          kMmapFdOffset)) {
497     return false;
498   }
499 
500   UpdateAllocatedSpaceLimits(base, size);
501   return true;
502 }
503 
504 
UncommitRegion(void * base,size_t size)505 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
506   return mmap(base,
507               size,
508               PROT_NONE,
509               MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
510               kMmapFd,
511               kMmapFdOffset) != MAP_FAILED;
512 }
513 
514 
ReleaseRegion(void * base,size_t size)515 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
516   return munmap(base, size) == 0;
517 }
518 
519 
520 class Thread::PlatformData : public Malloced {
521  public:
PlatformData()522   PlatformData() : thread_(kNoThread) {}
523 
524   pthread_t thread_;  // Thread handle for pthread.
525 };
526 
Thread(const Options & options)527 Thread::Thread(const Options& options)
528     : data_(new PlatformData()),
529       stack_size_(options.stack_size()) {
530   set_name(options.name());
531 }
532 
533 
~Thread()534 Thread::~Thread() {
535   delete data_;
536 }
537 
538 
ThreadEntry(void * arg)539 static void* ThreadEntry(void* arg) {
540   Thread* thread = reinterpret_cast<Thread*>(arg);
541   // This is also initialized by the first argument to pthread_create() but we
542   // don't know which thread will run first (the original thread or the new
543   // one) so we initialize it here too.
544 #ifdef PR_SET_NAME
545   prctl(PR_SET_NAME,
546         reinterpret_cast<unsigned long>(thread->name()),  // NOLINT
547         0, 0, 0);
548 #endif
549   thread->data()->thread_ = pthread_self();
550   ASSERT(thread->data()->thread_ != kNoThread);
551   thread->Run();
552   return NULL;
553 }
554 
555 
set_name(const char * name)556 void Thread::set_name(const char* name) {
557   strncpy(name_, name, sizeof(name_));
558   name_[sizeof(name_) - 1] = '\0';
559 }
560 
561 
Start()562 void Thread::Start() {
563   pthread_attr_t* attr_ptr = NULL;
564   pthread_attr_t attr;
565   if (stack_size_ > 0) {
566     pthread_attr_init(&attr);
567     pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
568     attr_ptr = &attr;
569   }
570   pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
571   ASSERT(data_->thread_ != kNoThread);
572 }
573 
574 
Join()575 void Thread::Join() {
576   pthread_join(data_->thread_, NULL);
577 }
578 
579 
CreateThreadLocalKey()580 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
581   pthread_key_t key;
582   int result = pthread_key_create(&key, NULL);
583   USE(result);
584   ASSERT(result == 0);
585   return static_cast<LocalStorageKey>(key);
586 }
587 
588 
DeleteThreadLocalKey(LocalStorageKey key)589 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
590   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
591   int result = pthread_key_delete(pthread_key);
592   USE(result);
593   ASSERT(result == 0);
594 }
595 
596 
GetThreadLocal(LocalStorageKey key)597 void* Thread::GetThreadLocal(LocalStorageKey key) {
598   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
599   return pthread_getspecific(pthread_key);
600 }
601 
602 
SetThreadLocal(LocalStorageKey key,void * value)603 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
604   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
605   pthread_setspecific(pthread_key, value);
606 }
607 
608 
YieldCPU()609 void Thread::YieldCPU() {
610   sched_yield();
611 }
612 
613 
614 class OpenBSDMutex : public Mutex {
615  public:
OpenBSDMutex()616   OpenBSDMutex() {
617     pthread_mutexattr_t attrs;
618     int result = pthread_mutexattr_init(&attrs);
619     ASSERT(result == 0);
620     result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
621     ASSERT(result == 0);
622     result = pthread_mutex_init(&mutex_, &attrs);
623     ASSERT(result == 0);
624     USE(result);
625   }
626 
~OpenBSDMutex()627   virtual ~OpenBSDMutex() { pthread_mutex_destroy(&mutex_); }
628 
Lock()629   virtual int Lock() {
630     int result = pthread_mutex_lock(&mutex_);
631     return result;
632   }
633 
Unlock()634   virtual int Unlock() {
635     int result = pthread_mutex_unlock(&mutex_);
636     return result;
637   }
638 
TryLock()639   virtual bool TryLock() {
640     int result = pthread_mutex_trylock(&mutex_);
641     // Return false if the lock is busy and locking failed.
642     if (result == EBUSY) {
643       return false;
644     }
645     ASSERT(result == 0);  // Verify no other errors.
646     return true;
647   }
648 
649  private:
650   pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
651 };
652 
653 
CreateMutex()654 Mutex* OS::CreateMutex() {
655   return new OpenBSDMutex();
656 }
657 
658 
659 class OpenBSDSemaphore : public Semaphore {
660  public:
OpenBSDSemaphore(int count)661   explicit OpenBSDSemaphore(int count) {  sem_init(&sem_, 0, count); }
~OpenBSDSemaphore()662   virtual ~OpenBSDSemaphore() { sem_destroy(&sem_); }
663 
664   virtual void Wait();
665   virtual bool Wait(int timeout);
Signal()666   virtual void Signal() { sem_post(&sem_); }
667  private:
668   sem_t sem_;
669 };
670 
671 
Wait()672 void OpenBSDSemaphore::Wait() {
673   while (true) {
674     int result = sem_wait(&sem_);
675     if (result == 0) return;  // Successfully got semaphore.
676     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
677   }
678 }
679 
680 
681 #ifndef TIMEVAL_TO_TIMESPEC
682 #define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
683     (ts)->tv_sec = (tv)->tv_sec;                                    \
684     (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
685 } while (false)
686 #endif
687 
688 
Wait(int timeout)689 bool OpenBSDSemaphore::Wait(int timeout) {
690   const long kOneSecondMicros = 1000000;  // NOLINT
691 
692   // Split timeout into second and nanosecond parts.
693   struct timeval delta;
694   delta.tv_usec = timeout % kOneSecondMicros;
695   delta.tv_sec = timeout / kOneSecondMicros;
696 
697   struct timeval current_time;
698   // Get the current time.
699   if (gettimeofday(&current_time, NULL) == -1) {
700     return false;
701   }
702 
703   // Calculate time for end of timeout.
704   struct timeval end_time;
705   timeradd(&current_time, &delta, &end_time);
706 
707   struct timespec ts;
708   TIMEVAL_TO_TIMESPEC(&end_time, &ts);
709 
710   int to = ts.tv_sec;
711 
712   while (true) {
713     int result = sem_trywait(&sem_);
714     if (result == 0) return true;  // Successfully got semaphore.
715     if (!to) return false;  // Timeout.
716     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
717     usleep(ts.tv_nsec / 1000);
718     to--;
719   }
720 }
721 
CreateSemaphore(int count)722 Semaphore* OS::CreateSemaphore(int count) {
723   return new OpenBSDSemaphore(count);
724 }
725 
726 
GetThreadID()727 static pthread_t GetThreadID() {
728   return pthread_self();
729 }
730 
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)731 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
732   USE(info);
733   if (signal != SIGPROF) return;
734   Isolate* isolate = Isolate::UncheckedCurrent();
735   if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
736     // We require a fully initialized and entered isolate.
737     return;
738   }
739   if (v8::Locker::IsActive() &&
740       !isolate->thread_manager()->IsLockedByCurrentThread()) {
741     return;
742   }
743 
744   Sampler* sampler = isolate->logger()->sampler();
745   if (sampler == NULL || !sampler->IsActive()) return;
746 
747   TickSample sample_obj;
748   TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
749   if (sample == NULL) sample = &sample_obj;
750 
751   // Extracting the sample from the context is extremely machine dependent.
752   sample->state = isolate->current_vm_state();
753   ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
754 #ifdef __NetBSD__
755   mcontext_t& mcontext = ucontext->uc_mcontext;
756 #if V8_HOST_ARCH_IA32
757   sample->pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_EIP]);
758   sample->sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_ESP]);
759   sample->fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_EBP]);
760 #elif V8_HOST_ARCH_X64
761   sample->pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_RIP]);
762   sample->sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RSP]);
763   sample->fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RBP]);
764 #endif  // V8_HOST_ARCH
765 #else  // OpenBSD
766 #if V8_HOST_ARCH_IA32
767   sample->pc = reinterpret_cast<Address>(ucontext->sc_eip);
768   sample->sp = reinterpret_cast<Address>(ucontext->sc_esp);
769   sample->fp = reinterpret_cast<Address>(ucontext->sc_ebp);
770 #elif V8_HOST_ARCH_X64
771   sample->pc = reinterpret_cast<Address>(ucontext->sc_rip);
772   sample->sp = reinterpret_cast<Address>(ucontext->sc_rsp);
773   sample->fp = reinterpret_cast<Address>(ucontext->sc_rbp);
774 #endif  // V8_HOST_ARCH
775 #endif  // __NetBSD__
776   sampler->SampleStack(sample);
777   sampler->Tick(sample);
778 }
779 
780 
781 class Sampler::PlatformData : public Malloced {
782  public:
PlatformData()783   PlatformData() : vm_tid_(GetThreadID()) {}
784 
vm_tid() const785   pthread_t vm_tid() const { return vm_tid_; }
786 
787  private:
788   pthread_t vm_tid_;
789 };
790 
791 
792 class SignalSender : public Thread {
793  public:
794   enum SleepInterval {
795     HALF_INTERVAL,
796     FULL_INTERVAL
797   };
798 
799   static const int kSignalSenderStackSize = 64 * KB;
800 
SignalSender(int interval)801   explicit SignalSender(int interval)
802       : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
803         vm_tgid_(getpid()),
804         interval_(interval) {}
805 
InstallSignalHandler()806   static void InstallSignalHandler() {
807     struct sigaction sa;
808     sa.sa_sigaction = ProfilerSignalHandler;
809     sigemptyset(&sa.sa_mask);
810     sa.sa_flags = SA_RESTART | SA_SIGINFO;
811     signal_handler_installed_ =
812         (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
813   }
814 
RestoreSignalHandler()815   static void RestoreSignalHandler() {
816     if (signal_handler_installed_) {
817       sigaction(SIGPROF, &old_signal_handler_, 0);
818       signal_handler_installed_ = false;
819     }
820   }
821 
AddActiveSampler(Sampler * sampler)822   static void AddActiveSampler(Sampler* sampler) {
823     ScopedLock lock(mutex_.Pointer());
824     SamplerRegistry::AddActiveSampler(sampler);
825     if (instance_ == NULL) {
826       // Start a thread that will send SIGPROF signal to VM threads,
827       // when CPU profiling will be enabled.
828       instance_ = new SignalSender(sampler->interval());
829       instance_->Start();
830     } else {
831       ASSERT(instance_->interval_ == sampler->interval());
832     }
833   }
834 
RemoveActiveSampler(Sampler * sampler)835   static void RemoveActiveSampler(Sampler* sampler) {
836     ScopedLock lock(mutex_.Pointer());
837     SamplerRegistry::RemoveActiveSampler(sampler);
838     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
839       RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
840       delete instance_;
841       instance_ = NULL;
842       RestoreSignalHandler();
843     }
844   }
845 
846   // Implement Thread::Run().
Run()847   virtual void Run() {
848     SamplerRegistry::State state;
849     while ((state = SamplerRegistry::GetState()) !=
850            SamplerRegistry::HAS_NO_SAMPLERS) {
851       bool cpu_profiling_enabled =
852           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
853       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
854       if (cpu_profiling_enabled && !signal_handler_installed_) {
855         InstallSignalHandler();
856       } else if (!cpu_profiling_enabled && signal_handler_installed_) {
857         RestoreSignalHandler();
858       }
859       // When CPU profiling is enabled both JavaScript and C++ code is
860       // profiled. We must not suspend.
861       if (!cpu_profiling_enabled) {
862         if (rate_limiter_.SuspendIfNecessary()) continue;
863       }
864       if (cpu_profiling_enabled && runtime_profiler_enabled) {
865         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
866           return;
867         }
868         Sleep(HALF_INTERVAL);
869         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
870           return;
871         }
872         Sleep(HALF_INTERVAL);
873       } else {
874         if (cpu_profiling_enabled) {
875           if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
876                                                       this)) {
877             return;
878           }
879         }
880         if (runtime_profiler_enabled) {
881           if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
882                                                       NULL)) {
883             return;
884           }
885         }
886         Sleep(FULL_INTERVAL);
887       }
888     }
889   }
890 
DoCpuProfile(Sampler * sampler,void * raw_sender)891   static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
892     if (!sampler->IsProfiling()) return;
893     SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
894     sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
895   }
896 
DoRuntimeProfile(Sampler * sampler,void * ignored)897   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
898     if (!sampler->isolate()->IsInitialized()) return;
899     sampler->isolate()->runtime_profiler()->NotifyTick();
900   }
901 
SendProfilingSignal(pthread_t tid)902   void SendProfilingSignal(pthread_t tid) {
903     if (!signal_handler_installed_) return;
904     pthread_kill(tid, SIGPROF);
905   }
906 
Sleep(SleepInterval full_or_half)907   void Sleep(SleepInterval full_or_half) {
908     // Convert ms to us and subtract 100 us to compensate delays
909     // occuring during signal delivery.
910     useconds_t interval = interval_ * 1000 - 100;
911     if (full_or_half == HALF_INTERVAL) interval /= 2;
912     int result = usleep(interval);
913 #ifdef DEBUG
914     if (result != 0 && errno != EINTR) {
915       fprintf(stderr,
916               "SignalSender usleep error; interval = %u, errno = %d\n",
917               interval,
918               errno);
919       ASSERT(result == 0 || errno == EINTR);
920     }
921 #endif
922     USE(result);
923   }
924 
925   const int vm_tgid_;
926   const int interval_;
927   RuntimeProfilerRateLimiter rate_limiter_;
928 
929   // Protects the process wide state below.
930   static LazyMutex mutex_;
931   static SignalSender* instance_;
932   static bool signal_handler_installed_;
933   static struct sigaction old_signal_handler_;
934 
935  private:
936   DISALLOW_COPY_AND_ASSIGN(SignalSender);
937 };
938 
939 
940 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
941 SignalSender* SignalSender::instance_ = NULL;
942 struct sigaction SignalSender::old_signal_handler_;
943 bool SignalSender::signal_handler_installed_ = false;
944 
945 
Sampler(Isolate * isolate,int interval)946 Sampler::Sampler(Isolate* isolate, int interval)
947     : isolate_(isolate),
948       interval_(interval),
949       profiling_(false),
950       active_(false),
951       samples_taken_(0) {
952   data_ = new PlatformData;
953 }
954 
955 
~Sampler()956 Sampler::~Sampler() {
957   ASSERT(!IsActive());
958   delete data_;
959 }
960 
961 
Start()962 void Sampler::Start() {
963   ASSERT(!IsActive());
964   SetActive(true);
965   SignalSender::AddActiveSampler(this);
966 }
967 
968 
Stop()969 void Sampler::Stop() {
970   ASSERT(IsActive());
971   SignalSender::RemoveActiveSampler(this);
972   SetActive(false);
973 }
974 
975 
976 } }  // namespace v8::internal
977