1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for OpenBSD and NetBSD goes here. For the POSIX
29 // comaptible parts the implementation is in platform-posix.cc.
30
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/time.h>
35 #include <sys/resource.h>
36 #include <sys/syscall.h>
37 #include <sys/types.h>
38 #include <stdlib.h>
39
40 #include <sys/types.h> // mmap & munmap
41 #include <sys/mman.h> // mmap & munmap
42 #include <sys/stat.h> // open
43 #include <fcntl.h> // open
44 #include <unistd.h> // sysconf
45 #include <execinfo.h> // backtrace, backtrace_symbols
46 #include <strings.h> // index
47 #include <errno.h>
48 #include <stdarg.h>
49
50 #undef MAP_TYPE
51
52 #include "v8.h"
53
54 #include "platform-posix.h"
55 #include "platform.h"
56 #include "v8threads.h"
57 #include "vm-state-inl.h"
58
59
60 namespace v8 {
61 namespace internal {
62
63 // 0 is never a valid thread id on Linux and OpenBSD since tids and pids share a
64 // name space and pid 0 is reserved (see man 2 kill).
65 static const pthread_t kNoThread = (pthread_t) 0;
66
67
ceiling(double x)68 double ceiling(double x) {
69 return ceil(x);
70 }
71
72
73 static Mutex* limit_mutex = NULL;
74
75
GetRandomMmapAddr()76 static void* GetRandomMmapAddr() {
77 Isolate* isolate = Isolate::UncheckedCurrent();
78 // Note that the current isolate isn't set up in a call path via
79 // CpuFeatures::Probe. We don't care about randomization in this case because
80 // the code page is immediately freed.
81 if (isolate != NULL) {
82 #ifdef V8_TARGET_ARCH_X64
83 uint64_t rnd1 = V8::RandomPrivate(isolate);
84 uint64_t rnd2 = V8::RandomPrivate(isolate);
85 uint64_t raw_addr = (rnd1 << 32) ^ rnd2;
86 // Currently available CPUs have 48 bits of virtual addressing. Truncate
87 // the hint address to 46 bits to give the kernel a fighting chance of
88 // fulfilling our placement request.
89 raw_addr &= V8_UINT64_C(0x3ffffffff000);
90 #else
91 uint32_t raw_addr = V8::RandomPrivate(isolate);
92 // The range 0x20000000 - 0x60000000 is relatively unpopulated across a
93 // variety of ASLR modes (PAE kernel, NX compat mode, etc).
94 raw_addr &= 0x3ffff000;
95 raw_addr += 0x20000000;
96 #endif
97 return reinterpret_cast<void*>(raw_addr);
98 }
99 return NULL;
100 }
101
102
SetUp()103 void OS::SetUp() {
104 // Seed the random number generator. We preserve microsecond resolution.
105 uint64_t seed = Ticks() ^ (getpid() << 16);
106 srandom(static_cast<unsigned int>(seed));
107 limit_mutex = CreateMutex();
108 }
109
110
PostSetUp()111 void OS::PostSetUp() {
112 // Math functions depend on CPU features therefore they are initialized after
113 // CPU.
114 MathSetup();
115 }
116
117
CpuFeaturesImpliedByPlatform()118 uint64_t OS::CpuFeaturesImpliedByPlatform() {
119 return 0;
120 }
121
122
ActivationFrameAlignment()123 int OS::ActivationFrameAlignment() {
124 // With gcc 4.4 the tree vectorization optimizer can generate code
125 // that requires 16 byte alignment such as movdqa on x86.
126 return 16;
127 }
128
129
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)130 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
131 __asm__ __volatile__("" : : : "memory");
132 // An x86 store acts as a release barrier.
133 *ptr = value;
134 }
135
136
LocalTimezone(double time)137 const char* OS::LocalTimezone(double time) {
138 if (isnan(time)) return "";
139 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
140 struct tm* t = localtime(&tv);
141 if (NULL == t) return "";
142 return t->tm_zone;
143 }
144
145
LocalTimeOffset()146 double OS::LocalTimeOffset() {
147 time_t tv = time(NULL);
148 struct tm* t = localtime(&tv);
149 // tm_gmtoff includes any daylight savings offset, so subtract it.
150 return static_cast<double>(t->tm_gmtoff * msPerSecond -
151 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
152 }
153
154
155 // We keep the lowest and highest addresses mapped as a quick way of
156 // determining that pointers are outside the heap (used mostly in assertions
157 // and verification). The estimate is conservative, i.e., not all addresses in
158 // 'allocated' space are actually allocated to our heap. The range is
159 // [lowest, highest), inclusive on the low and and exclusive on the high end.
160 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
161 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
162
163
UpdateAllocatedSpaceLimits(void * address,int size)164 static void UpdateAllocatedSpaceLimits(void* address, int size) {
165 ASSERT(limit_mutex != NULL);
166 ScopedLock lock(limit_mutex);
167
168 lowest_ever_allocated = Min(lowest_ever_allocated, address);
169 highest_ever_allocated =
170 Max(highest_ever_allocated,
171 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
172 }
173
174
IsOutsideAllocatedSpace(void * address)175 bool OS::IsOutsideAllocatedSpace(void* address) {
176 return address < lowest_ever_allocated || address >= highest_ever_allocated;
177 }
178
179
AllocateAlignment()180 size_t OS::AllocateAlignment() {
181 return sysconf(_SC_PAGESIZE);
182 }
183
184
Allocate(const size_t requested,size_t * allocated,bool is_executable)185 void* OS::Allocate(const size_t requested,
186 size_t* allocated,
187 bool is_executable) {
188 const size_t msize = RoundUp(requested, AllocateAlignment());
189 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
190 void* addr = GetRandomMmapAddr();
191 void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
192 if (mbase == MAP_FAILED) {
193 LOG(i::Isolate::Current(),
194 StringEvent("OS::Allocate", "mmap failed"));
195 return NULL;
196 }
197 *allocated = msize;
198 UpdateAllocatedSpaceLimits(mbase, msize);
199 return mbase;
200 }
201
202
Free(void * address,const size_t size)203 void OS::Free(void* address, const size_t size) {
204 // TODO(1240712): munmap has a return value which is ignored here.
205 int result = munmap(address, size);
206 USE(result);
207 ASSERT(result == 0);
208 }
209
210
Sleep(int milliseconds)211 void OS::Sleep(int milliseconds) {
212 unsigned int ms = static_cast<unsigned int>(milliseconds);
213 usleep(1000 * ms);
214 }
215
216
Abort()217 void OS::Abort() {
218 // Redirect to std abort to signal abnormal program termination.
219 abort();
220 }
221
222
DebugBreak()223 void OS::DebugBreak() {
224 asm("int $3");
225 }
226
227
228 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
229 public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)230 PosixMemoryMappedFile(FILE* file, void* memory, int size)
231 : file_(file), memory_(memory), size_(size) { }
232 virtual ~PosixMemoryMappedFile();
memory()233 virtual void* memory() { return memory_; }
size()234 virtual int size() { return size_; }
235 private:
236 FILE* file_;
237 void* memory_;
238 int size_;
239 };
240
241
open(const char * name)242 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
243 FILE* file = fopen(name, "r+");
244 if (file == NULL) return NULL;
245
246 fseek(file, 0, SEEK_END);
247 int size = ftell(file);
248
249 void* memory =
250 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
251 return new PosixMemoryMappedFile(file, memory, size);
252 }
253
254
create(const char * name,int size,void * initial)255 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
256 void* initial) {
257 FILE* file = fopen(name, "w+");
258 if (file == NULL) return NULL;
259 int result = fwrite(initial, size, 1, file);
260 if (result < 1) {
261 fclose(file);
262 return NULL;
263 }
264 void* memory =
265 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
266 return new PosixMemoryMappedFile(file, memory, size);
267 }
268
269
~PosixMemoryMappedFile()270 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
271 if (memory_) OS::Free(memory_, size_);
272 fclose(file_);
273 }
274
275
LogSharedLibraryAddresses()276 void OS::LogSharedLibraryAddresses() {
277 // This function assumes that the layout of the file is as follows:
278 // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
279 // If we encounter an unexpected situation we abort scanning further entries.
280 FILE* fp = fopen("/proc/self/maps", "r");
281 if (fp == NULL) return;
282
283 // Allocate enough room to be able to store a full file name.
284 const int kLibNameLen = FILENAME_MAX + 1;
285 char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
286
287 i::Isolate* isolate = ISOLATE;
288 // This loop will terminate once the scanning hits an EOF.
289 while (true) {
290 uintptr_t start, end;
291 char attr_r, attr_w, attr_x, attr_p;
292 // Parse the addresses and permission bits at the beginning of the line.
293 if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
294 if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
295
296 int c;
297 if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
298 // Found a read-only executable entry. Skip characters until we reach
299 // the beginning of the filename or the end of the line.
300 do {
301 c = getc(fp);
302 } while ((c != EOF) && (c != '\n') && (c != '/'));
303 if (c == EOF) break; // EOF: Was unexpected, just exit.
304
305 // Process the filename if found.
306 if (c == '/') {
307 ungetc(c, fp); // Push the '/' back into the stream to be read below.
308
309 // Read to the end of the line. Exit if the read fails.
310 if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
311
312 // Drop the newline character read by fgets. We do not need to check
313 // for a zero-length string because we know that we at least read the
314 // '/' character.
315 lib_name[strlen(lib_name) - 1] = '\0';
316 } else {
317 // No library name found, just record the raw address range.
318 snprintf(lib_name, kLibNameLen,
319 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
320 }
321 LOG(isolate, SharedLibraryEvent(lib_name, start, end));
322 } else {
323 // Entry not describing executable data. Skip to end of line to set up
324 // reading the next entry.
325 do {
326 c = getc(fp);
327 } while ((c != EOF) && (c != '\n'));
328 if (c == EOF) break;
329 }
330 }
331 free(lib_name);
332 fclose(fp);
333 }
334
335
336 static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
337
338
SignalCodeMovingGC()339 void OS::SignalCodeMovingGC() {
340 // Support for ll_prof.py.
341 //
342 // The Linux profiler built into the kernel logs all mmap's with
343 // PROT_EXEC so that analysis tools can properly attribute ticks. We
344 // do a mmap with a name known by ll_prof.py and immediately munmap
345 // it. This injects a GC marker into the stream of events generated
346 // by the kernel and allows us to synchronize V8 code log and the
347 // kernel log.
348 int size = sysconf(_SC_PAGESIZE);
349 FILE* f = fopen(kGCFakeMmap, "w+");
350 void* addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE,
351 fileno(f), 0);
352 ASSERT(addr != MAP_FAILED);
353 OS::Free(addr, size);
354 fclose(f);
355 }
356
357
StackWalk(Vector<OS::StackFrame> frames)358 int OS::StackWalk(Vector<OS::StackFrame> frames) {
359 // backtrace is a glibc extension.
360 int frames_size = frames.length();
361 ScopedVector<void*> addresses(frames_size);
362
363 int frames_count = backtrace(addresses.start(), frames_size);
364
365 char** symbols = backtrace_symbols(addresses.start(), frames_count);
366 if (symbols == NULL) {
367 return kStackWalkError;
368 }
369
370 for (int i = 0; i < frames_count; i++) {
371 frames[i].address = addresses[i];
372 // Format a text representation of the frame based on the information
373 // available.
374 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
375 "%s",
376 symbols[i]);
377 // Make sure line termination is in place.
378 frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
379 }
380
381 free(symbols);
382
383 return frames_count;
384 }
385
386
387 // Constants used for mmap.
388 static const int kMmapFd = -1;
389 static const int kMmapFdOffset = 0;
390
VirtualMemory()391 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
392
VirtualMemory(size_t size)393 VirtualMemory::VirtualMemory(size_t size) {
394 address_ = ReserveRegion(size);
395 size_ = size;
396 }
397
398
VirtualMemory(size_t size,size_t alignment)399 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
400 : address_(NULL), size_(0) {
401 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
402 size_t request_size = RoundUp(size + alignment,
403 static_cast<intptr_t>(OS::AllocateAlignment()));
404 void* reservation = mmap(GetRandomMmapAddr(),
405 request_size,
406 PROT_NONE,
407 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
408 kMmapFd,
409 kMmapFdOffset);
410 if (reservation == MAP_FAILED) return;
411
412 Address base = static_cast<Address>(reservation);
413 Address aligned_base = RoundUp(base, alignment);
414 ASSERT_LE(base, aligned_base);
415
416 // Unmap extra memory reserved before and after the desired block.
417 if (aligned_base != base) {
418 size_t prefix_size = static_cast<size_t>(aligned_base - base);
419 OS::Free(base, prefix_size);
420 request_size -= prefix_size;
421 }
422
423 size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
424 ASSERT_LE(aligned_size, request_size);
425
426 if (aligned_size != request_size) {
427 size_t suffix_size = request_size - aligned_size;
428 OS::Free(aligned_base + aligned_size, suffix_size);
429 request_size -= suffix_size;
430 }
431
432 ASSERT(aligned_size == request_size);
433
434 address_ = static_cast<void*>(aligned_base);
435 size_ = aligned_size;
436 }
437
438
~VirtualMemory()439 VirtualMemory::~VirtualMemory() {
440 if (IsReserved()) {
441 bool result = ReleaseRegion(address(), size());
442 ASSERT(result);
443 USE(result);
444 }
445 }
446
447
IsReserved()448 bool VirtualMemory::IsReserved() {
449 return address_ != NULL;
450 }
451
452
Reset()453 void VirtualMemory::Reset() {
454 address_ = NULL;
455 size_ = 0;
456 }
457
458
Commit(void * address,size_t size,bool is_executable)459 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
460 return CommitRegion(address, size, is_executable);
461 }
462
463
Uncommit(void * address,size_t size)464 bool VirtualMemory::Uncommit(void* address, size_t size) {
465 return UncommitRegion(address, size);
466 }
467
468
Guard(void * address)469 bool VirtualMemory::Guard(void* address) {
470 OS::Guard(address, OS::CommitPageSize());
471 return true;
472 }
473
474
ReserveRegion(size_t size)475 void* VirtualMemory::ReserveRegion(size_t size) {
476 void* result = mmap(GetRandomMmapAddr(),
477 size,
478 PROT_NONE,
479 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
480 kMmapFd,
481 kMmapFdOffset);
482
483 if (result == MAP_FAILED) return NULL;
484
485 return result;
486 }
487
488
CommitRegion(void * base,size_t size,bool is_executable)489 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
490 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
491 if (MAP_FAILED == mmap(base,
492 size,
493 prot,
494 MAP_PRIVATE | MAP_ANON | MAP_FIXED,
495 kMmapFd,
496 kMmapFdOffset)) {
497 return false;
498 }
499
500 UpdateAllocatedSpaceLimits(base, size);
501 return true;
502 }
503
504
UncommitRegion(void * base,size_t size)505 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
506 return mmap(base,
507 size,
508 PROT_NONE,
509 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
510 kMmapFd,
511 kMmapFdOffset) != MAP_FAILED;
512 }
513
514
ReleaseRegion(void * base,size_t size)515 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
516 return munmap(base, size) == 0;
517 }
518
519
520 class Thread::PlatformData : public Malloced {
521 public:
PlatformData()522 PlatformData() : thread_(kNoThread) {}
523
524 pthread_t thread_; // Thread handle for pthread.
525 };
526
Thread(const Options & options)527 Thread::Thread(const Options& options)
528 : data_(new PlatformData()),
529 stack_size_(options.stack_size()) {
530 set_name(options.name());
531 }
532
533
~Thread()534 Thread::~Thread() {
535 delete data_;
536 }
537
538
ThreadEntry(void * arg)539 static void* ThreadEntry(void* arg) {
540 Thread* thread = reinterpret_cast<Thread*>(arg);
541 // This is also initialized by the first argument to pthread_create() but we
542 // don't know which thread will run first (the original thread or the new
543 // one) so we initialize it here too.
544 #ifdef PR_SET_NAME
545 prctl(PR_SET_NAME,
546 reinterpret_cast<unsigned long>(thread->name()), // NOLINT
547 0, 0, 0);
548 #endif
549 thread->data()->thread_ = pthread_self();
550 ASSERT(thread->data()->thread_ != kNoThread);
551 thread->Run();
552 return NULL;
553 }
554
555
set_name(const char * name)556 void Thread::set_name(const char* name) {
557 strncpy(name_, name, sizeof(name_));
558 name_[sizeof(name_) - 1] = '\0';
559 }
560
561
Start()562 void Thread::Start() {
563 pthread_attr_t* attr_ptr = NULL;
564 pthread_attr_t attr;
565 if (stack_size_ > 0) {
566 pthread_attr_init(&attr);
567 pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
568 attr_ptr = &attr;
569 }
570 pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
571 ASSERT(data_->thread_ != kNoThread);
572 }
573
574
Join()575 void Thread::Join() {
576 pthread_join(data_->thread_, NULL);
577 }
578
579
CreateThreadLocalKey()580 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
581 pthread_key_t key;
582 int result = pthread_key_create(&key, NULL);
583 USE(result);
584 ASSERT(result == 0);
585 return static_cast<LocalStorageKey>(key);
586 }
587
588
DeleteThreadLocalKey(LocalStorageKey key)589 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
590 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
591 int result = pthread_key_delete(pthread_key);
592 USE(result);
593 ASSERT(result == 0);
594 }
595
596
GetThreadLocal(LocalStorageKey key)597 void* Thread::GetThreadLocal(LocalStorageKey key) {
598 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
599 return pthread_getspecific(pthread_key);
600 }
601
602
SetThreadLocal(LocalStorageKey key,void * value)603 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
604 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
605 pthread_setspecific(pthread_key, value);
606 }
607
608
YieldCPU()609 void Thread::YieldCPU() {
610 sched_yield();
611 }
612
613
614 class OpenBSDMutex : public Mutex {
615 public:
OpenBSDMutex()616 OpenBSDMutex() {
617 pthread_mutexattr_t attrs;
618 int result = pthread_mutexattr_init(&attrs);
619 ASSERT(result == 0);
620 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
621 ASSERT(result == 0);
622 result = pthread_mutex_init(&mutex_, &attrs);
623 ASSERT(result == 0);
624 USE(result);
625 }
626
~OpenBSDMutex()627 virtual ~OpenBSDMutex() { pthread_mutex_destroy(&mutex_); }
628
Lock()629 virtual int Lock() {
630 int result = pthread_mutex_lock(&mutex_);
631 return result;
632 }
633
Unlock()634 virtual int Unlock() {
635 int result = pthread_mutex_unlock(&mutex_);
636 return result;
637 }
638
TryLock()639 virtual bool TryLock() {
640 int result = pthread_mutex_trylock(&mutex_);
641 // Return false if the lock is busy and locking failed.
642 if (result == EBUSY) {
643 return false;
644 }
645 ASSERT(result == 0); // Verify no other errors.
646 return true;
647 }
648
649 private:
650 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
651 };
652
653
CreateMutex()654 Mutex* OS::CreateMutex() {
655 return new OpenBSDMutex();
656 }
657
658
659 class OpenBSDSemaphore : public Semaphore {
660 public:
OpenBSDSemaphore(int count)661 explicit OpenBSDSemaphore(int count) { sem_init(&sem_, 0, count); }
~OpenBSDSemaphore()662 virtual ~OpenBSDSemaphore() { sem_destroy(&sem_); }
663
664 virtual void Wait();
665 virtual bool Wait(int timeout);
Signal()666 virtual void Signal() { sem_post(&sem_); }
667 private:
668 sem_t sem_;
669 };
670
671
Wait()672 void OpenBSDSemaphore::Wait() {
673 while (true) {
674 int result = sem_wait(&sem_);
675 if (result == 0) return; // Successfully got semaphore.
676 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
677 }
678 }
679
680
681 #ifndef TIMEVAL_TO_TIMESPEC
682 #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
683 (ts)->tv_sec = (tv)->tv_sec; \
684 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
685 } while (false)
686 #endif
687
688
Wait(int timeout)689 bool OpenBSDSemaphore::Wait(int timeout) {
690 const long kOneSecondMicros = 1000000; // NOLINT
691
692 // Split timeout into second and nanosecond parts.
693 struct timeval delta;
694 delta.tv_usec = timeout % kOneSecondMicros;
695 delta.tv_sec = timeout / kOneSecondMicros;
696
697 struct timeval current_time;
698 // Get the current time.
699 if (gettimeofday(¤t_time, NULL) == -1) {
700 return false;
701 }
702
703 // Calculate time for end of timeout.
704 struct timeval end_time;
705 timeradd(¤t_time, &delta, &end_time);
706
707 struct timespec ts;
708 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
709
710 int to = ts.tv_sec;
711
712 while (true) {
713 int result = sem_trywait(&sem_);
714 if (result == 0) return true; // Successfully got semaphore.
715 if (!to) return false; // Timeout.
716 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
717 usleep(ts.tv_nsec / 1000);
718 to--;
719 }
720 }
721
CreateSemaphore(int count)722 Semaphore* OS::CreateSemaphore(int count) {
723 return new OpenBSDSemaphore(count);
724 }
725
726
GetThreadID()727 static pthread_t GetThreadID() {
728 return pthread_self();
729 }
730
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)731 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
732 USE(info);
733 if (signal != SIGPROF) return;
734 Isolate* isolate = Isolate::UncheckedCurrent();
735 if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
736 // We require a fully initialized and entered isolate.
737 return;
738 }
739 if (v8::Locker::IsActive() &&
740 !isolate->thread_manager()->IsLockedByCurrentThread()) {
741 return;
742 }
743
744 Sampler* sampler = isolate->logger()->sampler();
745 if (sampler == NULL || !sampler->IsActive()) return;
746
747 TickSample sample_obj;
748 TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
749 if (sample == NULL) sample = &sample_obj;
750
751 // Extracting the sample from the context is extremely machine dependent.
752 sample->state = isolate->current_vm_state();
753 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
754 #ifdef __NetBSD__
755 mcontext_t& mcontext = ucontext->uc_mcontext;
756 #if V8_HOST_ARCH_IA32
757 sample->pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_EIP]);
758 sample->sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_ESP]);
759 sample->fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_EBP]);
760 #elif V8_HOST_ARCH_X64
761 sample->pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_RIP]);
762 sample->sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RSP]);
763 sample->fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RBP]);
764 #endif // V8_HOST_ARCH
765 #else // OpenBSD
766 #if V8_HOST_ARCH_IA32
767 sample->pc = reinterpret_cast<Address>(ucontext->sc_eip);
768 sample->sp = reinterpret_cast<Address>(ucontext->sc_esp);
769 sample->fp = reinterpret_cast<Address>(ucontext->sc_ebp);
770 #elif V8_HOST_ARCH_X64
771 sample->pc = reinterpret_cast<Address>(ucontext->sc_rip);
772 sample->sp = reinterpret_cast<Address>(ucontext->sc_rsp);
773 sample->fp = reinterpret_cast<Address>(ucontext->sc_rbp);
774 #endif // V8_HOST_ARCH
775 #endif // __NetBSD__
776 sampler->SampleStack(sample);
777 sampler->Tick(sample);
778 }
779
780
781 class Sampler::PlatformData : public Malloced {
782 public:
PlatformData()783 PlatformData() : vm_tid_(GetThreadID()) {}
784
vm_tid() const785 pthread_t vm_tid() const { return vm_tid_; }
786
787 private:
788 pthread_t vm_tid_;
789 };
790
791
792 class SignalSender : public Thread {
793 public:
794 enum SleepInterval {
795 HALF_INTERVAL,
796 FULL_INTERVAL
797 };
798
799 static const int kSignalSenderStackSize = 64 * KB;
800
SignalSender(int interval)801 explicit SignalSender(int interval)
802 : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
803 vm_tgid_(getpid()),
804 interval_(interval) {}
805
InstallSignalHandler()806 static void InstallSignalHandler() {
807 struct sigaction sa;
808 sa.sa_sigaction = ProfilerSignalHandler;
809 sigemptyset(&sa.sa_mask);
810 sa.sa_flags = SA_RESTART | SA_SIGINFO;
811 signal_handler_installed_ =
812 (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
813 }
814
RestoreSignalHandler()815 static void RestoreSignalHandler() {
816 if (signal_handler_installed_) {
817 sigaction(SIGPROF, &old_signal_handler_, 0);
818 signal_handler_installed_ = false;
819 }
820 }
821
AddActiveSampler(Sampler * sampler)822 static void AddActiveSampler(Sampler* sampler) {
823 ScopedLock lock(mutex_.Pointer());
824 SamplerRegistry::AddActiveSampler(sampler);
825 if (instance_ == NULL) {
826 // Start a thread that will send SIGPROF signal to VM threads,
827 // when CPU profiling will be enabled.
828 instance_ = new SignalSender(sampler->interval());
829 instance_->Start();
830 } else {
831 ASSERT(instance_->interval_ == sampler->interval());
832 }
833 }
834
RemoveActiveSampler(Sampler * sampler)835 static void RemoveActiveSampler(Sampler* sampler) {
836 ScopedLock lock(mutex_.Pointer());
837 SamplerRegistry::RemoveActiveSampler(sampler);
838 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
839 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
840 delete instance_;
841 instance_ = NULL;
842 RestoreSignalHandler();
843 }
844 }
845
846 // Implement Thread::Run().
Run()847 virtual void Run() {
848 SamplerRegistry::State state;
849 while ((state = SamplerRegistry::GetState()) !=
850 SamplerRegistry::HAS_NO_SAMPLERS) {
851 bool cpu_profiling_enabled =
852 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
853 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
854 if (cpu_profiling_enabled && !signal_handler_installed_) {
855 InstallSignalHandler();
856 } else if (!cpu_profiling_enabled && signal_handler_installed_) {
857 RestoreSignalHandler();
858 }
859 // When CPU profiling is enabled both JavaScript and C++ code is
860 // profiled. We must not suspend.
861 if (!cpu_profiling_enabled) {
862 if (rate_limiter_.SuspendIfNecessary()) continue;
863 }
864 if (cpu_profiling_enabled && runtime_profiler_enabled) {
865 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
866 return;
867 }
868 Sleep(HALF_INTERVAL);
869 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
870 return;
871 }
872 Sleep(HALF_INTERVAL);
873 } else {
874 if (cpu_profiling_enabled) {
875 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
876 this)) {
877 return;
878 }
879 }
880 if (runtime_profiler_enabled) {
881 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
882 NULL)) {
883 return;
884 }
885 }
886 Sleep(FULL_INTERVAL);
887 }
888 }
889 }
890
DoCpuProfile(Sampler * sampler,void * raw_sender)891 static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
892 if (!sampler->IsProfiling()) return;
893 SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
894 sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
895 }
896
DoRuntimeProfile(Sampler * sampler,void * ignored)897 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
898 if (!sampler->isolate()->IsInitialized()) return;
899 sampler->isolate()->runtime_profiler()->NotifyTick();
900 }
901
SendProfilingSignal(pthread_t tid)902 void SendProfilingSignal(pthread_t tid) {
903 if (!signal_handler_installed_) return;
904 pthread_kill(tid, SIGPROF);
905 }
906
Sleep(SleepInterval full_or_half)907 void Sleep(SleepInterval full_or_half) {
908 // Convert ms to us and subtract 100 us to compensate delays
909 // occuring during signal delivery.
910 useconds_t interval = interval_ * 1000 - 100;
911 if (full_or_half == HALF_INTERVAL) interval /= 2;
912 int result = usleep(interval);
913 #ifdef DEBUG
914 if (result != 0 && errno != EINTR) {
915 fprintf(stderr,
916 "SignalSender usleep error; interval = %u, errno = %d\n",
917 interval,
918 errno);
919 ASSERT(result == 0 || errno == EINTR);
920 }
921 #endif
922 USE(result);
923 }
924
925 const int vm_tgid_;
926 const int interval_;
927 RuntimeProfilerRateLimiter rate_limiter_;
928
929 // Protects the process wide state below.
930 static LazyMutex mutex_;
931 static SignalSender* instance_;
932 static bool signal_handler_installed_;
933 static struct sigaction old_signal_handler_;
934
935 private:
936 DISALLOW_COPY_AND_ASSIGN(SignalSender);
937 };
938
939
940 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
941 SignalSender* SignalSender::instance_ = NULL;
942 struct sigaction SignalSender::old_signal_handler_;
943 bool SignalSender::signal_handler_installed_ = false;
944
945
Sampler(Isolate * isolate,int interval)946 Sampler::Sampler(Isolate* isolate, int interval)
947 : isolate_(isolate),
948 interval_(interval),
949 profiling_(false),
950 active_(false),
951 samples_taken_(0) {
952 data_ = new PlatformData;
953 }
954
955
~Sampler()956 Sampler::~Sampler() {
957 ASSERT(!IsActive());
958 delete data_;
959 }
960
961
Start()962 void Sampler::Start() {
963 ASSERT(!IsActive());
964 SetActive(true);
965 SignalSender::AddActiveSampler(this);
966 }
967
968
Stop()969 void Sampler::Stop() {
970 ASSERT(IsActive());
971 SignalSender::RemoveActiveSampler(this);
972 SetActive(false);
973 }
974
975
976 } } // namespace v8::internal
977