1 //
2 // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6
7 // geometry/VertexDataManager.h: Defines the VertexDataManager, a class that
8 // runs the Buffer translation process.
9
10 #include "libGLESv2/geometry/VertexDataManager.h"
11
12 #include "common/debug.h"
13
14 #include "libGLESv2/Buffer.h"
15 #include "libGLESv2/Program.h"
16 #include "libGLESv2/main.h"
17
18 #include "libGLESv2/geometry/vertexconversion.h"
19 #include "libGLESv2/geometry/IndexDataManager.h"
20
21 namespace
22 {
23 enum { INITIAL_STREAM_BUFFER_SIZE = 1024*1024 };
24 }
25
26 namespace gl
27 {
28
VertexDataManager(Context * context,IDirect3DDevice9 * device)29 VertexDataManager::VertexDataManager(Context *context, IDirect3DDevice9 *device) : mContext(context), mDevice(device)
30 {
31 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
32 {
33 mDirtyCurrentValue[i] = true;
34 mCurrentValueBuffer[i] = NULL;
35 }
36
37 const D3DCAPS9 &caps = context->getDeviceCaps();
38 checkVertexCaps(caps.DeclTypes);
39
40 mStreamingBuffer = new StreamingVertexBuffer(mDevice, INITIAL_STREAM_BUFFER_SIZE);
41 }
42
~VertexDataManager()43 VertexDataManager::~VertexDataManager()
44 {
45 delete mStreamingBuffer;
46
47 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
48 {
49 delete mCurrentValueBuffer[i];
50 }
51 }
52
writeAttributeData(ArrayVertexBuffer * vertexBuffer,GLint start,GLsizei count,const VertexAttribute & attribute)53 UINT VertexDataManager::writeAttributeData(ArrayVertexBuffer *vertexBuffer, GLint start, GLsizei count, const VertexAttribute &attribute)
54 {
55 Buffer *buffer = attribute.mBoundBuffer.get();
56
57 int inputStride = attribute.stride();
58 int elementSize = attribute.typeSize();
59 const FormatConverter &converter = formatConverter(attribute);
60 UINT streamOffset = 0;
61
62 void *output = NULL;
63
64 if (vertexBuffer)
65 {
66 output = vertexBuffer->map(attribute, spaceRequired(attribute, count), &streamOffset);
67 }
68
69 if (output == NULL)
70 {
71 ERR("Failed to map vertex buffer.");
72 return -1;
73 }
74
75 const char *input = NULL;
76
77 if (buffer)
78 {
79 int offset = attribute.mOffset;
80
81 input = static_cast<const char*>(buffer->data()) + offset;
82 }
83 else
84 {
85 input = static_cast<const char*>(attribute.mPointer);
86 }
87
88 input += inputStride * start;
89
90 if (converter.identity && inputStride == elementSize)
91 {
92 memcpy(output, input, count * inputStride);
93 }
94 else
95 {
96 converter.convertArray(input, inputStride, count, output);
97 }
98
99 vertexBuffer->unmap();
100
101 return streamOffset;
102 }
103
prepareVertexData(GLint start,GLsizei count,TranslatedAttribute * translated)104 GLenum VertexDataManager::prepareVertexData(GLint start, GLsizei count, TranslatedAttribute *translated)
105 {
106 GLenum error = GL_NO_ERROR;
107 const VertexAttributeArray &attribs = mContext->getVertexAttributes();
108 Program *program = mContext->getCurrentProgram();
109
110 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
111 {
112 translated[attributeIndex].active = (program->getSemanticIndex(attributeIndex) != -1);
113 }
114
115 // Determine the required storage size per used buffer
116 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
117 {
118 Buffer *buffer = attribs[i].mBoundBuffer.get();
119
120 if (translated[i].active && attribs[i].mArrayEnabled && (buffer || attribs[i].mPointer))
121 {
122 StaticVertexBuffer *staticBuffer = buffer ? buffer->getVertexBuffer() : NULL;
123
124 if (staticBuffer && staticBuffer->size() == 0)
125 {
126 int totalCount = buffer->size() / attribs[i].stride();
127 staticBuffer->addRequiredSpace(spaceRequired(attribs[i], totalCount));
128 }
129 else if (!staticBuffer || staticBuffer->lookupAttribute(attribs[i]) == -1)
130 {
131 if (mStreamingBuffer)
132 {
133 mStreamingBuffer->addRequiredSpace(spaceRequired(attribs[i], count));
134 }
135 }
136 }
137 }
138
139 // Invalidate static buffers if the attribute formats no longer match
140 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
141 {
142 Buffer *buffer = attribs[i].mBoundBuffer.get();
143
144 if (translated[i].active && attribs[i].mArrayEnabled && buffer)
145 {
146 StaticVertexBuffer *staticBuffer = buffer->getVertexBuffer();
147
148 if (staticBuffer && staticBuffer->size() != 0)
149 {
150 bool matchingAttributes = true;
151
152 for (int j = 0; j < MAX_VERTEX_ATTRIBS; j++)
153 {
154 if (translated[j].active && attribs[j].mArrayEnabled && attribs[j].mBoundBuffer.get() == buffer)
155 {
156 if (staticBuffer->lookupAttribute(attribs[j]) == -1)
157 {
158 matchingAttributes = false;
159 break;
160 }
161 }
162 }
163
164 if (!matchingAttributes && mStreamingBuffer)
165 {
166 mStreamingBuffer->addRequiredSpaceFor(staticBuffer);
167 buffer->invalidateStaticData();
168 }
169 }
170 }
171 }
172
173 // Reserve the required space per used buffer
174 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
175 {
176 Buffer *buffer = attribs[i].mBoundBuffer.get();
177
178 if (translated[i].active && attribs[i].mArrayEnabled && (buffer || attribs[i].mPointer))
179 {
180 ArrayVertexBuffer *staticBuffer = buffer ? buffer->getVertexBuffer() : NULL;
181 ArrayVertexBuffer *vertexBuffer = staticBuffer ? staticBuffer : mStreamingBuffer;
182
183 if (vertexBuffer)
184 {
185 vertexBuffer->reserveRequiredSpace();
186 }
187 }
188 }
189
190 // Perform the vertex data translations
191 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
192 {
193 if (translated[i].active)
194 {
195 Buffer *buffer = attribs[i].mBoundBuffer.get();
196
197 if (attribs[i].mArrayEnabled)
198 {
199 if (!buffer && attribs[i].mPointer == NULL)
200 {
201 // This is an application error that would normally result in a crash, but we catch it and return an error
202 ERR("An enabled vertex array has no buffer and no pointer.");
203 return GL_INVALID_OPERATION;
204 }
205
206 const FormatConverter &converter = formatConverter(attribs[i]);
207
208 StaticVertexBuffer *staticBuffer = buffer ? buffer->getVertexBuffer() : NULL;
209 ArrayVertexBuffer *vertexBuffer = staticBuffer ? staticBuffer : static_cast<ArrayVertexBuffer*>(mStreamingBuffer);
210
211 UINT streamOffset = -1;
212
213 if (staticBuffer)
214 {
215 streamOffset = staticBuffer->lookupAttribute(attribs[i]);
216
217 if (streamOffset == -1)
218 {
219 // Convert the entire buffer
220 int totalCount = buffer->size() / attribs[i].stride();
221 int startIndex = attribs[i].mOffset / attribs[i].stride();
222
223 streamOffset = writeAttributeData(staticBuffer, -startIndex, totalCount, attribs[i]);
224 }
225
226 if (streamOffset != -1)
227 {
228 streamOffset += (start + attribs[i].mOffset / attribs[i].stride()) * converter.outputElementSize;
229 }
230 }
231 else
232 {
233 streamOffset = writeAttributeData(mStreamingBuffer, start, count, attribs[i]);
234 }
235
236 if (streamOffset == -1)
237 {
238 return GL_OUT_OF_MEMORY;
239 }
240
241 translated[i].vertexBuffer = vertexBuffer->getBuffer();
242 translated[i].type = converter.d3dDeclType;
243 translated[i].stride = converter.outputElementSize;
244 translated[i].offset = streamOffset;
245 }
246 else
247 {
248 if (mDirtyCurrentValue[i])
249 {
250 delete mCurrentValueBuffer[i];
251 mCurrentValueBuffer[i] = new ConstantVertexBuffer(mDevice, attribs[i].mCurrentValue[0], attribs[i].mCurrentValue[1], attribs[i].mCurrentValue[2], attribs[i].mCurrentValue[3]);
252 mDirtyCurrentValue[i] = false;
253 }
254
255 translated[i].vertexBuffer = mCurrentValueBuffer[i]->getBuffer();
256
257 translated[i].type = D3DDECLTYPE_FLOAT4;
258 translated[i].stride = 0;
259 translated[i].offset = 0;
260 }
261 }
262 }
263
264 return GL_NO_ERROR;
265 }
266
spaceRequired(const VertexAttribute & attrib,std::size_t count) const267 std::size_t VertexDataManager::spaceRequired(const VertexAttribute &attrib, std::size_t count) const
268 {
269 return formatConverter(attrib).outputElementSize * count;
270 }
271
272 // Mapping from OpenGL-ES vertex attrib type to D3D decl type:
273 //
274 // BYTE SHORT (Cast)
275 // BYTE-norm FLOAT (Normalize) (can't be exactly represented as SHORT-norm)
276 // UNSIGNED_BYTE UBYTE4 (Identity) or SHORT (Cast)
277 // UNSIGNED_BYTE-norm UBYTE4N (Identity) or FLOAT (Normalize)
278 // SHORT SHORT (Identity)
279 // SHORT-norm SHORT-norm (Identity) or FLOAT (Normalize)
280 // UNSIGNED_SHORT FLOAT (Cast)
281 // UNSIGNED_SHORT-norm USHORT-norm (Identity) or FLOAT (Normalize)
282 // FIXED (not in WebGL) FLOAT (FixedToFloat)
283 // FLOAT FLOAT (Identity)
284
285 // GLToCType maps from GL type (as GLenum) to the C typedef.
286 template <GLenum GLType> struct GLToCType { };
287
288 template <> struct GLToCType<GL_BYTE> { typedef GLbyte type; };
289 template <> struct GLToCType<GL_UNSIGNED_BYTE> { typedef GLubyte type; };
290 template <> struct GLToCType<GL_SHORT> { typedef GLshort type; };
291 template <> struct GLToCType<GL_UNSIGNED_SHORT> { typedef GLushort type; };
292 template <> struct GLToCType<GL_FIXED> { typedef GLuint type; };
293 template <> struct GLToCType<GL_FLOAT> { typedef GLfloat type; };
294
295 // This differs from D3DDECLTYPE in that it is unsized. (Size expansion is applied last.)
296 enum D3DVertexType
297 {
298 D3DVT_FLOAT,
299 D3DVT_SHORT,
300 D3DVT_SHORT_NORM,
301 D3DVT_UBYTE,
302 D3DVT_UBYTE_NORM,
303 D3DVT_USHORT_NORM
304 };
305
306 // D3DToCType maps from D3D vertex type (as enum D3DVertexType) to the corresponding C type.
307 template <unsigned int D3DType> struct D3DToCType { };
308
309 template <> struct D3DToCType<D3DVT_FLOAT> { typedef float type; };
310 template <> struct D3DToCType<D3DVT_SHORT> { typedef short type; };
311 template <> struct D3DToCType<D3DVT_SHORT_NORM> { typedef short type; };
312 template <> struct D3DToCType<D3DVT_UBYTE> { typedef unsigned char type; };
313 template <> struct D3DToCType<D3DVT_UBYTE_NORM> { typedef unsigned char type; };
314 template <> struct D3DToCType<D3DVT_USHORT_NORM> { typedef unsigned short type; };
315
316 // Encode the type/size combinations that D3D permits. For each type/size it expands to a widener that will provide the appropriate final size.
317 template <unsigned int type, int size>
318 struct WidenRule
319 {
320 };
321
322 template <int size> struct WidenRule<D3DVT_FLOAT, size> : gl::NoWiden<size> { };
323 template <int size> struct WidenRule<D3DVT_SHORT, size> : gl::WidenToEven<size> { };
324 template <int size> struct WidenRule<D3DVT_SHORT_NORM, size> : gl::WidenToEven<size> { };
325 template <int size> struct WidenRule<D3DVT_UBYTE, size> : gl::WidenToFour<size> { };
326 template <int size> struct WidenRule<D3DVT_UBYTE_NORM, size> : gl::WidenToFour<size> { };
327 template <int size> struct WidenRule<D3DVT_USHORT_NORM, size> : gl::WidenToEven<size> { };
328
329 // VertexTypeFlags encodes the D3DCAPS9::DeclType flag and vertex declaration flag for each D3D vertex type & size combination.
330 template <unsigned int d3dtype, int size>
331 struct VertexTypeFlags
332 {
333 };
334
335 template <unsigned int capflag, unsigned int declflag>
336 struct VertexTypeFlagsHelper
337 {
338 enum { capflag = capflag };
339 enum { declflag = declflag };
340 };
341
342 template <> struct VertexTypeFlags<D3DVT_FLOAT, 1> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT1> { };
343 template <> struct VertexTypeFlags<D3DVT_FLOAT, 2> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT2> { };
344 template <> struct VertexTypeFlags<D3DVT_FLOAT, 3> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT3> { };
345 template <> struct VertexTypeFlags<D3DVT_FLOAT, 4> : VertexTypeFlagsHelper<0, D3DDECLTYPE_FLOAT4> { };
346 template <> struct VertexTypeFlags<D3DVT_SHORT, 2> : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT2> { };
347 template <> struct VertexTypeFlags<D3DVT_SHORT, 4> : VertexTypeFlagsHelper<0, D3DDECLTYPE_SHORT4> { };
348 template <> struct VertexTypeFlags<D3DVT_SHORT_NORM, 2> : VertexTypeFlagsHelper<D3DDTCAPS_SHORT2N, D3DDECLTYPE_SHORT2N> { };
349 template <> struct VertexTypeFlags<D3DVT_SHORT_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_SHORT4N, D3DDECLTYPE_SHORT4N> { };
350 template <> struct VertexTypeFlags<D3DVT_UBYTE, 4> : VertexTypeFlagsHelper<D3DDTCAPS_UBYTE4, D3DDECLTYPE_UBYTE4> { };
351 template <> struct VertexTypeFlags<D3DVT_UBYTE_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_UBYTE4N, D3DDECLTYPE_UBYTE4N> { };
352 template <> struct VertexTypeFlags<D3DVT_USHORT_NORM, 2> : VertexTypeFlagsHelper<D3DDTCAPS_USHORT2N, D3DDECLTYPE_USHORT2N> { };
353 template <> struct VertexTypeFlags<D3DVT_USHORT_NORM, 4> : VertexTypeFlagsHelper<D3DDTCAPS_USHORT4N, D3DDECLTYPE_USHORT4N> { };
354
355
356 // VertexTypeMapping maps GL type & normalized flag to preferred and fallback D3D vertex types (as D3DVertexType enums).
357 template <GLenum GLtype, bool normalized>
358 struct VertexTypeMapping
359 {
360 };
361
362 template <D3DVertexType Preferred, D3DVertexType Fallback = Preferred>
363 struct VertexTypeMappingBase
364 {
365 enum { preferred = Preferred };
366 enum { fallback = Fallback };
367 };
368
369 template <> struct VertexTypeMapping<GL_BYTE, false> : VertexTypeMappingBase<D3DVT_SHORT> { }; // Cast
370 template <> struct VertexTypeMapping<GL_BYTE, true> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // Normalize
371 template <> struct VertexTypeMapping<GL_UNSIGNED_BYTE, false> : VertexTypeMappingBase<D3DVT_UBYTE, D3DVT_FLOAT> { }; // Identity, Cast
372 template <> struct VertexTypeMapping<GL_UNSIGNED_BYTE, true> : VertexTypeMappingBase<D3DVT_UBYTE_NORM, D3DVT_FLOAT> { }; // Identity, Normalize
373 template <> struct VertexTypeMapping<GL_SHORT, false> : VertexTypeMappingBase<D3DVT_SHORT> { }; // Identity
374 template <> struct VertexTypeMapping<GL_SHORT, true> : VertexTypeMappingBase<D3DVT_SHORT_NORM, D3DVT_FLOAT> { }; // Cast, Normalize
375 template <> struct VertexTypeMapping<GL_UNSIGNED_SHORT, false> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // Cast
376 template <> struct VertexTypeMapping<GL_UNSIGNED_SHORT, true> : VertexTypeMappingBase<D3DVT_USHORT_NORM, D3DVT_FLOAT> { }; // Cast, Normalize
377 template <bool normalized> struct VertexTypeMapping<GL_FIXED, normalized> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // FixedToFloat
378 template <bool normalized> struct VertexTypeMapping<GL_FLOAT, normalized> : VertexTypeMappingBase<D3DVT_FLOAT> { }; // Identity
379
380
381 // Given a GL type & norm flag and a D3D type, ConversionRule provides the type conversion rule (Cast, Normalize, Identity, FixedToFloat).
382 // The conversion rules themselves are defined in vertexconversion.h.
383
384 // Almost all cases are covered by Cast (including those that are actually Identity since Cast<T,T> knows it's an identity mapping).
385 template <GLenum fromType, bool normalized, unsigned int toType>
386 struct ConversionRule : gl::Cast<typename GLToCType<fromType>::type, typename D3DToCType<toType>::type>
387 {
388 };
389
390 // All conversions from normalized types to float use the Normalize operator.
391 template <GLenum fromType> struct ConversionRule<fromType, true, D3DVT_FLOAT> : gl::Normalize<typename GLToCType<fromType>::type> { };
392
393 // Use a full specialisation for this so that it preferentially matches ahead of the generic normalize-to-float rules.
394 template <> struct ConversionRule<GL_FIXED, true, D3DVT_FLOAT> : gl::FixedToFloat<GLuint, 16> { };
395 template <> struct ConversionRule<GL_FIXED, false, D3DVT_FLOAT> : gl::FixedToFloat<GLuint, 16> { };
396
397 // A 2-stage construction is used for DefaultVertexValues because float must use SimpleDefaultValues (i.e. 0/1)
398 // whether it is normalized or not.
399 template <class T, bool normalized>
400 struct DefaultVertexValuesStage2
401 {
402 };
403
404 template <class T> struct DefaultVertexValuesStage2<T, true> : gl::NormalizedDefaultValues<T> { };
405 template <class T> struct DefaultVertexValuesStage2<T, false> : gl::SimpleDefaultValues<T> { };
406
407 // Work out the default value rule for a D3D type (expressed as the C type) and
408 template <class T, bool normalized>
409 struct DefaultVertexValues : DefaultVertexValuesStage2<T, normalized>
410 {
411 };
412
413 template <bool normalized> struct DefaultVertexValues<float, normalized> : gl::SimpleDefaultValues<float> { };
414
415 // Policy rules for use with Converter, to choose whether to use the preferred or fallback conversion.
416 // The fallback conversion produces an output that all D3D9 devices must support.
417 template <class T> struct UsePreferred { enum { type = T::preferred }; };
418 template <class T> struct UseFallback { enum { type = T::fallback }; };
419
420 // Converter ties it all together. Given an OpenGL type/norm/size and choice of preferred/fallback conversion,
421 // it provides all the members of the appropriate VertexDataConverter, the D3DCAPS9::DeclTypes flag in cap flag
422 // and the D3DDECLTYPE member needed for the vertex declaration in declflag.
423 template <GLenum fromType, bool normalized, int size, template <class T> class PreferenceRule>
424 struct Converter
425 : gl::VertexDataConverter<typename GLToCType<fromType>::type,
426 WidenRule<PreferenceRule< VertexTypeMapping<fromType, normalized> >::type, size>,
427 ConversionRule<fromType,
428 normalized,
429 PreferenceRule< VertexTypeMapping<fromType, normalized> >::type>,
430 DefaultVertexValues<typename D3DToCType<PreferenceRule< VertexTypeMapping<fromType, normalized> >::type>::type, normalized > >
431 {
432 private:
433 enum { d3dtype = PreferenceRule< VertexTypeMapping<fromType, normalized> >::type };
434 enum { d3dsize = WidenRule<d3dtype, size>::finalWidth };
435
436 public:
437 enum { capflag = VertexTypeFlags<d3dtype, d3dsize>::capflag };
438 enum { declflag = VertexTypeFlags<d3dtype, d3dsize>::declflag };
439 };
440
441 // Initialise a TranslationInfo
442 #define TRANSLATION(type, norm, size, preferred) \
443 { \
444 Converter<type, norm, size, preferred>::identity, \
445 Converter<type, norm, size, preferred>::finalSize, \
446 Converter<type, norm, size, preferred>::convertArray, \
447 static_cast<D3DDECLTYPE>(Converter<type, norm, size, preferred>::declflag) \
448 }
449
450 #define TRANSLATION_FOR_TYPE_NORM_SIZE(type, norm, size) \
451 { \
452 Converter<type, norm, size, UsePreferred>::capflag, \
453 TRANSLATION(type, norm, size, UsePreferred), \
454 TRANSLATION(type, norm, size, UseFallback) \
455 }
456
457 #define TRANSLATIONS_FOR_TYPE(type) \
458 { \
459 { TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, false, 4) }, \
460 { TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 1), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 2), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 3), TRANSLATION_FOR_TYPE_NORM_SIZE(type, true, 4) }, \
461 }
462
463 const VertexDataManager::TranslationDescription VertexDataManager::mPossibleTranslations[NUM_GL_VERTEX_ATTRIB_TYPES][2][4] = // [GL types as enumerated by typeIndex()][normalized][size-1]
464 {
465 TRANSLATIONS_FOR_TYPE(GL_BYTE),
466 TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_BYTE),
467 TRANSLATIONS_FOR_TYPE(GL_SHORT),
468 TRANSLATIONS_FOR_TYPE(GL_UNSIGNED_SHORT),
469 TRANSLATIONS_FOR_TYPE(GL_FIXED),
470 TRANSLATIONS_FOR_TYPE(GL_FLOAT)
471 };
472
checkVertexCaps(DWORD declTypes)473 void VertexDataManager::checkVertexCaps(DWORD declTypes)
474 {
475 for (unsigned int i = 0; i < NUM_GL_VERTEX_ATTRIB_TYPES; i++)
476 {
477 for (unsigned int j = 0; j < 2; j++)
478 {
479 for (unsigned int k = 0; k < 4; k++)
480 {
481 if (mPossibleTranslations[i][j][k].capsFlag == 0 || (declTypes & mPossibleTranslations[i][j][k].capsFlag) != 0)
482 {
483 mAttributeTypes[i][j][k] = mPossibleTranslations[i][j][k].preferredConversion;
484 }
485 else
486 {
487 mAttributeTypes[i][j][k] = mPossibleTranslations[i][j][k].fallbackConversion;
488 }
489 }
490 }
491 }
492 }
493
494 // This is used to index mAttributeTypes and mPossibleTranslations.
typeIndex(GLenum type) const495 unsigned int VertexDataManager::typeIndex(GLenum type) const
496 {
497 switch (type)
498 {
499 case GL_BYTE: return 0;
500 case GL_UNSIGNED_BYTE: return 1;
501 case GL_SHORT: return 2;
502 case GL_UNSIGNED_SHORT: return 3;
503 case GL_FIXED: return 4;
504 case GL_FLOAT: return 5;
505
506 default: UNREACHABLE(); return 5;
507 }
508 }
509
setupAttributes(const TranslatedAttribute * attributes)510 void VertexDataManager::setupAttributes(const TranslatedAttribute *attributes)
511 {
512 D3DVERTEXELEMENT9 elements[MAX_VERTEX_ATTRIBS];
513 D3DVERTEXELEMENT9 *element = &elements[0];
514
515 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
516 {
517 if (attributes[i].active)
518 {
519 mDevice->SetStreamSource(i, attributes[i].vertexBuffer, attributes[i].offset, attributes[i].stride);
520
521 element->Stream = i;
522 element->Offset = 0;
523 element->Type = attributes[i].type;
524 element->Method = D3DDECLMETHOD_DEFAULT;
525 element->Usage = D3DDECLUSAGE_TEXCOORD;
526 element->UsageIndex = attributes[i].semanticIndex;
527 element++;
528 }
529 }
530
531 static const D3DVERTEXELEMENT9 end = D3DDECL_END();
532 *element = end;
533
534 IDirect3DVertexDeclaration9 *vertexDeclaration;
535 mDevice->CreateVertexDeclaration(elements, &vertexDeclaration);
536 mDevice->SetVertexDeclaration(vertexDeclaration);
537 vertexDeclaration->Release();
538 }
539
VertexBuffer(IDirect3DDevice9 * device,std::size_t size,DWORD usageFlags)540 VertexBuffer::VertexBuffer(IDirect3DDevice9 *device, std::size_t size, DWORD usageFlags) : mDevice(device), mVertexBuffer(NULL)
541 {
542 if (size > 0)
543 {
544 D3DPOOL pool = getDisplay()->getBufferPool(usageFlags);
545 HRESULT result = device->CreateVertexBuffer(size, usageFlags, 0, pool, &mVertexBuffer, NULL);
546
547 if (FAILED(result))
548 {
549 ERR("Out of memory allocating a vertex buffer of size %lu.", size);
550 }
551 }
552 }
553
~VertexBuffer()554 VertexBuffer::~VertexBuffer()
555 {
556 if (mVertexBuffer)
557 {
558 mVertexBuffer->Release();
559 }
560 }
561
unmap()562 void VertexBuffer::unmap()
563 {
564 if (mVertexBuffer)
565 {
566 mVertexBuffer->Unlock();
567 }
568 }
569
getBuffer() const570 IDirect3DVertexBuffer9 *VertexBuffer::getBuffer() const
571 {
572 return mVertexBuffer;
573 }
574
ConstantVertexBuffer(IDirect3DDevice9 * device,float x,float y,float z,float w)575 ConstantVertexBuffer::ConstantVertexBuffer(IDirect3DDevice9 *device, float x, float y, float z, float w) : VertexBuffer(device, 4 * sizeof(float), D3DUSAGE_WRITEONLY)
576 {
577 void *buffer = NULL;
578
579 if (mVertexBuffer)
580 {
581 HRESULT result = mVertexBuffer->Lock(0, 0, &buffer, 0);
582
583 if (FAILED(result))
584 {
585 ERR("Lock failed with error 0x%08x", result);
586 }
587 }
588
589 if (buffer)
590 {
591 float *vector = (float*)buffer;
592
593 vector[0] = x;
594 vector[1] = y;
595 vector[2] = z;
596 vector[3] = w;
597
598 mVertexBuffer->Unlock();
599 }
600 }
601
~ConstantVertexBuffer()602 ConstantVertexBuffer::~ConstantVertexBuffer()
603 {
604 }
605
ArrayVertexBuffer(IDirect3DDevice9 * device,std::size_t size,DWORD usageFlags)606 ArrayVertexBuffer::ArrayVertexBuffer(IDirect3DDevice9 *device, std::size_t size, DWORD usageFlags) : VertexBuffer(device, size, usageFlags)
607 {
608 mBufferSize = size;
609 mWritePosition = 0;
610 mRequiredSpace = 0;
611 }
612
~ArrayVertexBuffer()613 ArrayVertexBuffer::~ArrayVertexBuffer()
614 {
615 }
616
addRequiredSpace(UINT requiredSpace)617 void ArrayVertexBuffer::addRequiredSpace(UINT requiredSpace)
618 {
619 mRequiredSpace += requiredSpace;
620 }
621
addRequiredSpaceFor(ArrayVertexBuffer * buffer)622 void ArrayVertexBuffer::addRequiredSpaceFor(ArrayVertexBuffer *buffer)
623 {
624 mRequiredSpace += buffer->mRequiredSpace;
625 }
626
StreamingVertexBuffer(IDirect3DDevice9 * device,std::size_t initialSize)627 StreamingVertexBuffer::StreamingVertexBuffer(IDirect3DDevice9 *device, std::size_t initialSize) : ArrayVertexBuffer(device, initialSize, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY)
628 {
629 }
630
~StreamingVertexBuffer()631 StreamingVertexBuffer::~StreamingVertexBuffer()
632 {
633 }
634
map(const VertexAttribute & attribute,std::size_t requiredSpace,std::size_t * offset)635 void *StreamingVertexBuffer::map(const VertexAttribute &attribute, std::size_t requiredSpace, std::size_t *offset)
636 {
637 void *mapPtr = NULL;
638
639 if (mVertexBuffer)
640 {
641 HRESULT result = mVertexBuffer->Lock(mWritePosition, requiredSpace, &mapPtr, D3DLOCK_NOOVERWRITE);
642
643 if (FAILED(result))
644 {
645 ERR("Lock failed with error 0x%08x", result);
646 return NULL;
647 }
648
649 *offset = mWritePosition;
650 mWritePosition += requiredSpace;
651 }
652
653 return mapPtr;
654 }
655
reserveRequiredSpace()656 void StreamingVertexBuffer::reserveRequiredSpace()
657 {
658 if (mRequiredSpace > mBufferSize)
659 {
660 if (mVertexBuffer)
661 {
662 mVertexBuffer->Release();
663 mVertexBuffer = NULL;
664 }
665
666 mBufferSize = std::max(mRequiredSpace, 3 * mBufferSize / 2); // 1.5 x mBufferSize is arbitrary and should be checked to see we don't have too many reallocations.
667
668 D3DPOOL pool = getDisplay()->getBufferPool(D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY);
669 HRESULT result = mDevice->CreateVertexBuffer(mBufferSize, D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, 0, pool, &mVertexBuffer, NULL);
670
671 if (FAILED(result))
672 {
673 ERR("Out of memory allocating a vertex buffer of size %lu.", mBufferSize);
674 }
675
676 mWritePosition = 0;
677 }
678 else if (mWritePosition + mRequiredSpace > mBufferSize) // Recycle
679 {
680 if (mVertexBuffer)
681 {
682 void *dummy;
683 mVertexBuffer->Lock(0, 1, &dummy, D3DLOCK_DISCARD);
684 mVertexBuffer->Unlock();
685 }
686
687 mWritePosition = 0;
688 }
689
690 mRequiredSpace = 0;
691 }
692
StaticVertexBuffer(IDirect3DDevice9 * device)693 StaticVertexBuffer::StaticVertexBuffer(IDirect3DDevice9 *device) : ArrayVertexBuffer(device, 0, D3DUSAGE_WRITEONLY)
694 {
695 }
696
~StaticVertexBuffer()697 StaticVertexBuffer::~StaticVertexBuffer()
698 {
699 }
700
map(const VertexAttribute & attribute,std::size_t requiredSpace,UINT * streamOffset)701 void *StaticVertexBuffer::map(const VertexAttribute &attribute, std::size_t requiredSpace, UINT *streamOffset)
702 {
703 void *mapPtr = NULL;
704
705 if (mVertexBuffer)
706 {
707 HRESULT result = mVertexBuffer->Lock(mWritePosition, requiredSpace, &mapPtr, 0);
708
709 if (FAILED(result))
710 {
711 ERR("Lock failed with error 0x%08x", result);
712 return NULL;
713 }
714
715 int attributeOffset = attribute.mOffset % attribute.stride();
716 VertexElement element = {attribute.mType, attribute.mSize, attribute.mNormalized, attributeOffset, mWritePosition};
717 mCache.push_back(element);
718
719 *streamOffset = mWritePosition;
720 mWritePosition += requiredSpace;
721 }
722
723 return mapPtr;
724 }
725
reserveRequiredSpace()726 void StaticVertexBuffer::reserveRequiredSpace()
727 {
728 if (!mVertexBuffer && mBufferSize == 0)
729 {
730 D3DPOOL pool = getDisplay()->getBufferPool(D3DUSAGE_WRITEONLY);
731 HRESULT result = mDevice->CreateVertexBuffer(mRequiredSpace, D3DUSAGE_WRITEONLY, 0, pool, &mVertexBuffer, NULL);
732
733 if (FAILED(result))
734 {
735 ERR("Out of memory allocating a vertex buffer of size %lu.", mRequiredSpace);
736 }
737
738 mBufferSize = mRequiredSpace;
739 }
740 else if (mVertexBuffer && mBufferSize >= mRequiredSpace)
741 {
742 // Already allocated
743 }
744 else UNREACHABLE(); // Static vertex buffers can't be resized
745
746 mRequiredSpace = 0;
747 }
748
lookupAttribute(const VertexAttribute & attribute)749 UINT StaticVertexBuffer::lookupAttribute(const VertexAttribute &attribute)
750 {
751 for (unsigned int element = 0; element < mCache.size(); element++)
752 {
753 if (mCache[element].type == attribute.mType && mCache[element].size == attribute.mSize && mCache[element].normalized == attribute.mNormalized)
754 {
755 if (mCache[element].attributeOffset == attribute.mOffset % attribute.stride())
756 {
757 return mCache[element].streamOffset;
758 }
759 }
760 }
761
762 return -1;
763 }
764
formatConverter(const VertexAttribute & attribute) const765 const VertexDataManager::FormatConverter &VertexDataManager::formatConverter(const VertexAttribute &attribute) const
766 {
767 return mAttributeTypes[typeIndex(attribute.mType)][attribute.mNormalized][attribute.mSize - 1];
768 }
769 }
770