1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 // Software License Agreement: http://www.webmproject.org/license/software/
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // Quantization
9 //
10 // Author: Skal (pascal.massimino@gmail.com)
11
12 #include <assert.h>
13 #include <math.h>
14
15 #include "./vp8enci.h"
16 #include "./cost.h"
17
18 #define DO_TRELLIS_I4 1
19 #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate.
20 #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth.
21 #define USE_TDISTO 1
22
23 #define MID_ALPHA 64 // neutral value for susceptibility
24 #define MIN_ALPHA 30 // lowest usable value for susceptibility
25 #define MAX_ALPHA 100 // higher meaninful value for susceptibility
26
27 #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
28 // power-law modulation. Must be strictly less than 1.
29
30 #define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision
31
32 #define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
33
34 #if defined(__cplusplus) || defined(c_plusplus)
35 extern "C" {
36 #endif
37
38 //------------------------------------------------------------------------------
39
clip(int v,int m,int M)40 static WEBP_INLINE int clip(int v, int m, int M) {
41 return v < m ? m : v > M ? M : v;
42 }
43
44 static const uint8_t kZigzag[16] = {
45 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
46 };
47
48 static const uint8_t kDcTable[128] = {
49 4, 5, 6, 7, 8, 9, 10, 10,
50 11, 12, 13, 14, 15, 16, 17, 17,
51 18, 19, 20, 20, 21, 21, 22, 22,
52 23, 23, 24, 25, 25, 26, 27, 28,
53 29, 30, 31, 32, 33, 34, 35, 36,
54 37, 37, 38, 39, 40, 41, 42, 43,
55 44, 45, 46, 46, 47, 48, 49, 50,
56 51, 52, 53, 54, 55, 56, 57, 58,
57 59, 60, 61, 62, 63, 64, 65, 66,
58 67, 68, 69, 70, 71, 72, 73, 74,
59 75, 76, 76, 77, 78, 79, 80, 81,
60 82, 83, 84, 85, 86, 87, 88, 89,
61 91, 93, 95, 96, 98, 100, 101, 102,
62 104, 106, 108, 110, 112, 114, 116, 118,
63 122, 124, 126, 128, 130, 132, 134, 136,
64 138, 140, 143, 145, 148, 151, 154, 157
65 };
66
67 static const uint16_t kAcTable[128] = {
68 4, 5, 6, 7, 8, 9, 10, 11,
69 12, 13, 14, 15, 16, 17, 18, 19,
70 20, 21, 22, 23, 24, 25, 26, 27,
71 28, 29, 30, 31, 32, 33, 34, 35,
72 36, 37, 38, 39, 40, 41, 42, 43,
73 44, 45, 46, 47, 48, 49, 50, 51,
74 52, 53, 54, 55, 56, 57, 58, 60,
75 62, 64, 66, 68, 70, 72, 74, 76,
76 78, 80, 82, 84, 86, 88, 90, 92,
77 94, 96, 98, 100, 102, 104, 106, 108,
78 110, 112, 114, 116, 119, 122, 125, 128,
79 131, 134, 137, 140, 143, 146, 149, 152,
80 155, 158, 161, 164, 167, 170, 173, 177,
81 181, 185, 189, 193, 197, 201, 205, 209,
82 213, 217, 221, 225, 229, 234, 239, 245,
83 249, 254, 259, 264, 269, 274, 279, 284
84 };
85
86 static const uint16_t kAcTable2[128] = {
87 8, 8, 9, 10, 12, 13, 15, 17,
88 18, 20, 21, 23, 24, 26, 27, 29,
89 31, 32, 34, 35, 37, 38, 40, 41,
90 43, 44, 46, 48, 49, 51, 52, 54,
91 55, 57, 58, 60, 62, 63, 65, 66,
92 68, 69, 71, 72, 74, 75, 77, 79,
93 80, 82, 83, 85, 86, 88, 89, 93,
94 96, 99, 102, 105, 108, 111, 114, 117,
95 120, 124, 127, 130, 133, 136, 139, 142,
96 145, 148, 151, 155, 158, 161, 164, 167,
97 170, 173, 176, 179, 184, 189, 193, 198,
98 203, 207, 212, 217, 221, 226, 230, 235,
99 240, 244, 249, 254, 258, 263, 268, 274,
100 280, 286, 292, 299, 305, 311, 317, 323,
101 330, 336, 342, 348, 354, 362, 370, 379,
102 385, 393, 401, 409, 416, 424, 432, 440
103 };
104
105 static const uint16_t kCoeffThresh[16] = {
106 0, 10, 20, 30,
107 10, 20, 30, 30,
108 20, 30, 30, 30,
109 30, 30, 30, 30
110 };
111
112 // TODO(skal): tune more. Coeff thresholding?
113 static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma]
114 { 96, 96, 96, 96,
115 96, 96, 96, 96,
116 96, 96, 96, 96,
117 96, 96, 96, 96 },
118 { 96, 96, 96, 96,
119 96, 96, 96, 96,
120 96, 96, 96, 96,
121 96, 96, 96, 96 },
122 { 96, 96, 96, 96,
123 96, 96, 96, 96,
124 96, 96, 96, 96,
125 96, 96, 96, 96 }
126 };
127
128 // Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis).
129 // Hack-ish but helpful for mid-bitrate range. Use with care.
130 static const uint8_t kFreqSharpening[16] = {
131 0, 30, 60, 90,
132 30, 60, 90, 90,
133 60, 90, 90, 90,
134 90, 90, 90, 90
135 };
136
137 //------------------------------------------------------------------------------
138 // Initialize quantization parameters in VP8Matrix
139
140 // Returns the average quantizer
ExpandMatrix(VP8Matrix * const m,int type)141 static int ExpandMatrix(VP8Matrix* const m, int type) {
142 int i;
143 int sum = 0;
144 for (i = 2; i < 16; ++i) {
145 m->q_[i] = m->q_[1];
146 }
147 for (i = 0; i < 16; ++i) {
148 const int j = kZigzag[i];
149 const int bias = kBiasMatrices[type][j];
150 m->iq_[j] = (1 << QFIX) / m->q_[j];
151 m->bias_[j] = BIAS(bias);
152 // TODO(skal): tune kCoeffThresh[]
153 m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8;
154 m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11;
155 sum += m->q_[j];
156 }
157 return (sum + 8) >> 4;
158 }
159
SetupMatrices(VP8Encoder * enc)160 static void SetupMatrices(VP8Encoder* enc) {
161 int i;
162 const int tlambda_scale =
163 (enc->method_ >= 4) ? enc->config_->sns_strength
164 : 0;
165 const int num_segments = enc->segment_hdr_.num_segments_;
166 for (i = 0; i < num_segments; ++i) {
167 VP8SegmentInfo* const m = &enc->dqm_[i];
168 const int q = m->quant_;
169 int q4, q16, quv;
170 m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
171 m->y1_.q_[1] = kAcTable[clip(q, 0, 127)];
172
173 m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
174 m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
175
176 m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
177 m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
178
179 q4 = ExpandMatrix(&m->y1_, 0);
180 q16 = ExpandMatrix(&m->y2_, 1);
181 quv = ExpandMatrix(&m->uv_, 2);
182
183 // TODO: Switch to kLambda*[] tables?
184 {
185 m->lambda_i4_ = (3 * q4 * q4) >> 7;
186 m->lambda_i16_ = (3 * q16 * q16);
187 m->lambda_uv_ = (3 * quv * quv) >> 6;
188 m->lambda_mode_ = (1 * q4 * q4) >> 7;
189 m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3;
190 m->lambda_trellis_i16_ = (q16 * q16) >> 2;
191 m->lambda_trellis_uv_ = (quv *quv) << 1;
192 m->tlambda_ = (tlambda_scale * q4) >> 5;
193 }
194 }
195 }
196
197 //------------------------------------------------------------------------------
198 // Initialize filtering parameters
199
200 // Very small filter-strength values have close to no visual effect. So we can
201 // save a little decoding-CPU by turning filtering off for these.
202 #define FSTRENGTH_CUTOFF 3
203
SetupFilterStrength(VP8Encoder * const enc)204 static void SetupFilterStrength(VP8Encoder* const enc) {
205 int i;
206 const int level0 = enc->config_->filter_strength;
207 for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
208 // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS)
209 const int level = level0 * 256 * enc->dqm_[i].quant_ / 128;
210 const int f = level / (256 + enc->dqm_[i].beta_);
211 enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
212 }
213 // We record the initial strength (mainly for the case of 1-segment only).
214 enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
215 enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
216 enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
217 }
218
219 //------------------------------------------------------------------------------
220
221 // Note: if you change the values below, remember that the max range
222 // allowed by the syntax for DQ_UV is [-16,16].
223 #define MAX_DQ_UV (6)
224 #define MIN_DQ_UV (-4)
225
226 // We want to emulate jpeg-like behaviour where the expected "good" quality
227 // is around q=75. Internally, our "good" middle is around c=50. So we
228 // map accordingly using linear piece-wise function
QualityToCompression(double c)229 static double QualityToCompression(double c) {
230 const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
231 // The file size roughly scales as pow(quantizer, 3.). Actually, the
232 // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
233 // in the mid-quant range. So we scale the compressibility inversely to
234 // this power-law: quant ~= compression ^ 1/3. This law holds well for
235 // low quant. Finer modelling for high-quant would make use of kAcTable[]
236 // more explicitly.
237 const double v = pow(linear_c, 1 / 3.);
238 return v;
239 }
240
QualityToJPEGCompression(double c,double alpha)241 static double QualityToJPEGCompression(double c, double alpha) {
242 // We map the complexity 'alpha' and quality setting 'c' to a compression
243 // exponent empirically matched to the compression curve of libjpeg6b.
244 // On average, the WebP output size will be roughly similar to that of a
245 // JPEG file compressed with same quality factor.
246 const double amin = 0.30;
247 const double amax = 0.85;
248 const double exp_min = 0.4;
249 const double exp_max = 0.9;
250 const double slope = (exp_min - exp_max) / (amax - amin);
251 // Linearly interpolate 'expn' from exp_min to exp_max
252 // in the [amin, amax] range.
253 const double expn = (alpha > amax) ? exp_min
254 : (alpha < amin) ? exp_max
255 : exp_max + slope * (alpha - amin);
256 const double v = pow(c, expn);
257 return v;
258 }
259
SegmentsAreEquivalent(const VP8SegmentInfo * const S1,const VP8SegmentInfo * const S2)260 static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
261 const VP8SegmentInfo* const S2) {
262 return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
263 }
264
SimplifySegments(VP8Encoder * const enc)265 static void SimplifySegments(VP8Encoder* const enc) {
266 int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
267 const int num_segments = enc->segment_hdr_.num_segments_;
268 int num_final_segments = 1;
269 int s1, s2;
270 for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments
271 const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
272 int found = 0;
273 // check if we already have similar segment
274 for (s2 = 0; s2 < num_final_segments; ++s2) {
275 const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
276 if (SegmentsAreEquivalent(S1, S2)) {
277 found = 1;
278 break;
279 }
280 }
281 map[s1] = s2;
282 if (!found) {
283 if (num_final_segments != s1) {
284 enc->dqm_[num_final_segments] = enc->dqm_[s1];
285 }
286 ++num_final_segments;
287 }
288 }
289 if (num_final_segments < num_segments) { // Remap
290 int i = enc->mb_w_ * enc->mb_h_;
291 while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
292 enc->segment_hdr_.num_segments_ = num_final_segments;
293 // Replicate the trailing segment infos (it's mostly cosmetics)
294 for (i = num_final_segments; i < num_segments; ++i) {
295 enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
296 }
297 }
298 }
299
VP8SetSegmentParams(VP8Encoder * const enc,float quality)300 void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
301 int i;
302 int dq_uv_ac, dq_uv_dc;
303 const int num_segments = enc->segment_hdr_.num_segments_;
304 const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
305 const double Q = quality / 100.;
306 const double c_base = enc->config_->emulate_jpeg_size ?
307 QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
308 QualityToCompression(Q);
309 for (i = 0; i < num_segments; ++i) {
310 // We modulate the base coefficient to accommodate for the quantization
311 // susceptibility and allow denser segments to be quantized more.
312 const double expn = 1. - amp * enc->dqm_[i].alpha_;
313 const double c = pow(c_base, expn);
314 const int q = (int)(127. * (1. - c));
315 assert(expn > 0.);
316 enc->dqm_[i].quant_ = clip(q, 0, 127);
317 }
318
319 // purely indicative in the bitstream (except for the 1-segment case)
320 enc->base_quant_ = enc->dqm_[0].quant_;
321
322 // fill-in values for the unused segments (required by the syntax)
323 for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
324 enc->dqm_[i].quant_ = enc->base_quant_;
325 }
326
327 // uv_alpha_ is normally spread around ~60. The useful range is
328 // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
329 // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
330 dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
331 / (MAX_ALPHA - MIN_ALPHA);
332 // we rescale by the user-defined strength of adaptation
333 dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
334 // and make it safe.
335 dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
336 // We also boost the dc-uv-quant a little, based on sns-strength, since
337 // U/V channels are quite more reactive to high quants (flat DC-blocks
338 // tend to appear, and are displeasant).
339 dq_uv_dc = -4 * enc->config_->sns_strength / 100;
340 dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed
341
342 enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum
343 enc->dq_y2_dc_ = 0;
344 enc->dq_y2_ac_ = 0;
345 enc->dq_uv_dc_ = dq_uv_dc;
346 enc->dq_uv_ac_ = dq_uv_ac;
347
348 SetupFilterStrength(enc); // initialize segments' filtering, eventually
349
350 if (num_segments > 1) SimplifySegments(enc);
351
352 SetupMatrices(enc); // finalize quantization matrices
353 }
354
355 //------------------------------------------------------------------------------
356 // Form the predictions in cache
357
358 // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
359 const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
360 const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
361
362 // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
363 const int VP8I4ModeOffsets[NUM_BMODES] = {
364 I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
365 };
366
VP8MakeLuma16Preds(const VP8EncIterator * const it)367 void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
368 const VP8Encoder* const enc = it->enc_;
369 const uint8_t* const left = it->x_ ? enc->y_left_ : NULL;
370 const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL;
371 VP8EncPredLuma16(it->yuv_p_, left, top);
372 }
373
VP8MakeChroma8Preds(const VP8EncIterator * const it)374 void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
375 const VP8Encoder* const enc = it->enc_;
376 const uint8_t* const left = it->x_ ? enc->u_left_ : NULL;
377 const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL;
378 VP8EncPredChroma8(it->yuv_p_, left, top);
379 }
380
VP8MakeIntra4Preds(const VP8EncIterator * const it)381 void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
382 VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
383 }
384
385 //------------------------------------------------------------------------------
386 // Quantize
387
388 // Layout:
389 // +----+
390 // |YYYY| 0
391 // |YYYY| 4
392 // |YYYY| 8
393 // |YYYY| 12
394 // +----+
395 // |UUVV| 16
396 // |UUVV| 20
397 // +----+
398
399 const int VP8Scan[16 + 4 + 4] = {
400 // Luma
401 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
402 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
403 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
404 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
405
406 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
407 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
408 };
409
410 //------------------------------------------------------------------------------
411 // Distortion measurement
412
413 static const uint16_t kWeightY[16] = {
414 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
415 };
416
417 static const uint16_t kWeightTrellis[16] = {
418 #if USE_TDISTO == 0
419 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
420 #else
421 30, 27, 19, 11,
422 27, 24, 17, 10,
423 19, 17, 12, 8,
424 11, 10, 8, 6
425 #endif
426 };
427
428 // Init/Copy the common fields in score.
InitScore(VP8ModeScore * const rd)429 static void InitScore(VP8ModeScore* const rd) {
430 rd->D = 0;
431 rd->SD = 0;
432 rd->R = 0;
433 rd->nz = 0;
434 rd->score = MAX_COST;
435 }
436
CopyScore(VP8ModeScore * const dst,const VP8ModeScore * const src)437 static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
438 dst->D = src->D;
439 dst->SD = src->SD;
440 dst->R = src->R;
441 dst->nz = src->nz; // note that nz is not accumulated, but just copied.
442 dst->score = src->score;
443 }
444
AddScore(VP8ModeScore * const dst,const VP8ModeScore * const src)445 static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
446 dst->D += src->D;
447 dst->SD += src->SD;
448 dst->R += src->R;
449 dst->nz |= src->nz; // here, new nz bits are accumulated.
450 dst->score += src->score;
451 }
452
453 //------------------------------------------------------------------------------
454 // Performs trellis-optimized quantization.
455
456 // Trellis
457
458 typedef struct {
459 int prev; // best previous
460 int level; // level
461 int sign; // sign of coeff_i
462 score_t cost; // bit cost
463 score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2
464 int ctx; // context (only depends on 'level'. Could be spared.)
465 } Node;
466
467 // If a coefficient was quantized to a value Q (using a neutral bias),
468 // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
469 // We don't test negative values though.
470 #define MIN_DELTA 0 // how much lower level to try
471 #define MAX_DELTA 1 // how much higher
472 #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
473 #define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])
474
SetRDScore(int lambda,VP8ModeScore * const rd)475 static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
476 // TODO: incorporate the "* 256" in the tables?
477 rd->score = rd->R * lambda + 256 * (rd->D + rd->SD);
478 }
479
RDScoreTrellis(int lambda,score_t rate,score_t distortion)480 static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
481 score_t distortion) {
482 return rate * lambda + 256 * distortion;
483 }
484
TrellisQuantizeBlock(const VP8EncIterator * const it,int16_t in[16],int16_t out[16],int ctx0,int coeff_type,const VP8Matrix * const mtx,int lambda)485 static int TrellisQuantizeBlock(const VP8EncIterator* const it,
486 int16_t in[16], int16_t out[16],
487 int ctx0, int coeff_type,
488 const VP8Matrix* const mtx,
489 int lambda) {
490 ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
491 CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
492 const int first = (coeff_type == 0) ? 1 : 0;
493 Node nodes[17][NUM_NODES];
494 int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous
495 score_t best_score;
496 int best_node;
497 int last = first - 1;
498 int n, m, p, nz;
499
500 {
501 score_t cost;
502 score_t max_error;
503 const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
504 const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];
505
506 // compute maximal distortion.
507 max_error = 0;
508 for (n = first; n < 16; ++n) {
509 const int j = kZigzag[n];
510 const int err = in[j] * in[j];
511 max_error += kWeightTrellis[j] * err;
512 if (err > thresh) last = n;
513 }
514 // we don't need to go inspect up to n = 16 coeffs. We can just go up
515 // to last + 1 (inclusive) without losing much.
516 if (last < 15) ++last;
517
518 // compute 'skip' score. This is the max score one can do.
519 cost = VP8BitCost(0, last_proba);
520 best_score = RDScoreTrellis(lambda, cost, max_error);
521
522 // initialize source node.
523 n = first - 1;
524 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
525 NODE(n, m).cost = 0;
526 NODE(n, m).error = max_error;
527 NODE(n, m).ctx = ctx0;
528 }
529 }
530
531 // traverse trellis.
532 for (n = first; n <= last; ++n) {
533 const int j = kZigzag[n];
534 const int Q = mtx->q_[j];
535 const int iQ = mtx->iq_[j];
536 const int B = BIAS(0x00); // neutral bias
537 // note: it's important to take sign of the _original_ coeff,
538 // so we don't have to consider level < 0 afterward.
539 const int sign = (in[j] < 0);
540 int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
541 int level0;
542 if (coeff0 > 2047) coeff0 = 2047;
543
544 level0 = QUANTDIV(coeff0, iQ, B);
545 // test all alternate level values around level0.
546 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
547 Node* const cur = &NODE(n, m);
548 int delta_error, new_error;
549 score_t cur_score = MAX_COST;
550 int level = level0 + m;
551 int last_proba;
552
553 cur->sign = sign;
554 cur->level = level;
555 cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
556 if (level >= 2048 || level < 0) { // node is dead?
557 cur->cost = MAX_COST;
558 continue;
559 }
560 last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];
561
562 // Compute delta_error = how much coding this level will
563 // subtract as distortion to max_error
564 new_error = coeff0 - level * Q;
565 delta_error =
566 kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);
567
568 // Inspect all possible non-dead predecessors. Retain only the best one.
569 for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
570 const Node* const prev = &NODE(n - 1, p);
571 const int prev_ctx = prev->ctx;
572 const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
573 const score_t total_error = prev->error - delta_error;
574 score_t cost, base_cost, score;
575
576 if (prev->cost >= MAX_COST) { // dead node?
577 continue;
578 }
579
580 // Base cost of both terminal/non-terminal
581 base_cost = prev->cost + VP8LevelCost(tcost, level);
582
583 // Examine node assuming it's a non-terminal one.
584 cost = base_cost;
585 if (level && n < 15) {
586 cost += VP8BitCost(1, last_proba);
587 }
588 score = RDScoreTrellis(lambda, cost, total_error);
589 if (score < cur_score) {
590 cur_score = score;
591 cur->cost = cost;
592 cur->error = total_error;
593 cur->prev = p;
594 }
595
596 // Now, record best terminal node (and thus best entry in the graph).
597 if (level) {
598 cost = base_cost;
599 if (n < 15) cost += VP8BitCost(0, last_proba);
600 score = RDScoreTrellis(lambda, cost, total_error);
601 if (score < best_score) {
602 best_score = score;
603 best_path[0] = n; // best eob position
604 best_path[1] = m; // best level
605 best_path[2] = p; // best predecessor
606 }
607 }
608 }
609 }
610 }
611
612 // Fresh start
613 memset(in + first, 0, (16 - first) * sizeof(*in));
614 memset(out + first, 0, (16 - first) * sizeof(*out));
615 if (best_path[0] == -1) {
616 return 0; // skip!
617 }
618
619 // Unwind the best path.
620 // Note: best-prev on terminal node is not necessarily equal to the
621 // best_prev for non-terminal. So we patch best_path[2] in.
622 n = best_path[0];
623 best_node = best_path[1];
624 NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal
625 nz = 0;
626
627 for (; n >= first; --n) {
628 const Node* const node = &NODE(n, best_node);
629 const int j = kZigzag[n];
630 out[n] = node->sign ? -node->level : node->level;
631 nz |= (node->level != 0);
632 in[j] = out[n] * mtx->q_[j];
633 best_node = node->prev;
634 }
635 return nz;
636 }
637
638 #undef NODE
639
640 //------------------------------------------------------------------------------
641 // Performs: difference, transform, quantize, back-transform, add
642 // all at once. Output is the reconstructed block in *yuv_out, and the
643 // quantized levels in *levels.
644
ReconstructIntra16(VP8EncIterator * const it,VP8ModeScore * const rd,uint8_t * const yuv_out,int mode)645 static int ReconstructIntra16(VP8EncIterator* const it,
646 VP8ModeScore* const rd,
647 uint8_t* const yuv_out,
648 int mode) {
649 const VP8Encoder* const enc = it->enc_;
650 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
651 const uint8_t* const src = it->yuv_in_ + Y_OFF;
652 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
653 int nz = 0;
654 int n;
655 int16_t tmp[16][16], dc_tmp[16];
656
657 for (n = 0; n < 16; ++n) {
658 VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
659 }
660 VP8FTransformWHT(tmp[0], dc_tmp);
661 nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24;
662
663 if (DO_TRELLIS_I16 && it->do_trellis_) {
664 int x, y;
665 VP8IteratorNzToBytes(it);
666 for (y = 0, n = 0; y < 4; ++y) {
667 for (x = 0; x < 4; ++x, ++n) {
668 const int ctx = it->top_nz_[x] + it->left_nz_[y];
669 const int non_zero =
670 TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
671 &dqm->y1_, dqm->lambda_trellis_i16_);
672 it->top_nz_[x] = it->left_nz_[y] = non_zero;
673 nz |= non_zero << n;
674 }
675 }
676 } else {
677 for (n = 0; n < 16; ++n) {
678 nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
679 }
680 }
681
682 // Transform back
683 VP8ITransformWHT(dc_tmp, tmp[0]);
684 for (n = 0; n < 16; n += 2) {
685 VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
686 }
687
688 return nz;
689 }
690
ReconstructIntra4(VP8EncIterator * const it,int16_t levels[16],const uint8_t * const src,uint8_t * const yuv_out,int mode)691 static int ReconstructIntra4(VP8EncIterator* const it,
692 int16_t levels[16],
693 const uint8_t* const src,
694 uint8_t* const yuv_out,
695 int mode) {
696 const VP8Encoder* const enc = it->enc_;
697 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
698 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
699 int nz = 0;
700 int16_t tmp[16];
701
702 VP8FTransform(src, ref, tmp);
703 if (DO_TRELLIS_I4 && it->do_trellis_) {
704 const int x = it->i4_ & 3, y = it->i4_ >> 2;
705 const int ctx = it->top_nz_[x] + it->left_nz_[y];
706 nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
707 dqm->lambda_trellis_i4_);
708 } else {
709 nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
710 }
711 VP8ITransform(ref, tmp, yuv_out, 0);
712 return nz;
713 }
714
ReconstructUV(VP8EncIterator * const it,VP8ModeScore * const rd,uint8_t * const yuv_out,int mode)715 static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
716 uint8_t* const yuv_out, int mode) {
717 const VP8Encoder* const enc = it->enc_;
718 const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
719 const uint8_t* const src = it->yuv_in_ + U_OFF;
720 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
721 int nz = 0;
722 int n;
723 int16_t tmp[8][16];
724
725 for (n = 0; n < 8; ++n) {
726 VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
727 }
728 if (DO_TRELLIS_UV && it->do_trellis_) {
729 int ch, x, y;
730 for (ch = 0, n = 0; ch <= 2; ch += 2) {
731 for (y = 0; y < 2; ++y) {
732 for (x = 0; x < 2; ++x, ++n) {
733 const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
734 const int non_zero =
735 TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2,
736 &dqm->uv_, dqm->lambda_trellis_uv_);
737 it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
738 nz |= non_zero << n;
739 }
740 }
741 }
742 } else {
743 for (n = 0; n < 8; ++n) {
744 nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
745 }
746 }
747
748 for (n = 0; n < 8; n += 2) {
749 VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1);
750 }
751 return (nz << 16);
752 }
753
754 //------------------------------------------------------------------------------
755 // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
756 // Pick the mode is lower RD-cost = Rate + lamba * Distortion.
757
SwapPtr(uint8_t ** a,uint8_t ** b)758 static void SwapPtr(uint8_t** a, uint8_t** b) {
759 uint8_t* const tmp = *a;
760 *a = *b;
761 *b = tmp;
762 }
763
SwapOut(VP8EncIterator * const it)764 static void SwapOut(VP8EncIterator* const it) {
765 SwapPtr(&it->yuv_out_, &it->yuv_out2_);
766 }
767
PickBestIntra16(VP8EncIterator * const it,VP8ModeScore * const rd)768 static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
769 const VP8Encoder* const enc = it->enc_;
770 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
771 const int lambda = dqm->lambda_i16_;
772 const int tlambda = dqm->tlambda_;
773 const uint8_t* const src = it->yuv_in_ + Y_OFF;
774 VP8ModeScore rd16;
775 int mode;
776
777 rd->mode_i16 = -1;
778 for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
779 uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer
780 int nz;
781
782 // Reconstruct
783 nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
784
785 // Measure RD-score
786 rd16.D = VP8SSE16x16(src, tmp_dst);
787 rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
788 : 0;
789 rd16.R = VP8GetCostLuma16(it, &rd16);
790 rd16.R += VP8FixedCostsI16[mode];
791
792 // Since we always examine Intra16 first, we can overwrite *rd directly.
793 SetRDScore(lambda, &rd16);
794 if (mode == 0 || rd16.score < rd->score) {
795 CopyScore(rd, &rd16);
796 rd->mode_i16 = mode;
797 rd->nz = nz;
798 memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
799 memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
800 SwapOut(it);
801 }
802 }
803 SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision.
804 VP8SetIntra16Mode(it, rd->mode_i16);
805 }
806
807 //------------------------------------------------------------------------------
808
809 // return the cost array corresponding to the surrounding prediction modes.
GetCostModeI4(VP8EncIterator * const it,const uint8_t modes[16])810 static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
811 const uint8_t modes[16]) {
812 const int preds_w = it->enc_->preds_w_;
813 const int x = (it->i4_ & 3), y = it->i4_ >> 2;
814 const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
815 const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
816 return VP8FixedCostsI4[top][left];
817 }
818
PickBestIntra4(VP8EncIterator * const it,VP8ModeScore * const rd)819 static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
820 const VP8Encoder* const enc = it->enc_;
821 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
822 const int lambda = dqm->lambda_i4_;
823 const int tlambda = dqm->tlambda_;
824 const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
825 uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
826 int total_header_bits = 0;
827 VP8ModeScore rd_best;
828
829 if (enc->max_i4_header_bits_ == 0) {
830 return 0;
831 }
832
833 InitScore(&rd_best);
834 rd_best.score = 211; // '211' is the value of VP8BitCost(0, 145)
835 VP8IteratorStartI4(it);
836 do {
837 VP8ModeScore rd_i4;
838 int mode;
839 int best_mode = -1;
840 const uint8_t* const src = src0 + VP8Scan[it->i4_];
841 const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
842 uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
843 uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer.
844
845 InitScore(&rd_i4);
846 VP8MakeIntra4Preds(it);
847 for (mode = 0; mode < NUM_BMODES; ++mode) {
848 VP8ModeScore rd_tmp;
849 int16_t tmp_levels[16];
850
851 // Reconstruct
852 rd_tmp.nz =
853 ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
854
855 // Compute RD-score
856 rd_tmp.D = VP8SSE4x4(src, tmp_dst);
857 rd_tmp.SD =
858 tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
859 : 0;
860 rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
861 rd_tmp.R += mode_costs[mode];
862
863 SetRDScore(lambda, &rd_tmp);
864 if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
865 CopyScore(&rd_i4, &rd_tmp);
866 best_mode = mode;
867 SwapPtr(&tmp_dst, &best_block);
868 memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
869 }
870 }
871 SetRDScore(dqm->lambda_mode_, &rd_i4);
872 AddScore(&rd_best, &rd_i4);
873 total_header_bits += mode_costs[best_mode];
874 if (rd_best.score >= rd->score ||
875 total_header_bits > enc->max_i4_header_bits_) {
876 return 0;
877 }
878 // Copy selected samples if not in the right place already.
879 if (best_block != best_blocks + VP8Scan[it->i4_])
880 VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
881 rd->modes_i4[it->i4_] = best_mode;
882 it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
883 } while (VP8IteratorRotateI4(it, best_blocks));
884
885 // finalize state
886 CopyScore(rd, &rd_best);
887 VP8SetIntra4Mode(it, rd->modes_i4);
888 SwapOut(it);
889 memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
890 return 1; // select intra4x4 over intra16x16
891 }
892
893 //------------------------------------------------------------------------------
894
PickBestUV(VP8EncIterator * const it,VP8ModeScore * const rd)895 static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
896 const VP8Encoder* const enc = it->enc_;
897 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
898 const int lambda = dqm->lambda_uv_;
899 const uint8_t* const src = it->yuv_in_ + U_OFF;
900 uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer
901 uint8_t* const dst0 = it->yuv_out_ + U_OFF;
902 VP8ModeScore rd_best;
903 int mode;
904
905 rd->mode_uv = -1;
906 InitScore(&rd_best);
907 for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
908 VP8ModeScore rd_uv;
909
910 // Reconstruct
911 rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
912
913 // Compute RD-score
914 rd_uv.D = VP8SSE16x8(src, tmp_dst);
915 rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas.
916 rd_uv.R = VP8GetCostUV(it, &rd_uv);
917 rd_uv.R += VP8FixedCostsUV[mode];
918
919 SetRDScore(lambda, &rd_uv);
920 if (mode == 0 || rd_uv.score < rd_best.score) {
921 CopyScore(&rd_best, &rd_uv);
922 rd->mode_uv = mode;
923 memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
924 memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ?
925 }
926 }
927 VP8SetIntraUVMode(it, rd->mode_uv);
928 AddScore(rd, &rd_best);
929 }
930
931 //------------------------------------------------------------------------------
932 // Final reconstruction and quantization.
933
SimpleQuantize(VP8EncIterator * const it,VP8ModeScore * const rd)934 static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
935 const VP8Encoder* const enc = it->enc_;
936 const int is_i16 = (it->mb_->type_ == 1);
937 int nz = 0;
938
939 if (is_i16) {
940 nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
941 } else {
942 VP8IteratorStartI4(it);
943 do {
944 const int mode =
945 it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
946 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
947 uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
948 VP8MakeIntra4Preds(it);
949 nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
950 src, dst, mode) << it->i4_;
951 } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
952 }
953
954 nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
955 rd->nz = nz;
956 }
957
958 // Refine intra16/intra4 sub-modes based on distortion only (not rate).
DistoRefine(VP8EncIterator * const it,int try_both_i4_i16)959 static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) {
960 const int is_i16 = (it->mb_->type_ == 1);
961 score_t best_score = MAX_COST;
962
963 if (try_both_i4_i16 || is_i16) {
964 int mode;
965 int best_mode = -1;
966 for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
967 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
968 const uint8_t* const src = it->yuv_in_ + Y_OFF;
969 const score_t score = VP8SSE16x16(src, ref);
970 if (score < best_score) {
971 best_mode = mode;
972 best_score = score;
973 }
974 }
975 VP8SetIntra16Mode(it, best_mode);
976 }
977 if (try_both_i4_i16 || !is_i16) {
978 uint8_t modes_i4[16];
979 // We don't evaluate the rate here, but just account for it through a
980 // constant penalty (i4 mode usually needs more bits compared to i16).
981 score_t score_i4 = (score_t)I4_PENALTY;
982
983 VP8IteratorStartI4(it);
984 do {
985 int mode;
986 int best_sub_mode = -1;
987 score_t best_sub_score = MAX_COST;
988 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
989
990 // TODO(skal): we don't really need the prediction pixels here,
991 // but just the distortion against 'src'.
992 VP8MakeIntra4Preds(it);
993 for (mode = 0; mode < NUM_BMODES; ++mode) {
994 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
995 const score_t score = VP8SSE4x4(src, ref);
996 if (score < best_sub_score) {
997 best_sub_mode = mode;
998 best_sub_score = score;
999 }
1000 }
1001 modes_i4[it->i4_] = best_sub_mode;
1002 score_i4 += best_sub_score;
1003 if (score_i4 >= best_score) break;
1004 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
1005 if (score_i4 < best_score) {
1006 VP8SetIntra4Mode(it, modes_i4);
1007 }
1008 }
1009 }
1010
1011 //------------------------------------------------------------------------------
1012 // Entry point
1013
VP8Decimate(VP8EncIterator * const it,VP8ModeScore * const rd,VP8RDLevel rd_opt)1014 int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
1015 VP8RDLevel rd_opt) {
1016 int is_skipped;
1017 const int method = it->enc_->method_;
1018
1019 InitScore(rd);
1020
1021 // We can perform predictions for Luma16x16 and Chroma8x8 already.
1022 // Luma4x4 predictions needs to be done as-we-go.
1023 VP8MakeLuma16Preds(it);
1024 VP8MakeChroma8Preds(it);
1025
1026 if (rd_opt > RD_OPT_NONE) {
1027 it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
1028 PickBestIntra16(it, rd);
1029 if (method >= 2) {
1030 PickBestIntra4(it, rd);
1031 }
1032 PickBestUV(it, rd);
1033 if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now
1034 it->do_trellis_ = 1;
1035 SimpleQuantize(it, rd);
1036 }
1037 } else {
1038 // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower).
1039 // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode).
1040 DistoRefine(it, (method >= 2));
1041 SimpleQuantize(it, rd);
1042 }
1043 is_skipped = (rd->nz == 0);
1044 VP8SetSkip(it, is_skipped);
1045 return is_skipped;
1046 }
1047
1048 #if defined(__cplusplus) || defined(c_plusplus)
1049 } // extern "C"
1050 #endif
1051