• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 //   Quantization
9 //
10 // Author: Skal (pascal.massimino@gmail.com)
11 
12 #include <assert.h>
13 #include <math.h>
14 
15 #include "./vp8enci.h"
16 #include "./cost.h"
17 
18 #define DO_TRELLIS_I4  1
19 #define DO_TRELLIS_I16 1   // not a huge gain, but ok at low bitrate.
20 #define DO_TRELLIS_UV  0   // disable trellis for UV. Risky. Not worth.
21 #define USE_TDISTO 1
22 
23 #define MID_ALPHA 64      // neutral value for susceptibility
24 #define MIN_ALPHA 30      // lowest usable value for susceptibility
25 #define MAX_ALPHA 100     // higher meaninful value for susceptibility
26 
27 #define SNS_TO_DQ 0.9     // Scaling constant between the sns value and the QP
28                           // power-law modulation. Must be strictly less than 1.
29 
30 #define I4_PENALTY 4000   // Rate-penalty for quick i4/i16 decision
31 
32 #define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
33 
34 #if defined(__cplusplus) || defined(c_plusplus)
35 extern "C" {
36 #endif
37 
38 //------------------------------------------------------------------------------
39 
clip(int v,int m,int M)40 static WEBP_INLINE int clip(int v, int m, int M) {
41   return v < m ? m : v > M ? M : v;
42 }
43 
44 static const uint8_t kZigzag[16] = {
45   0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
46 };
47 
48 static const uint8_t kDcTable[128] = {
49   4,     5,   6,   7,   8,   9,  10,  10,
50   11,   12,  13,  14,  15,  16,  17,  17,
51   18,   19,  20,  20,  21,  21,  22,  22,
52   23,   23,  24,  25,  25,  26,  27,  28,
53   29,   30,  31,  32,  33,  34,  35,  36,
54   37,   37,  38,  39,  40,  41,  42,  43,
55   44,   45,  46,  46,  47,  48,  49,  50,
56   51,   52,  53,  54,  55,  56,  57,  58,
57   59,   60,  61,  62,  63,  64,  65,  66,
58   67,   68,  69,  70,  71,  72,  73,  74,
59   75,   76,  76,  77,  78,  79,  80,  81,
60   82,   83,  84,  85,  86,  87,  88,  89,
61   91,   93,  95,  96,  98, 100, 101, 102,
62   104, 106, 108, 110, 112, 114, 116, 118,
63   122, 124, 126, 128, 130, 132, 134, 136,
64   138, 140, 143, 145, 148, 151, 154, 157
65 };
66 
67 static const uint16_t kAcTable[128] = {
68   4,     5,   6,   7,   8,   9,  10,  11,
69   12,   13,  14,  15,  16,  17,  18,  19,
70   20,   21,  22,  23,  24,  25,  26,  27,
71   28,   29,  30,  31,  32,  33,  34,  35,
72   36,   37,  38,  39,  40,  41,  42,  43,
73   44,   45,  46,  47,  48,  49,  50,  51,
74   52,   53,  54,  55,  56,  57,  58,  60,
75   62,   64,  66,  68,  70,  72,  74,  76,
76   78,   80,  82,  84,  86,  88,  90,  92,
77   94,   96,  98, 100, 102, 104, 106, 108,
78   110, 112, 114, 116, 119, 122, 125, 128,
79   131, 134, 137, 140, 143, 146, 149, 152,
80   155, 158, 161, 164, 167, 170, 173, 177,
81   181, 185, 189, 193, 197, 201, 205, 209,
82   213, 217, 221, 225, 229, 234, 239, 245,
83   249, 254, 259, 264, 269, 274, 279, 284
84 };
85 
86 static const uint16_t kAcTable2[128] = {
87   8,     8,   9,  10,  12,  13,  15,  17,
88   18,   20,  21,  23,  24,  26,  27,  29,
89   31,   32,  34,  35,  37,  38,  40,  41,
90   43,   44,  46,  48,  49,  51,  52,  54,
91   55,   57,  58,  60,  62,  63,  65,  66,
92   68,   69,  71,  72,  74,  75,  77,  79,
93   80,   82,  83,  85,  86,  88,  89,  93,
94   96,   99, 102, 105, 108, 111, 114, 117,
95   120, 124, 127, 130, 133, 136, 139, 142,
96   145, 148, 151, 155, 158, 161, 164, 167,
97   170, 173, 176, 179, 184, 189, 193, 198,
98   203, 207, 212, 217, 221, 226, 230, 235,
99   240, 244, 249, 254, 258, 263, 268, 274,
100   280, 286, 292, 299, 305, 311, 317, 323,
101   330, 336, 342, 348, 354, 362, 370, 379,
102   385, 393, 401, 409, 416, 424, 432, 440
103 };
104 
105 static const uint16_t kCoeffThresh[16] = {
106   0,  10, 20, 30,
107   10, 20, 30, 30,
108   20, 30, 30, 30,
109   30, 30, 30, 30
110 };
111 
112 // TODO(skal): tune more. Coeff thresholding?
113 static const uint8_t kBiasMatrices[3][16] = {  // [3] = [luma-ac,luma-dc,chroma]
114   { 96, 96, 96, 96,
115     96, 96, 96, 96,
116     96, 96, 96, 96,
117     96, 96, 96, 96 },
118   { 96, 96, 96, 96,
119     96, 96, 96, 96,
120     96, 96, 96, 96,
121     96, 96, 96, 96 },
122   { 96, 96, 96, 96,
123     96, 96, 96, 96,
124     96, 96, 96, 96,
125     96, 96, 96, 96 }
126 };
127 
128 // Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis).
129 // Hack-ish but helpful for mid-bitrate range. Use with care.
130 static const uint8_t kFreqSharpening[16] = {
131   0,  30, 60, 90,
132   30, 60, 90, 90,
133   60, 90, 90, 90,
134   90, 90, 90, 90
135 };
136 
137 //------------------------------------------------------------------------------
138 // Initialize quantization parameters in VP8Matrix
139 
140 // Returns the average quantizer
ExpandMatrix(VP8Matrix * const m,int type)141 static int ExpandMatrix(VP8Matrix* const m, int type) {
142   int i;
143   int sum = 0;
144   for (i = 2; i < 16; ++i) {
145     m->q_[i] = m->q_[1];
146   }
147   for (i = 0; i < 16; ++i) {
148     const int j = kZigzag[i];
149     const int bias = kBiasMatrices[type][j];
150     m->iq_[j] = (1 << QFIX) / m->q_[j];
151     m->bias_[j] = BIAS(bias);
152     // TODO(skal): tune kCoeffThresh[]
153     m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8;
154     m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11;
155     sum += m->q_[j];
156   }
157   return (sum + 8) >> 4;
158 }
159 
SetupMatrices(VP8Encoder * enc)160 static void SetupMatrices(VP8Encoder* enc) {
161   int i;
162   const int tlambda_scale =
163     (enc->method_ >= 4) ? enc->config_->sns_strength
164                         : 0;
165   const int num_segments = enc->segment_hdr_.num_segments_;
166   for (i = 0; i < num_segments; ++i) {
167     VP8SegmentInfo* const m = &enc->dqm_[i];
168     const int q = m->quant_;
169     int q4, q16, quv;
170     m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
171     m->y1_.q_[1] = kAcTable[clip(q,                  0, 127)];
172 
173     m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
174     m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
175 
176     m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
177     m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
178 
179     q4  = ExpandMatrix(&m->y1_, 0);
180     q16 = ExpandMatrix(&m->y2_, 1);
181     quv = ExpandMatrix(&m->uv_, 2);
182 
183     // TODO: Switch to kLambda*[] tables?
184     {
185       m->lambda_i4_  = (3 * q4 * q4) >> 7;
186       m->lambda_i16_ = (3 * q16 * q16);
187       m->lambda_uv_  = (3 * quv * quv) >> 6;
188       m->lambda_mode_    = (1 * q4 * q4) >> 7;
189       m->lambda_trellis_i4_  = (7 * q4 * q4) >> 3;
190       m->lambda_trellis_i16_ = (q16 * q16) >> 2;
191       m->lambda_trellis_uv_  = (quv *quv) << 1;
192       m->tlambda_            = (tlambda_scale * q4) >> 5;
193     }
194   }
195 }
196 
197 //------------------------------------------------------------------------------
198 // Initialize filtering parameters
199 
200 // Very small filter-strength values have close to no visual effect. So we can
201 // save a little decoding-CPU by turning filtering off for these.
202 #define FSTRENGTH_CUTOFF 3
203 
SetupFilterStrength(VP8Encoder * const enc)204 static void SetupFilterStrength(VP8Encoder* const enc) {
205   int i;
206   const int level0 = enc->config_->filter_strength;
207   for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
208     // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS)
209     const int level = level0 * 256 * enc->dqm_[i].quant_ / 128;
210     const int f = level / (256 + enc->dqm_[i].beta_);
211     enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
212   }
213   // We record the initial strength (mainly for the case of 1-segment only).
214   enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
215   enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
216   enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
217 }
218 
219 //------------------------------------------------------------------------------
220 
221 // Note: if you change the values below, remember that the max range
222 // allowed by the syntax for DQ_UV is [-16,16].
223 #define MAX_DQ_UV (6)
224 #define MIN_DQ_UV (-4)
225 
226 // We want to emulate jpeg-like behaviour where the expected "good" quality
227 // is around q=75. Internally, our "good" middle is around c=50. So we
228 // map accordingly using linear piece-wise function
QualityToCompression(double c)229 static double QualityToCompression(double c) {
230   const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
231   // The file size roughly scales as pow(quantizer, 3.). Actually, the
232   // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
233   // in the mid-quant range. So we scale the compressibility inversely to
234   // this power-law: quant ~= compression ^ 1/3. This law holds well for
235   // low quant. Finer modelling for high-quant would make use of kAcTable[]
236   // more explicitly.
237   const double v = pow(linear_c, 1 / 3.);
238   return v;
239 }
240 
QualityToJPEGCompression(double c,double alpha)241 static double QualityToJPEGCompression(double c, double alpha) {
242   // We map the complexity 'alpha' and quality setting 'c' to a compression
243   // exponent empirically matched to the compression curve of libjpeg6b.
244   // On average, the WebP output size will be roughly similar to that of a
245   // JPEG file compressed with same quality factor.
246   const double amin = 0.30;
247   const double amax = 0.85;
248   const double exp_min = 0.4;
249   const double exp_max = 0.9;
250   const double slope = (exp_min - exp_max) / (amax - amin);
251   // Linearly interpolate 'expn' from exp_min to exp_max
252   // in the [amin, amax] range.
253   const double expn = (alpha > amax) ? exp_min
254                     : (alpha < amin) ? exp_max
255                     : exp_max + slope * (alpha - amin);
256   const double v = pow(c, expn);
257   return v;
258 }
259 
SegmentsAreEquivalent(const VP8SegmentInfo * const S1,const VP8SegmentInfo * const S2)260 static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
261                                  const VP8SegmentInfo* const S2) {
262   return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
263 }
264 
SimplifySegments(VP8Encoder * const enc)265 static void SimplifySegments(VP8Encoder* const enc) {
266   int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
267   const int num_segments = enc->segment_hdr_.num_segments_;
268   int num_final_segments = 1;
269   int s1, s2;
270   for (s1 = 1; s1 < num_segments; ++s1) {    // find similar segments
271     const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
272     int found = 0;
273     // check if we already have similar segment
274     for (s2 = 0; s2 < num_final_segments; ++s2) {
275       const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
276       if (SegmentsAreEquivalent(S1, S2)) {
277         found = 1;
278         break;
279       }
280     }
281     map[s1] = s2;
282     if (!found) {
283       if (num_final_segments != s1) {
284         enc->dqm_[num_final_segments] = enc->dqm_[s1];
285       }
286       ++num_final_segments;
287     }
288   }
289   if (num_final_segments < num_segments) {  // Remap
290     int i = enc->mb_w_ * enc->mb_h_;
291     while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
292     enc->segment_hdr_.num_segments_ = num_final_segments;
293     // Replicate the trailing segment infos (it's mostly cosmetics)
294     for (i = num_final_segments; i < num_segments; ++i) {
295       enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
296     }
297   }
298 }
299 
VP8SetSegmentParams(VP8Encoder * const enc,float quality)300 void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
301   int i;
302   int dq_uv_ac, dq_uv_dc;
303   const int num_segments = enc->segment_hdr_.num_segments_;
304   const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
305   const double Q = quality / 100.;
306   const double c_base = enc->config_->emulate_jpeg_size ?
307       QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
308       QualityToCompression(Q);
309   for (i = 0; i < num_segments; ++i) {
310     // We modulate the base coefficient to accommodate for the quantization
311     // susceptibility and allow denser segments to be quantized more.
312     const double expn = 1. - amp * enc->dqm_[i].alpha_;
313     const double c = pow(c_base, expn);
314     const int q = (int)(127. * (1. - c));
315     assert(expn > 0.);
316     enc->dqm_[i].quant_ = clip(q, 0, 127);
317   }
318 
319   // purely indicative in the bitstream (except for the 1-segment case)
320   enc->base_quant_ = enc->dqm_[0].quant_;
321 
322   // fill-in values for the unused segments (required by the syntax)
323   for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
324     enc->dqm_[i].quant_ = enc->base_quant_;
325   }
326 
327   // uv_alpha_ is normally spread around ~60. The useful range is
328   // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
329   // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
330   dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
331                                           / (MAX_ALPHA - MIN_ALPHA);
332   // we rescale by the user-defined strength of adaptation
333   dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
334   // and make it safe.
335   dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
336   // We also boost the dc-uv-quant a little, based on sns-strength, since
337   // U/V channels are quite more reactive to high quants (flat DC-blocks
338   // tend to appear, and are displeasant).
339   dq_uv_dc = -4 * enc->config_->sns_strength / 100;
340   dq_uv_dc = clip(dq_uv_dc, -15, 15);   // 4bit-signed max allowed
341 
342   enc->dq_y1_dc_ = 0;       // TODO(skal): dq-lum
343   enc->dq_y2_dc_ = 0;
344   enc->dq_y2_ac_ = 0;
345   enc->dq_uv_dc_ = dq_uv_dc;
346   enc->dq_uv_ac_ = dq_uv_ac;
347 
348   SetupFilterStrength(enc);   // initialize segments' filtering, eventually
349 
350   if (num_segments > 1) SimplifySegments(enc);
351 
352   SetupMatrices(enc);         // finalize quantization matrices
353 }
354 
355 //------------------------------------------------------------------------------
356 // Form the predictions in cache
357 
358 // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
359 const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
360 const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
361 
362 // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
363 const int VP8I4ModeOffsets[NUM_BMODES] = {
364   I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
365 };
366 
VP8MakeLuma16Preds(const VP8EncIterator * const it)367 void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
368   const VP8Encoder* const enc = it->enc_;
369   const uint8_t* const left = it->x_ ? enc->y_left_ : NULL;
370   const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL;
371   VP8EncPredLuma16(it->yuv_p_, left, top);
372 }
373 
VP8MakeChroma8Preds(const VP8EncIterator * const it)374 void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
375   const VP8Encoder* const enc = it->enc_;
376   const uint8_t* const left = it->x_ ? enc->u_left_ : NULL;
377   const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL;
378   VP8EncPredChroma8(it->yuv_p_, left, top);
379 }
380 
VP8MakeIntra4Preds(const VP8EncIterator * const it)381 void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
382   VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
383 }
384 
385 //------------------------------------------------------------------------------
386 // Quantize
387 
388 // Layout:
389 // +----+
390 // |YYYY| 0
391 // |YYYY| 4
392 // |YYYY| 8
393 // |YYYY| 12
394 // +----+
395 // |UUVV| 16
396 // |UUVV| 20
397 // +----+
398 
399 const int VP8Scan[16 + 4 + 4] = {
400   // Luma
401   0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
402   0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
403   0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
404   0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
405 
406   0 + 0 * BPS,   4 + 0 * BPS, 0 + 4 * BPS,  4 + 4 * BPS,    // U
407   8 + 0 * BPS,  12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS     // V
408 };
409 
410 //------------------------------------------------------------------------------
411 // Distortion measurement
412 
413 static const uint16_t kWeightY[16] = {
414   38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
415 };
416 
417 static const uint16_t kWeightTrellis[16] = {
418 #if USE_TDISTO == 0
419   16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
420 #else
421   30, 27, 19, 11,
422   27, 24, 17, 10,
423   19, 17, 12,  8,
424   11, 10,  8,  6
425 #endif
426 };
427 
428 // Init/Copy the common fields in score.
InitScore(VP8ModeScore * const rd)429 static void InitScore(VP8ModeScore* const rd) {
430   rd->D  = 0;
431   rd->SD = 0;
432   rd->R  = 0;
433   rd->nz = 0;
434   rd->score = MAX_COST;
435 }
436 
CopyScore(VP8ModeScore * const dst,const VP8ModeScore * const src)437 static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
438   dst->D  = src->D;
439   dst->SD = src->SD;
440   dst->R  = src->R;
441   dst->nz = src->nz;      // note that nz is not accumulated, but just copied.
442   dst->score = src->score;
443 }
444 
AddScore(VP8ModeScore * const dst,const VP8ModeScore * const src)445 static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
446   dst->D  += src->D;
447   dst->SD += src->SD;
448   dst->R  += src->R;
449   dst->nz |= src->nz;     // here, new nz bits are accumulated.
450   dst->score += src->score;
451 }
452 
453 //------------------------------------------------------------------------------
454 // Performs trellis-optimized quantization.
455 
456 // Trellis
457 
458 typedef struct {
459   int prev;        // best previous
460   int level;       // level
461   int sign;        // sign of coeff_i
462   score_t cost;    // bit cost
463   score_t error;   // distortion = sum of (|coeff_i| - level_i * Q_i)^2
464   int ctx;         // context (only depends on 'level'. Could be spared.)
465 } Node;
466 
467 // If a coefficient was quantized to a value Q (using a neutral bias),
468 // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
469 // We don't test negative values though.
470 #define MIN_DELTA 0   // how much lower level to try
471 #define MAX_DELTA 1   // how much higher
472 #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
473 #define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])
474 
SetRDScore(int lambda,VP8ModeScore * const rd)475 static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
476   // TODO: incorporate the "* 256" in the tables?
477   rd->score = rd->R * lambda + 256 * (rd->D + rd->SD);
478 }
479 
RDScoreTrellis(int lambda,score_t rate,score_t distortion)480 static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
481                                           score_t distortion) {
482   return rate * lambda + 256 * distortion;
483 }
484 
TrellisQuantizeBlock(const VP8EncIterator * const it,int16_t in[16],int16_t out[16],int ctx0,int coeff_type,const VP8Matrix * const mtx,int lambda)485 static int TrellisQuantizeBlock(const VP8EncIterator* const it,
486                                 int16_t in[16], int16_t out[16],
487                                 int ctx0, int coeff_type,
488                                 const VP8Matrix* const mtx,
489                                 int lambda) {
490   ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
491   CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
492   const int first = (coeff_type == 0) ? 1 : 0;
493   Node nodes[17][NUM_NODES];
494   int best_path[3] = {-1, -1, -1};   // store best-last/best-level/best-previous
495   score_t best_score;
496   int best_node;
497   int last = first - 1;
498   int n, m, p, nz;
499 
500   {
501     score_t cost;
502     score_t max_error;
503     const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
504     const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];
505 
506     // compute maximal distortion.
507     max_error = 0;
508     for (n = first; n < 16; ++n) {
509       const int j  = kZigzag[n];
510       const int err = in[j] * in[j];
511       max_error += kWeightTrellis[j] * err;
512       if (err > thresh) last = n;
513     }
514     // we don't need to go inspect up to n = 16 coeffs. We can just go up
515     // to last + 1 (inclusive) without losing much.
516     if (last < 15) ++last;
517 
518     // compute 'skip' score. This is the max score one can do.
519     cost = VP8BitCost(0, last_proba);
520     best_score = RDScoreTrellis(lambda, cost, max_error);
521 
522     // initialize source node.
523     n = first - 1;
524     for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
525       NODE(n, m).cost = 0;
526       NODE(n, m).error = max_error;
527       NODE(n, m).ctx = ctx0;
528     }
529   }
530 
531   // traverse trellis.
532   for (n = first; n <= last; ++n) {
533     const int j  = kZigzag[n];
534     const int Q  = mtx->q_[j];
535     const int iQ = mtx->iq_[j];
536     const int B = BIAS(0x00);     // neutral bias
537     // note: it's important to take sign of the _original_ coeff,
538     // so we don't have to consider level < 0 afterward.
539     const int sign = (in[j] < 0);
540     int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
541     int level0;
542     if (coeff0 > 2047) coeff0 = 2047;
543 
544     level0 = QUANTDIV(coeff0, iQ, B);
545     // test all alternate level values around level0.
546     for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
547       Node* const cur = &NODE(n, m);
548       int delta_error, new_error;
549       score_t cur_score = MAX_COST;
550       int level = level0 + m;
551       int last_proba;
552 
553       cur->sign = sign;
554       cur->level = level;
555       cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
556       if (level >= 2048 || level < 0) {   // node is dead?
557         cur->cost = MAX_COST;
558         continue;
559       }
560       last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];
561 
562       // Compute delta_error = how much coding this level will
563       // subtract as distortion to max_error
564       new_error = coeff0 - level * Q;
565       delta_error =
566         kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);
567 
568       // Inspect all possible non-dead predecessors. Retain only the best one.
569       for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
570         const Node* const prev = &NODE(n - 1, p);
571         const int prev_ctx = prev->ctx;
572         const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
573         const score_t total_error = prev->error - delta_error;
574         score_t cost, base_cost, score;
575 
576         if (prev->cost >= MAX_COST) {   // dead node?
577           continue;
578         }
579 
580         // Base cost of both terminal/non-terminal
581         base_cost = prev->cost + VP8LevelCost(tcost, level);
582 
583         // Examine node assuming it's a non-terminal one.
584         cost = base_cost;
585         if (level && n < 15) {
586           cost += VP8BitCost(1, last_proba);
587         }
588         score = RDScoreTrellis(lambda, cost, total_error);
589         if (score < cur_score) {
590           cur_score = score;
591           cur->cost  = cost;
592           cur->error = total_error;
593           cur->prev  = p;
594         }
595 
596         // Now, record best terminal node (and thus best entry in the graph).
597         if (level) {
598           cost = base_cost;
599           if (n < 15) cost += VP8BitCost(0, last_proba);
600           score = RDScoreTrellis(lambda, cost, total_error);
601           if (score < best_score) {
602             best_score = score;
603             best_path[0] = n;   // best eob position
604             best_path[1] = m;   // best level
605             best_path[2] = p;   // best predecessor
606           }
607         }
608       }
609     }
610   }
611 
612   // Fresh start
613   memset(in + first, 0, (16 - first) * sizeof(*in));
614   memset(out + first, 0, (16 - first) * sizeof(*out));
615   if (best_path[0] == -1) {
616     return 0;   // skip!
617   }
618 
619   // Unwind the best path.
620   // Note: best-prev on terminal node is not necessarily equal to the
621   // best_prev for non-terminal. So we patch best_path[2] in.
622   n = best_path[0];
623   best_node = best_path[1];
624   NODE(n, best_node).prev = best_path[2];   // force best-prev for terminal
625   nz = 0;
626 
627   for (; n >= first; --n) {
628     const Node* const node = &NODE(n, best_node);
629     const int j = kZigzag[n];
630     out[n] = node->sign ? -node->level : node->level;
631     nz |= (node->level != 0);
632     in[j] = out[n] * mtx->q_[j];
633     best_node = node->prev;
634   }
635   return nz;
636 }
637 
638 #undef NODE
639 
640 //------------------------------------------------------------------------------
641 // Performs: difference, transform, quantize, back-transform, add
642 // all at once. Output is the reconstructed block in *yuv_out, and the
643 // quantized levels in *levels.
644 
ReconstructIntra16(VP8EncIterator * const it,VP8ModeScore * const rd,uint8_t * const yuv_out,int mode)645 static int ReconstructIntra16(VP8EncIterator* const it,
646                               VP8ModeScore* const rd,
647                               uint8_t* const yuv_out,
648                               int mode) {
649   const VP8Encoder* const enc = it->enc_;
650   const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
651   const uint8_t* const src = it->yuv_in_ + Y_OFF;
652   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
653   int nz = 0;
654   int n;
655   int16_t tmp[16][16], dc_tmp[16];
656 
657   for (n = 0; n < 16; ++n) {
658     VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
659   }
660   VP8FTransformWHT(tmp[0], dc_tmp);
661   nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24;
662 
663   if (DO_TRELLIS_I16 && it->do_trellis_) {
664     int x, y;
665     VP8IteratorNzToBytes(it);
666     for (y = 0, n = 0; y < 4; ++y) {
667       for (x = 0; x < 4; ++x, ++n) {
668         const int ctx = it->top_nz_[x] + it->left_nz_[y];
669         const int non_zero =
670            TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
671                                 &dqm->y1_, dqm->lambda_trellis_i16_);
672         it->top_nz_[x] = it->left_nz_[y] = non_zero;
673         nz |= non_zero << n;
674       }
675     }
676   } else {
677     for (n = 0; n < 16; ++n) {
678       nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
679     }
680   }
681 
682   // Transform back
683   VP8ITransformWHT(dc_tmp, tmp[0]);
684   for (n = 0; n < 16; n += 2) {
685     VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
686   }
687 
688   return nz;
689 }
690 
ReconstructIntra4(VP8EncIterator * const it,int16_t levels[16],const uint8_t * const src,uint8_t * const yuv_out,int mode)691 static int ReconstructIntra4(VP8EncIterator* const it,
692                              int16_t levels[16],
693                              const uint8_t* const src,
694                              uint8_t* const yuv_out,
695                              int mode) {
696   const VP8Encoder* const enc = it->enc_;
697   const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
698   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
699   int nz = 0;
700   int16_t tmp[16];
701 
702   VP8FTransform(src, ref, tmp);
703   if (DO_TRELLIS_I4 && it->do_trellis_) {
704     const int x = it->i4_ & 3, y = it->i4_ >> 2;
705     const int ctx = it->top_nz_[x] + it->left_nz_[y];
706     nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
707                               dqm->lambda_trellis_i4_);
708   } else {
709     nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
710   }
711   VP8ITransform(ref, tmp, yuv_out, 0);
712   return nz;
713 }
714 
ReconstructUV(VP8EncIterator * const it,VP8ModeScore * const rd,uint8_t * const yuv_out,int mode)715 static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
716                          uint8_t* const yuv_out, int mode) {
717   const VP8Encoder* const enc = it->enc_;
718   const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
719   const uint8_t* const src = it->yuv_in_ + U_OFF;
720   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
721   int nz = 0;
722   int n;
723   int16_t tmp[8][16];
724 
725   for (n = 0; n < 8; ++n) {
726     VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
727   }
728   if (DO_TRELLIS_UV && it->do_trellis_) {
729     int ch, x, y;
730     for (ch = 0, n = 0; ch <= 2; ch += 2) {
731       for (y = 0; y < 2; ++y) {
732         for (x = 0; x < 2; ++x, ++n) {
733           const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
734           const int non_zero =
735             TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2,
736                                  &dqm->uv_, dqm->lambda_trellis_uv_);
737           it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
738           nz |= non_zero << n;
739         }
740       }
741     }
742   } else {
743     for (n = 0; n < 8; ++n) {
744       nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
745     }
746   }
747 
748   for (n = 0; n < 8; n += 2) {
749     VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1);
750   }
751   return (nz << 16);
752 }
753 
754 //------------------------------------------------------------------------------
755 // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
756 // Pick the mode is lower RD-cost = Rate + lamba * Distortion.
757 
SwapPtr(uint8_t ** a,uint8_t ** b)758 static void SwapPtr(uint8_t** a, uint8_t** b) {
759   uint8_t* const tmp = *a;
760   *a = *b;
761   *b = tmp;
762 }
763 
SwapOut(VP8EncIterator * const it)764 static void SwapOut(VP8EncIterator* const it) {
765   SwapPtr(&it->yuv_out_, &it->yuv_out2_);
766 }
767 
PickBestIntra16(VP8EncIterator * const it,VP8ModeScore * const rd)768 static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
769   const VP8Encoder* const enc = it->enc_;
770   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
771   const int lambda = dqm->lambda_i16_;
772   const int tlambda = dqm->tlambda_;
773   const uint8_t* const src = it->yuv_in_ + Y_OFF;
774   VP8ModeScore rd16;
775   int mode;
776 
777   rd->mode_i16 = -1;
778   for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
779     uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF;  // scratch buffer
780     int nz;
781 
782     // Reconstruct
783     nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
784 
785     // Measure RD-score
786     rd16.D = VP8SSE16x16(src, tmp_dst);
787     rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
788             : 0;
789     rd16.R = VP8GetCostLuma16(it, &rd16);
790     rd16.R += VP8FixedCostsI16[mode];
791 
792     // Since we always examine Intra16 first, we can overwrite *rd directly.
793     SetRDScore(lambda, &rd16);
794     if (mode == 0 || rd16.score < rd->score) {
795       CopyScore(rd, &rd16);
796       rd->mode_i16 = mode;
797       rd->nz = nz;
798       memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
799       memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
800       SwapOut(it);
801     }
802   }
803   SetRDScore(dqm->lambda_mode_, rd);   // finalize score for mode decision.
804   VP8SetIntra16Mode(it, rd->mode_i16);
805 }
806 
807 //------------------------------------------------------------------------------
808 
809 // return the cost array corresponding to the surrounding prediction modes.
GetCostModeI4(VP8EncIterator * const it,const uint8_t modes[16])810 static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
811                                      const uint8_t modes[16]) {
812   const int preds_w = it->enc_->preds_w_;
813   const int x = (it->i4_ & 3), y = it->i4_ >> 2;
814   const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
815   const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
816   return VP8FixedCostsI4[top][left];
817 }
818 
PickBestIntra4(VP8EncIterator * const it,VP8ModeScore * const rd)819 static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
820   const VP8Encoder* const enc = it->enc_;
821   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
822   const int lambda = dqm->lambda_i4_;
823   const int tlambda = dqm->tlambda_;
824   const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
825   uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
826   int total_header_bits = 0;
827   VP8ModeScore rd_best;
828 
829   if (enc->max_i4_header_bits_ == 0) {
830     return 0;
831   }
832 
833   InitScore(&rd_best);
834   rd_best.score = 211;  // '211' is the value of VP8BitCost(0, 145)
835   VP8IteratorStartI4(it);
836   do {
837     VP8ModeScore rd_i4;
838     int mode;
839     int best_mode = -1;
840     const uint8_t* const src = src0 + VP8Scan[it->i4_];
841     const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
842     uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
843     uint8_t* tmp_dst = it->yuv_p_ + I4TMP;    // scratch buffer.
844 
845     InitScore(&rd_i4);
846     VP8MakeIntra4Preds(it);
847     for (mode = 0; mode < NUM_BMODES; ++mode) {
848       VP8ModeScore rd_tmp;
849       int16_t tmp_levels[16];
850 
851       // Reconstruct
852       rd_tmp.nz =
853           ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
854 
855       // Compute RD-score
856       rd_tmp.D = VP8SSE4x4(src, tmp_dst);
857       rd_tmp.SD =
858           tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
859                   : 0;
860       rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
861       rd_tmp.R += mode_costs[mode];
862 
863       SetRDScore(lambda, &rd_tmp);
864       if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
865         CopyScore(&rd_i4, &rd_tmp);
866         best_mode = mode;
867         SwapPtr(&tmp_dst, &best_block);
868         memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
869       }
870     }
871     SetRDScore(dqm->lambda_mode_, &rd_i4);
872     AddScore(&rd_best, &rd_i4);
873     total_header_bits += mode_costs[best_mode];
874     if (rd_best.score >= rd->score ||
875         total_header_bits > enc->max_i4_header_bits_) {
876       return 0;
877     }
878     // Copy selected samples if not in the right place already.
879     if (best_block != best_blocks + VP8Scan[it->i4_])
880       VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
881     rd->modes_i4[it->i4_] = best_mode;
882     it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
883   } while (VP8IteratorRotateI4(it, best_blocks));
884 
885   // finalize state
886   CopyScore(rd, &rd_best);
887   VP8SetIntra4Mode(it, rd->modes_i4);
888   SwapOut(it);
889   memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
890   return 1;   // select intra4x4 over intra16x16
891 }
892 
893 //------------------------------------------------------------------------------
894 
PickBestUV(VP8EncIterator * const it,VP8ModeScore * const rd)895 static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
896   const VP8Encoder* const enc = it->enc_;
897   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
898   const int lambda = dqm->lambda_uv_;
899   const uint8_t* const src = it->yuv_in_ + U_OFF;
900   uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF;  // scratch buffer
901   uint8_t* const dst0 = it->yuv_out_ + U_OFF;
902   VP8ModeScore rd_best;
903   int mode;
904 
905   rd->mode_uv = -1;
906   InitScore(&rd_best);
907   for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
908     VP8ModeScore rd_uv;
909 
910     // Reconstruct
911     rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
912 
913     // Compute RD-score
914     rd_uv.D  = VP8SSE16x8(src, tmp_dst);
915     rd_uv.SD = 0;    // TODO: should we call TDisto? it tends to flatten areas.
916     rd_uv.R  = VP8GetCostUV(it, &rd_uv);
917     rd_uv.R += VP8FixedCostsUV[mode];
918 
919     SetRDScore(lambda, &rd_uv);
920     if (mode == 0 || rd_uv.score < rd_best.score) {
921       CopyScore(&rd_best, &rd_uv);
922       rd->mode_uv = mode;
923       memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
924       memcpy(dst0, tmp_dst, UV_SIZE);   //  TODO: SwapUVOut() ?
925     }
926   }
927   VP8SetIntraUVMode(it, rd->mode_uv);
928   AddScore(rd, &rd_best);
929 }
930 
931 //------------------------------------------------------------------------------
932 // Final reconstruction and quantization.
933 
SimpleQuantize(VP8EncIterator * const it,VP8ModeScore * const rd)934 static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
935   const VP8Encoder* const enc = it->enc_;
936   const int is_i16 = (it->mb_->type_ == 1);
937   int nz = 0;
938 
939   if (is_i16) {
940     nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
941   } else {
942     VP8IteratorStartI4(it);
943     do {
944       const int mode =
945           it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
946       const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
947       uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
948       VP8MakeIntra4Preds(it);
949       nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
950                               src, dst, mode) << it->i4_;
951     } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
952   }
953 
954   nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
955   rd->nz = nz;
956 }
957 
958 // Refine intra16/intra4 sub-modes based on distortion only (not rate).
DistoRefine(VP8EncIterator * const it,int try_both_i4_i16)959 static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) {
960   const int is_i16 = (it->mb_->type_ == 1);
961   score_t best_score = MAX_COST;
962 
963   if (try_both_i4_i16 || is_i16) {
964     int mode;
965     int best_mode = -1;
966     for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
967       const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
968       const uint8_t* const src = it->yuv_in_ + Y_OFF;
969       const score_t score = VP8SSE16x16(src, ref);
970       if (score < best_score) {
971         best_mode = mode;
972         best_score = score;
973       }
974     }
975     VP8SetIntra16Mode(it, best_mode);
976   }
977   if (try_both_i4_i16 || !is_i16) {
978     uint8_t modes_i4[16];
979     // We don't evaluate the rate here, but just account for it through a
980     // constant penalty (i4 mode usually needs more bits compared to i16).
981     score_t score_i4 = (score_t)I4_PENALTY;
982 
983     VP8IteratorStartI4(it);
984     do {
985       int mode;
986       int best_sub_mode = -1;
987       score_t best_sub_score = MAX_COST;
988       const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
989 
990       // TODO(skal): we don't really need the prediction pixels here,
991       // but just the distortion against 'src'.
992       VP8MakeIntra4Preds(it);
993       for (mode = 0; mode < NUM_BMODES; ++mode) {
994         const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
995         const score_t score = VP8SSE4x4(src, ref);
996         if (score < best_sub_score) {
997           best_sub_mode = mode;
998           best_sub_score = score;
999         }
1000       }
1001       modes_i4[it->i4_] = best_sub_mode;
1002       score_i4 += best_sub_score;
1003       if (score_i4 >= best_score) break;
1004     } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
1005     if (score_i4 < best_score) {
1006       VP8SetIntra4Mode(it, modes_i4);
1007     }
1008   }
1009 }
1010 
1011 //------------------------------------------------------------------------------
1012 // Entry point
1013 
VP8Decimate(VP8EncIterator * const it,VP8ModeScore * const rd,VP8RDLevel rd_opt)1014 int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
1015                 VP8RDLevel rd_opt) {
1016   int is_skipped;
1017   const int method = it->enc_->method_;
1018 
1019   InitScore(rd);
1020 
1021   // We can perform predictions for Luma16x16 and Chroma8x8 already.
1022   // Luma4x4 predictions needs to be done as-we-go.
1023   VP8MakeLuma16Preds(it);
1024   VP8MakeChroma8Preds(it);
1025 
1026   if (rd_opt > RD_OPT_NONE) {
1027     it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
1028     PickBestIntra16(it, rd);
1029     if (method >= 2) {
1030       PickBestIntra4(it, rd);
1031     }
1032     PickBestUV(it, rd);
1033     if (rd_opt == RD_OPT_TRELLIS) {   // finish off with trellis-optim now
1034       it->do_trellis_ = 1;
1035       SimpleQuantize(it, rd);
1036     }
1037   } else {
1038     // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower).
1039     // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode).
1040     DistoRefine(it, (method >= 2));
1041     SimpleQuantize(it, rd);
1042   }
1043   is_skipped = (rd->nz == 0);
1044   VP8SetSkip(it, is_skipped);
1045   return is_skipped;
1046 }
1047 
1048 #if defined(__cplusplus) || defined(c_plusplus)
1049 }    // extern "C"
1050 #endif
1051