1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "crypto.h"
30
31 #if OPENSSL_VERSION_NUMBER < 0x00907000
32 #define DES_key_schedule des_key_schedule
33 #define DES_cblock des_cblock
34 #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
35 #define DES_ecb_encrypt(input, output, ks, enc) \
36 des_ecb_encrypt((input), (output), *(ks), (enc))
37 #endif /* openssl < 0.9.7 */
38
get_group5_prime(void)39 static BIGNUM * get_group5_prime(void)
40 {
41 #if OPENSSL_VERSION_NUMBER < 0x00908000
42 static const unsigned char RFC3526_PRIME_1536[] = {
43 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
44 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
45 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
46 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
47 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
48 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
49 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
50 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
51 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
52 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
53 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
54 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
55 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
56 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
57 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
58 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
59 };
60 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
61 #else /* openssl < 0.9.8 */
62 return get_rfc3526_prime_1536(NULL);
63 #endif /* openssl < 0.9.8 */
64 }
65
66 #if OPENSSL_VERSION_NUMBER < 0x00908000
67 #ifndef OPENSSL_NO_SHA256
68 #ifndef OPENSSL_FIPS
69 #define NO_SHA256_WRAPPER
70 #endif
71 #endif
72
73 #endif /* openssl < 0.9.8 */
74
75 #ifdef OPENSSL_NO_SHA256
76 #define NO_SHA256_WRAPPER
77 #endif
78
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)79 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
80 const u8 *addr[], const size_t *len, u8 *mac)
81 {
82 EVP_MD_CTX ctx;
83 size_t i;
84 unsigned int mac_len;
85
86 EVP_MD_CTX_init(&ctx);
87 if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
88 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
89 ERR_error_string(ERR_get_error(), NULL));
90 return -1;
91 }
92 for (i = 0; i < num_elem; i++) {
93 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
94 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
95 "failed: %s",
96 ERR_error_string(ERR_get_error(), NULL));
97 return -1;
98 }
99 }
100 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
101 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
102 ERR_error_string(ERR_get_error(), NULL));
103 return -1;
104 }
105
106 return 0;
107 }
108
109
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)110 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
111 {
112 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
113 }
114
115
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)116 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
117 {
118 u8 pkey[8], next, tmp;
119 int i;
120 DES_key_schedule ks;
121
122 /* Add parity bits to the key */
123 next = 0;
124 for (i = 0; i < 7; i++) {
125 tmp = key[i];
126 pkey[i] = (tmp >> i) | next | 1;
127 next = tmp << (7 - i);
128 }
129 pkey[i] = next | 1;
130
131 DES_set_key(&pkey, &ks);
132 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
133 DES_ENCRYPT);
134 }
135
136
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)137 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
138 u8 *data, size_t data_len)
139 {
140 #ifdef OPENSSL_NO_RC4
141 return -1;
142 #else /* OPENSSL_NO_RC4 */
143 EVP_CIPHER_CTX ctx;
144 int outl;
145 int res = -1;
146 unsigned char skip_buf[16];
147
148 EVP_CIPHER_CTX_init(&ctx);
149 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
150 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
151 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
152 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
153 goto out;
154
155 while (skip >= sizeof(skip_buf)) {
156 size_t len = skip;
157 if (len > sizeof(skip_buf))
158 len = sizeof(skip_buf);
159 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
160 goto out;
161 skip -= len;
162 }
163
164 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
165 res = 0;
166
167 out:
168 EVP_CIPHER_CTX_cleanup(&ctx);
169 return res;
170 #endif /* OPENSSL_NO_RC4 */
171 }
172
173
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)174 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
175 {
176 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
177 }
178
179
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)180 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
181 {
182 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
183 }
184
185
186 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)187 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
188 u8 *mac)
189 {
190 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
191 }
192 #endif /* NO_SHA256_WRAPPER */
193
194
aes_get_evp_cipher(size_t keylen)195 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
196 {
197 switch (keylen) {
198 case 16:
199 return EVP_aes_128_ecb();
200 case 24:
201 return EVP_aes_192_ecb();
202 case 32:
203 return EVP_aes_256_ecb();
204 }
205
206 return NULL;
207 }
208
209
aes_encrypt_init(const u8 * key,size_t len)210 void * aes_encrypt_init(const u8 *key, size_t len)
211 {
212 EVP_CIPHER_CTX *ctx;
213 const EVP_CIPHER *type;
214
215 type = aes_get_evp_cipher(len);
216 if (type == NULL)
217 return NULL;
218
219 ctx = os_malloc(sizeof(*ctx));
220 if (ctx == NULL)
221 return NULL;
222 EVP_CIPHER_CTX_init(ctx);
223 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
224 os_free(ctx);
225 return NULL;
226 }
227 EVP_CIPHER_CTX_set_padding(ctx, 0);
228 return ctx;
229 }
230
231
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)232 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
233 {
234 EVP_CIPHER_CTX *c = ctx;
235 int clen = 16;
236 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
237 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
238 ERR_error_string(ERR_get_error(), NULL));
239 }
240 }
241
242
aes_encrypt_deinit(void * ctx)243 void aes_encrypt_deinit(void *ctx)
244 {
245 EVP_CIPHER_CTX *c = ctx;
246 u8 buf[16];
247 int len = sizeof(buf);
248 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
249 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
250 "%s", ERR_error_string(ERR_get_error(), NULL));
251 }
252 if (len != 0) {
253 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
254 "in AES encrypt", len);
255 }
256 EVP_CIPHER_CTX_cleanup(c);
257 os_free(c);
258 }
259
260
aes_decrypt_init(const u8 * key,size_t len)261 void * aes_decrypt_init(const u8 *key, size_t len)
262 {
263 EVP_CIPHER_CTX *ctx;
264 const EVP_CIPHER *type;
265
266 type = aes_get_evp_cipher(len);
267 if (type == NULL)
268 return NULL;
269
270 ctx = os_malloc(sizeof(*ctx));
271 if (ctx == NULL)
272 return NULL;
273 EVP_CIPHER_CTX_init(ctx);
274 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
275 os_free(ctx);
276 return NULL;
277 }
278 EVP_CIPHER_CTX_set_padding(ctx, 0);
279 return ctx;
280 }
281
282
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)283 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
284 {
285 EVP_CIPHER_CTX *c = ctx;
286 int plen = 16;
287 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
288 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
289 ERR_error_string(ERR_get_error(), NULL));
290 }
291 }
292
293
aes_decrypt_deinit(void * ctx)294 void aes_decrypt_deinit(void *ctx)
295 {
296 EVP_CIPHER_CTX *c = ctx;
297 u8 buf[16];
298 int len = sizeof(buf);
299 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
300 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
301 "%s", ERR_error_string(ERR_get_error(), NULL));
302 }
303 if (len != 0) {
304 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
305 "in AES decrypt", len);
306 }
307 EVP_CIPHER_CTX_cleanup(c);
308 os_free(ctx);
309 }
310
311
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)312 int crypto_mod_exp(const u8 *base, size_t base_len,
313 const u8 *power, size_t power_len,
314 const u8 *modulus, size_t modulus_len,
315 u8 *result, size_t *result_len)
316 {
317 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
318 int ret = -1;
319 BN_CTX *ctx;
320
321 ctx = BN_CTX_new();
322 if (ctx == NULL)
323 return -1;
324
325 bn_base = BN_bin2bn(base, base_len, NULL);
326 bn_exp = BN_bin2bn(power, power_len, NULL);
327 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
328 bn_result = BN_new();
329
330 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
331 bn_result == NULL)
332 goto error;
333
334 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
335 goto error;
336
337 *result_len = BN_bn2bin(bn_result, result);
338 ret = 0;
339
340 error:
341 BN_free(bn_base);
342 BN_free(bn_exp);
343 BN_free(bn_modulus);
344 BN_free(bn_result);
345 BN_CTX_free(ctx);
346 return ret;
347 }
348
349
350 struct crypto_cipher {
351 EVP_CIPHER_CTX enc;
352 EVP_CIPHER_CTX dec;
353 };
354
355
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)356 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
357 const u8 *iv, const u8 *key,
358 size_t key_len)
359 {
360 struct crypto_cipher *ctx;
361 const EVP_CIPHER *cipher;
362
363 ctx = os_zalloc(sizeof(*ctx));
364 if (ctx == NULL)
365 return NULL;
366
367 switch (alg) {
368 #ifndef OPENSSL_NO_RC4
369 case CRYPTO_CIPHER_ALG_RC4:
370 cipher = EVP_rc4();
371 break;
372 #endif /* OPENSSL_NO_RC4 */
373 #ifndef OPENSSL_NO_AES
374 case CRYPTO_CIPHER_ALG_AES:
375 switch (key_len) {
376 case 16:
377 cipher = EVP_aes_128_cbc();
378 break;
379 case 24:
380 cipher = EVP_aes_192_cbc();
381 break;
382 case 32:
383 cipher = EVP_aes_256_cbc();
384 break;
385 default:
386 os_free(ctx);
387 return NULL;
388 }
389 break;
390 #endif /* OPENSSL_NO_AES */
391 #ifndef OPENSSL_NO_DES
392 case CRYPTO_CIPHER_ALG_3DES:
393 cipher = EVP_des_ede3_cbc();
394 break;
395 case CRYPTO_CIPHER_ALG_DES:
396 cipher = EVP_des_cbc();
397 break;
398 #endif /* OPENSSL_NO_DES */
399 #ifndef OPENSSL_NO_RC2
400 case CRYPTO_CIPHER_ALG_RC2:
401 cipher = EVP_rc2_ecb();
402 break;
403 #endif /* OPENSSL_NO_RC2 */
404 default:
405 os_free(ctx);
406 return NULL;
407 }
408
409 EVP_CIPHER_CTX_init(&ctx->enc);
410 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
411 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
412 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
413 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
414 EVP_CIPHER_CTX_cleanup(&ctx->enc);
415 os_free(ctx);
416 return NULL;
417 }
418
419 EVP_CIPHER_CTX_init(&ctx->dec);
420 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
421 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
422 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
423 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
424 EVP_CIPHER_CTX_cleanup(&ctx->enc);
425 EVP_CIPHER_CTX_cleanup(&ctx->dec);
426 os_free(ctx);
427 return NULL;
428 }
429
430 return ctx;
431 }
432
433
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)434 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
435 u8 *crypt, size_t len)
436 {
437 int outl;
438 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
439 return -1;
440 return 0;
441 }
442
443
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)444 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
445 u8 *plain, size_t len)
446 {
447 int outl;
448 outl = len;
449 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
450 return -1;
451 return 0;
452 }
453
454
crypto_cipher_deinit(struct crypto_cipher * ctx)455 void crypto_cipher_deinit(struct crypto_cipher *ctx)
456 {
457 EVP_CIPHER_CTX_cleanup(&ctx->enc);
458 EVP_CIPHER_CTX_cleanup(&ctx->dec);
459 os_free(ctx);
460 }
461
462
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)463 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
464 {
465 DH *dh;
466 struct wpabuf *pubkey = NULL, *privkey = NULL;
467 size_t publen, privlen;
468
469 *priv = NULL;
470 *publ = NULL;
471
472 dh = DH_new();
473 if (dh == NULL)
474 return NULL;
475
476 dh->g = BN_new();
477 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
478 goto err;
479
480 dh->p = get_group5_prime();
481 if (dh->p == NULL)
482 goto err;
483
484 if (DH_generate_key(dh) != 1)
485 goto err;
486
487 publen = BN_num_bytes(dh->pub_key);
488 pubkey = wpabuf_alloc(publen);
489 if (pubkey == NULL)
490 goto err;
491 privlen = BN_num_bytes(dh->priv_key);
492 privkey = wpabuf_alloc(privlen);
493 if (privkey == NULL)
494 goto err;
495
496 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
497 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
498
499 *priv = privkey;
500 *publ = pubkey;
501 return dh;
502
503 err:
504 wpabuf_free(pubkey);
505 wpabuf_free(privkey);
506 DH_free(dh);
507 return NULL;
508 }
509
510
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)511 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
512 {
513 DH *dh;
514
515 dh = DH_new();
516 if (dh == NULL)
517 return NULL;
518
519 dh->g = BN_new();
520 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
521 goto err;
522
523 dh->p = get_group5_prime();
524 if (dh->p == NULL)
525 goto err;
526
527 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
528 if (dh->priv_key == NULL)
529 goto err;
530
531 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
532 if (dh->pub_key == NULL)
533 goto err;
534
535 if (DH_generate_key(dh) != 1)
536 goto err;
537
538 return dh;
539
540 err:
541 DH_free(dh);
542 return NULL;
543 }
544
545
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)546 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
547 const struct wpabuf *own_private)
548 {
549 BIGNUM *pub_key;
550 struct wpabuf *res = NULL;
551 size_t rlen;
552 DH *dh = ctx;
553 int keylen;
554
555 if (ctx == NULL)
556 return NULL;
557
558 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
559 NULL);
560 if (pub_key == NULL)
561 return NULL;
562
563 rlen = DH_size(dh);
564 res = wpabuf_alloc(rlen);
565 if (res == NULL)
566 goto err;
567
568 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
569 if (keylen < 0)
570 goto err;
571 wpabuf_put(res, keylen);
572 BN_free(pub_key);
573
574 return res;
575
576 err:
577 BN_free(pub_key);
578 wpabuf_free(res);
579 return NULL;
580 }
581
582
dh5_free(void * ctx)583 void dh5_free(void *ctx)
584 {
585 DH *dh;
586 if (ctx == NULL)
587 return;
588 dh = ctx;
589 DH_free(dh);
590 }
591
592
593 struct crypto_hash {
594 HMAC_CTX ctx;
595 };
596
597
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)598 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
599 size_t key_len)
600 {
601 struct crypto_hash *ctx;
602 const EVP_MD *md;
603
604 switch (alg) {
605 #ifndef OPENSSL_NO_MD5
606 case CRYPTO_HASH_ALG_HMAC_MD5:
607 md = EVP_md5();
608 break;
609 #endif /* OPENSSL_NO_MD5 */
610 #ifndef OPENSSL_NO_SHA
611 case CRYPTO_HASH_ALG_HMAC_SHA1:
612 md = EVP_sha1();
613 break;
614 #endif /* OPENSSL_NO_SHA */
615 #ifndef OPENSSL_NO_SHA256
616 #ifdef CONFIG_SHA256
617 case CRYPTO_HASH_ALG_HMAC_SHA256:
618 md = EVP_sha256();
619 break;
620 #endif /* CONFIG_SHA256 */
621 #endif /* OPENSSL_NO_SHA256 */
622 default:
623 return NULL;
624 }
625
626 ctx = os_zalloc(sizeof(*ctx));
627 if (ctx == NULL)
628 return NULL;
629 HMAC_CTX_init(&ctx->ctx);
630
631 #if OPENSSL_VERSION_NUMBER < 0x00909000
632 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
633 #else /* openssl < 0.9.9 */
634 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
635 os_free(ctx);
636 return NULL;
637 }
638 #endif /* openssl < 0.9.9 */
639
640 return ctx;
641 }
642
643
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)644 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
645 {
646 if (ctx == NULL)
647 return;
648 HMAC_Update(&ctx->ctx, data, len);
649 }
650
651
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)652 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
653 {
654 unsigned int mdlen;
655 int res;
656
657 if (ctx == NULL)
658 return -2;
659
660 if (mac == NULL || len == NULL) {
661 os_free(ctx);
662 return 0;
663 }
664
665 mdlen = *len;
666 #if OPENSSL_VERSION_NUMBER < 0x00909000
667 HMAC_Final(&ctx->ctx, mac, &mdlen);
668 res = 1;
669 #else /* openssl < 0.9.9 */
670 res = HMAC_Final(&ctx->ctx, mac, &mdlen);
671 #endif /* openssl < 0.9.9 */
672 HMAC_CTX_cleanup(&ctx->ctx);
673 os_free(ctx);
674
675 if (res == 1) {
676 *len = mdlen;
677 return 0;
678 }
679
680 return -1;
681 }
682
683
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)684 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
685 int iterations, u8 *buf, size_t buflen)
686 {
687 #if OPENSSL_VERSION_NUMBER < 0x00908000
688 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
689 (unsigned char *) ssid,
690 ssid_len, 4096, buflen, buf) != 1)
691 return -1;
692 #else /* openssl < 0.9.8 */
693 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
694 ssid_len, 4096, buflen, buf) != 1)
695 return -1;
696 #endif /* openssl < 0.9.8 */
697 return 0;
698 }
699
700
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)701 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
702 const u8 *addr[], const size_t *len, u8 *mac)
703 {
704 HMAC_CTX ctx;
705 size_t i;
706 unsigned int mdlen;
707 int res;
708
709 HMAC_CTX_init(&ctx);
710 #if OPENSSL_VERSION_NUMBER < 0x00909000
711 HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
712 #else /* openssl < 0.9.9 */
713 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
714 return -1;
715 #endif /* openssl < 0.9.9 */
716
717 for (i = 0; i < num_elem; i++)
718 HMAC_Update(&ctx, addr[i], len[i]);
719
720 mdlen = 20;
721 #if OPENSSL_VERSION_NUMBER < 0x00909000
722 HMAC_Final(&ctx, mac, &mdlen);
723 res = 1;
724 #else /* openssl < 0.9.9 */
725 res = HMAC_Final(&ctx, mac, &mdlen);
726 #endif /* openssl < 0.9.9 */
727 HMAC_CTX_cleanup(&ctx);
728
729 return res == 1 ? 0 : -1;
730 }
731
732
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)733 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
734 u8 *mac)
735 {
736 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
737 }
738
739
740 #ifdef CONFIG_SHA256
741
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)742 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
743 const u8 *addr[], const size_t *len, u8 *mac)
744 {
745 HMAC_CTX ctx;
746 size_t i;
747 unsigned int mdlen;
748 int res;
749
750 HMAC_CTX_init(&ctx);
751 #if OPENSSL_VERSION_NUMBER < 0x00909000
752 HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
753 #else /* openssl < 0.9.9 */
754 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
755 return -1;
756 #endif /* openssl < 0.9.9 */
757
758 for (i = 0; i < num_elem; i++)
759 HMAC_Update(&ctx, addr[i], len[i]);
760
761 mdlen = 32;
762 #if OPENSSL_VERSION_NUMBER < 0x00909000
763 HMAC_Final(&ctx, mac, &mdlen);
764 res = 1;
765 #else /* openssl < 0.9.9 */
766 res = HMAC_Final(&ctx, mac, &mdlen);
767 #endif /* openssl < 0.9.9 */
768 HMAC_CTX_cleanup(&ctx);
769
770 return res == 1 ? 0 : -1;
771 }
772
773
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)774 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
775 size_t data_len, u8 *mac)
776 {
777 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
778 }
779
780 #endif /* CONFIG_SHA256 */
781
782
crypto_get_random(void * buf,size_t len)783 int crypto_get_random(void *buf, size_t len)
784 {
785 if (RAND_bytes(buf, len) != 1)
786 return -1;
787 return 0;
788 }
789
790
791 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)792 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
793 const u8 *addr[], const size_t *len, u8 *mac)
794 {
795 CMAC_CTX *ctx;
796 int ret = -1;
797 size_t outlen, i;
798
799 ctx = CMAC_CTX_new();
800 if (ctx == NULL)
801 return -1;
802
803 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
804 goto fail;
805 for (i = 0; i < num_elem; i++) {
806 if (!CMAC_Update(ctx, addr[i], len[i]))
807 goto fail;
808 }
809 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
810 goto fail;
811
812 ret = 0;
813 fail:
814 CMAC_CTX_free(ctx);
815 return ret;
816 }
817
818
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)819 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
820 {
821 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
822 }
823 #endif /* CONFIG_OPENSSL_CMAC */
824
825
crypto_bignum_init(void)826 struct crypto_bignum * crypto_bignum_init(void)
827 {
828 return (struct crypto_bignum *) BN_new();
829 }
830
831
crypto_bignum_init_set(const u8 * buf,size_t len)832 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
833 {
834 BIGNUM *bn = BN_bin2bn(buf, len, NULL);
835 return (struct crypto_bignum *) bn;
836 }
837
838
crypto_bignum_deinit(struct crypto_bignum * n,int clear)839 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
840 {
841 if (clear)
842 BN_clear_free((BIGNUM *) n);
843 else
844 BN_free((BIGNUM *) n);
845 }
846
847
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)848 int crypto_bignum_to_bin(const struct crypto_bignum *a,
849 u8 *buf, size_t buflen, size_t padlen)
850 {
851 int num_bytes, offset;
852
853 if (padlen > buflen)
854 return -1;
855
856 num_bytes = BN_num_bytes((const BIGNUM *) a);
857 if ((size_t) num_bytes > buflen)
858 return -1;
859 if (padlen > (size_t) num_bytes)
860 offset = padlen - num_bytes;
861 else
862 offset = 0;
863
864 os_memset(buf, 0, offset);
865 BN_bn2bin((const BIGNUM *) a, buf + offset);
866
867 return num_bytes + offset;
868 }
869
870
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)871 int crypto_bignum_add(const struct crypto_bignum *a,
872 const struct crypto_bignum *b,
873 struct crypto_bignum *c)
874 {
875 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
876 0 : -1;
877 }
878
879
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)880 int crypto_bignum_mod(const struct crypto_bignum *a,
881 const struct crypto_bignum *b,
882 struct crypto_bignum *c)
883 {
884 int res;
885 BN_CTX *bnctx;
886
887 bnctx = BN_CTX_new();
888 if (bnctx == NULL)
889 return -1;
890 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
891 bnctx);
892 BN_CTX_free(bnctx);
893
894 return res ? 0 : -1;
895 }
896
897
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)898 int crypto_bignum_exptmod(const struct crypto_bignum *a,
899 const struct crypto_bignum *b,
900 const struct crypto_bignum *c,
901 struct crypto_bignum *d)
902 {
903 int res;
904 BN_CTX *bnctx;
905
906 bnctx = BN_CTX_new();
907 if (bnctx == NULL)
908 return -1;
909 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
910 (const BIGNUM *) c, bnctx);
911 BN_CTX_free(bnctx);
912
913 return res ? 0 : -1;
914 }
915
916
crypto_bignum_rshift(const struct crypto_bignum * a,int n,struct crypto_bignum * b)917 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
918 struct crypto_bignum *b)
919 {
920 return BN_rshift((BIGNUM *) b, (const BIGNUM *) a, n) ? 0 : -1;
921 }
922
923
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)924 int crypto_bignum_inverse(const struct crypto_bignum *a,
925 const struct crypto_bignum *b,
926 struct crypto_bignum *c)
927 {
928 BIGNUM *res;
929 BN_CTX *bnctx;
930
931 bnctx = BN_CTX_new();
932 if (bnctx == NULL)
933 return -1;
934 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
935 (const BIGNUM *) b, bnctx);
936 BN_CTX_free(bnctx);
937
938 return res ? 0 : -1;
939 }
940
941
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)942 int crypto_bignum_sub(const struct crypto_bignum *a,
943 const struct crypto_bignum *b,
944 struct crypto_bignum *c)
945 {
946 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
947 0 : -1;
948 }
949
950
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)951 int crypto_bignum_div(const struct crypto_bignum *a,
952 const struct crypto_bignum *b,
953 struct crypto_bignum *c)
954 {
955 int res;
956
957 BN_CTX *bnctx;
958
959 bnctx = BN_CTX_new();
960 if (bnctx == NULL)
961 return -1;
962 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
963 (const BIGNUM *) b, bnctx);
964 BN_CTX_free(bnctx);
965
966 return res ? 0 : -1;
967 }
968
969
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)970 int crypto_bignum_mulmod(const struct crypto_bignum *a,
971 const struct crypto_bignum *b,
972 const struct crypto_bignum *c,
973 struct crypto_bignum *d)
974 {
975 int res;
976
977 BN_CTX *bnctx;
978
979 bnctx = BN_CTX_new();
980 if (bnctx == NULL)
981 return -1;
982 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
983 (const BIGNUM *) c, bnctx);
984 BN_CTX_free(bnctx);
985
986 return res ? 0 : -1;
987 }
988
989
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)990 int crypto_bignum_cmp(const struct crypto_bignum *a,
991 const struct crypto_bignum *b)
992 {
993 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
994 }
995
996
crypto_bignum_bits(const struct crypto_bignum * a)997 int crypto_bignum_bits(const struct crypto_bignum *a)
998 {
999 return BN_num_bits((const BIGNUM *) a);
1000 }
1001
1002
crypto_bignum_is_zero(const struct crypto_bignum * a)1003 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1004 {
1005 return BN_is_zero((const BIGNUM *) a);
1006 }
1007
1008
crypto_bignum_is_one(const struct crypto_bignum * a)1009 int crypto_bignum_is_one(const struct crypto_bignum *a)
1010 {
1011 return BN_is_one((const BIGNUM *) a);
1012 }
1013
1014
1015 #ifdef CONFIG_ECC
1016
1017 struct crypto_ec {
1018 EC_GROUP *group;
1019 BN_CTX *bnctx;
1020 BIGNUM *prime;
1021 BIGNUM *order;
1022 };
1023
crypto_ec_init(int group)1024 struct crypto_ec * crypto_ec_init(int group)
1025 {
1026 struct crypto_ec *e;
1027 int nid;
1028
1029 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1030 switch (group) {
1031 case 19:
1032 nid = NID_X9_62_prime256v1;
1033 break;
1034 case 20:
1035 nid = NID_secp384r1;
1036 break;
1037 case 21:
1038 nid = NID_secp521r1;
1039 break;
1040 case 25:
1041 nid = NID_X9_62_prime192v1;
1042 break;
1043 case 26:
1044 nid = NID_secp224r1;
1045 break;
1046 default:
1047 return NULL;
1048 }
1049
1050 e = os_zalloc(sizeof(*e));
1051 if (e == NULL)
1052 return NULL;
1053
1054 e->bnctx = BN_CTX_new();
1055 e->group = EC_GROUP_new_by_curve_name(nid);
1056 e->prime = BN_new();
1057 e->order = BN_new();
1058 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1059 e->order == NULL ||
1060 !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1061 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1062 crypto_ec_deinit(e);
1063 e = NULL;
1064 }
1065
1066 return e;
1067 }
1068
1069
crypto_ec_deinit(struct crypto_ec * e)1070 void crypto_ec_deinit(struct crypto_ec *e)
1071 {
1072 if (e == NULL)
1073 return;
1074 BN_free(e->order);
1075 EC_GROUP_free(e->group);
1076 BN_CTX_free(e->bnctx);
1077 os_free(e);
1078 }
1079
1080
crypto_ec_point_init(struct crypto_ec * e)1081 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1082 {
1083 if (e == NULL)
1084 return NULL;
1085 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1086 }
1087
1088
crypto_ec_prime_len(struct crypto_ec * e)1089 size_t crypto_ec_prime_len(struct crypto_ec *e)
1090 {
1091 return BN_num_bytes(e->prime);
1092 }
1093
1094
crypto_ec_prime_len_bits(struct crypto_ec * e)1095 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1096 {
1097 return BN_num_bits(e->prime);
1098 }
1099
1100
crypto_ec_get_prime(struct crypto_ec * e)1101 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1102 {
1103 return (const struct crypto_bignum *) e->prime;
1104 }
1105
1106
crypto_ec_get_order(struct crypto_ec * e)1107 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1108 {
1109 return (const struct crypto_bignum *) e->order;
1110 }
1111
1112
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1113 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1114 {
1115 if (clear)
1116 EC_POINT_clear_free((EC_POINT *) p);
1117 else
1118 EC_POINT_free((EC_POINT *) p);
1119 }
1120
1121
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1122 int crypto_ec_point_to_bin(struct crypto_ec *e,
1123 const struct crypto_ec_point *point, u8 *x, u8 *y)
1124 {
1125 BIGNUM *x_bn, *y_bn;
1126 int ret = -1;
1127 int len = BN_num_bytes(e->prime);
1128
1129 x_bn = BN_new();
1130 y_bn = BN_new();
1131
1132 if (x_bn && y_bn &&
1133 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1134 x_bn, y_bn, e->bnctx)) {
1135 if (x) {
1136 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1137 x, len, len);
1138 }
1139 if (y) {
1140 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1141 y, len, len);
1142 }
1143 ret = 0;
1144 }
1145
1146 BN_free(x_bn);
1147 BN_free(y_bn);
1148 return ret;
1149 }
1150
1151
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1152 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1153 const u8 *val)
1154 {
1155 BIGNUM *x, *y;
1156 EC_POINT *elem;
1157 int len = BN_num_bytes(e->prime);
1158
1159 x = BN_bin2bn(val, len, NULL);
1160 y = BN_bin2bn(val + len, len, NULL);
1161 elem = EC_POINT_new(e->group);
1162 if (x == NULL || y == NULL || elem == NULL) {
1163 BN_free(x);
1164 BN_free(y);
1165 EC_POINT_free(elem);
1166 return NULL;
1167 }
1168
1169 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1170 e->bnctx)) {
1171 EC_POINT_free(elem);
1172 elem = NULL;
1173 }
1174
1175 BN_free(x);
1176 BN_free(y);
1177
1178 return (struct crypto_ec_point *) elem;
1179 }
1180
1181
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1182 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1183 const struct crypto_ec_point *b,
1184 struct crypto_ec_point *c)
1185 {
1186 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1187 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1188 }
1189
1190
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1191 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1192 const struct crypto_bignum *b,
1193 struct crypto_ec_point *res)
1194 {
1195 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1196 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1197 ? 0 : -1;
1198 }
1199
1200
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1201 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1202 {
1203 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1204 }
1205
1206
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1207 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1208 struct crypto_ec_point *p,
1209 const struct crypto_bignum *x, int y_bit)
1210 {
1211 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1212 (const BIGNUM *) x, y_bit,
1213 e->bnctx) ||
1214 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1215 return -1;
1216 return 0;
1217 }
1218
1219
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1220 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1221 const struct crypto_ec_point *p)
1222 {
1223 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1224 }
1225
1226
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1227 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1228 const struct crypto_ec_point *p)
1229 {
1230 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1231 }
1232
1233 #endif /* CONFIG_ECC */
1234