• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements the Peer State Machine as defined in RFC 4137. The used
9  * states and state transitions match mostly with the RFC. However, there are
10  * couple of additional transitions for working around small issues noticed
11  * during testing. These exceptions are explained in comments within the
12  * functions in this file. The method functions, m.func(), are similar to the
13  * ones used in RFC 4137, but some small changes have used here to optimize
14  * operations and to add functionality needed for fast re-authentication
15  * (session resumption).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "common/wpa_ctrl.h"
27 #include "eap_common/eap_wsc_common.h"
28 #include "eap_i.h"
29 #include "eap_config.h"
30 
31 #define STATE_MACHINE_DATA struct eap_sm
32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
33 
34 #define EAP_MAX_AUTH_ROUNDS 50
35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
36 
37 
38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39 				  EapType method);
40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41 static void eap_sm_processIdentity(struct eap_sm *sm,
42 				   const struct wpabuf *req);
43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44 static struct wpabuf * eap_sm_buildNotify(int id);
45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47 static const char * eap_sm_method_state_txt(EapMethodState state);
48 static const char * eap_sm_decision_txt(EapDecision decision);
49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50 
51 
52 
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54 {
55 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56 }
57 
58 
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60 			   Boolean value)
61 {
62 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63 }
64 
65 
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67 {
68 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69 }
70 
71 
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73 			  unsigned int value)
74 {
75 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76 }
77 
78 
eapol_get_eapReqData(struct eap_sm * sm)79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80 {
81 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82 }
83 
84 
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)85 static void eap_notify_status(struct eap_sm *sm, const char *status,
86 				      const char *parameter)
87 {
88 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89 		   status, parameter);
90 	if (sm->eapol_cb->notify_status)
91 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92 }
93 
94 
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)95 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
96 {
97 	ext_password_free(sm->ext_pw_buf);
98 	sm->ext_pw_buf = NULL;
99 
100 	if (sm->m == NULL || sm->eap_method_priv == NULL)
101 		return;
102 
103 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
104 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
105 	sm->m->deinit(sm, sm->eap_method_priv);
106 	sm->eap_method_priv = NULL;
107 	sm->m = NULL;
108 }
109 
110 
111 /**
112  * eap_allowed_method - Check whether EAP method is allowed
113  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
114  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
115  * @method: EAP type
116  * Returns: 1 = allowed EAP method, 0 = not allowed
117  */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)118 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
119 {
120 	struct eap_peer_config *config = eap_get_config(sm);
121 	int i;
122 	struct eap_method_type *m;
123 
124 	if (config == NULL || config->eap_methods == NULL)
125 		return 1;
126 
127 	m = config->eap_methods;
128 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
129 		     m[i].method != EAP_TYPE_NONE; i++) {
130 		if (m[i].vendor == vendor && m[i].method == method)
131 			return 1;
132 	}
133 	return 0;
134 }
135 
136 
137 /*
138  * This state initializes state machine variables when the machine is
139  * activated (portEnabled = TRUE). This is also used when re-starting
140  * authentication (eapRestart == TRUE).
141  */
SM_STATE(EAP,INITIALIZE)142 SM_STATE(EAP, INITIALIZE)
143 {
144 	SM_ENTRY(EAP, INITIALIZE);
145 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
146 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
147 	    !sm->prev_failure) {
148 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
149 			   "fast reauthentication");
150 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
151 	} else {
152 		eap_deinit_prev_method(sm, "INITIALIZE");
153 	}
154 	sm->selectedMethod = EAP_TYPE_NONE;
155 	sm->methodState = METHOD_NONE;
156 	sm->allowNotifications = TRUE;
157 	sm->decision = DECISION_FAIL;
158 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
159 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
160 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
161 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
162 	os_free(sm->eapKeyData);
163 	sm->eapKeyData = NULL;
164 	os_free(sm->eapSessionId);
165 	sm->eapSessionId = NULL;
166 	sm->eapKeyAvailable = FALSE;
167 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
168 	sm->lastId = -1; /* new session - make sure this does not match with
169 			  * the first EAP-Packet */
170 	/*
171 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
172 	 * seemed to be able to trigger cases where both were set and if EAPOL
173 	 * state machine uses eapNoResp first, it may end up not sending a real
174 	 * reply correctly. This occurred when the workaround in FAIL state set
175 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
176 	 * something else(?)
177 	 */
178 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
179 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
180 	sm->num_rounds = 0;
181 	sm->prev_failure = 0;
182 }
183 
184 
185 /*
186  * This state is reached whenever service from the lower layer is interrupted
187  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
188  * occurs when the port becomes enabled.
189  */
SM_STATE(EAP,DISABLED)190 SM_STATE(EAP, DISABLED)
191 {
192 	SM_ENTRY(EAP, DISABLED);
193 	sm->num_rounds = 0;
194 	/*
195 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
196 	 * allows the timer tick to be stopped more quickly when EAP is not in
197 	 * use.
198 	 */
199 	eapol_set_int(sm, EAPOL_idleWhile, 0);
200 }
201 
202 
203 /*
204  * The state machine spends most of its time here, waiting for something to
205  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
206  * SEND_RESPONSE states.
207  */
SM_STATE(EAP,IDLE)208 SM_STATE(EAP, IDLE)
209 {
210 	SM_ENTRY(EAP, IDLE);
211 }
212 
213 
214 /*
215  * This state is entered when an EAP packet is received (eapReq == TRUE) to
216  * parse the packet header.
217  */
SM_STATE(EAP,RECEIVED)218 SM_STATE(EAP, RECEIVED)
219 {
220 	const struct wpabuf *eapReqData;
221 
222 	SM_ENTRY(EAP, RECEIVED);
223 	eapReqData = eapol_get_eapReqData(sm);
224 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
225 	eap_sm_parseEapReq(sm, eapReqData);
226 	sm->num_rounds++;
227 }
228 
229 
230 /*
231  * This state is entered when a request for a new type comes in. Either the
232  * correct method is started, or a Nak response is built.
233  */
SM_STATE(EAP,GET_METHOD)234 SM_STATE(EAP, GET_METHOD)
235 {
236 	int reinit;
237 	EapType method;
238 	const struct eap_method *eap_method;
239 
240 	SM_ENTRY(EAP, GET_METHOD);
241 
242 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
243 		method = sm->reqVendorMethod;
244 	else
245 		method = sm->reqMethod;
246 
247 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
248 
249 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
250 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
251 			   sm->reqVendor, method);
252 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
253 			"vendor=%u method=%u -> NAK",
254 			sm->reqVendor, method);
255 		eap_notify_status(sm, "refuse proposed method",
256 				  eap_method ?  eap_method->name : "unknown");
257 		goto nak;
258 	}
259 
260 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
261 		"vendor=%u method=%u", sm->reqVendor, method);
262 
263 	eap_notify_status(sm, "accept proposed method",
264 			  eap_method ?  eap_method->name : "unknown");
265 	/*
266 	 * RFC 4137 does not define specific operation for fast
267 	 * re-authentication (session resumption). The design here is to allow
268 	 * the previously used method data to be maintained for
269 	 * re-authentication if the method support session resumption.
270 	 * Otherwise, the previously used method data is freed and a new method
271 	 * is allocated here.
272 	 */
273 	if (sm->fast_reauth &&
274 	    sm->m && sm->m->vendor == sm->reqVendor &&
275 	    sm->m->method == method &&
276 	    sm->m->has_reauth_data &&
277 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
278 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
279 			   " for fast re-authentication");
280 		reinit = 1;
281 	} else {
282 		eap_deinit_prev_method(sm, "GET_METHOD");
283 		reinit = 0;
284 	}
285 
286 	sm->selectedMethod = sm->reqMethod;
287 	if (sm->m == NULL)
288 		sm->m = eap_method;
289 	if (!sm->m) {
290 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
291 			   "vendor %d method %d",
292 			   sm->reqVendor, method);
293 		goto nak;
294 	}
295 
296 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
297 
298 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
299 		   "vendor %u method %u (%s)",
300 		   sm->reqVendor, method, sm->m->name);
301 	if (reinit)
302 		sm->eap_method_priv = sm->m->init_for_reauth(
303 			sm, sm->eap_method_priv);
304 	else
305 		sm->eap_method_priv = sm->m->init(sm);
306 
307 	if (sm->eap_method_priv == NULL) {
308 		struct eap_peer_config *config = eap_get_config(sm);
309 		wpa_msg(sm->msg_ctx, MSG_INFO,
310 			"EAP: Failed to initialize EAP method: vendor %u "
311 			"method %u (%s)",
312 			sm->reqVendor, method, sm->m->name);
313 		sm->m = NULL;
314 		sm->methodState = METHOD_NONE;
315 		sm->selectedMethod = EAP_TYPE_NONE;
316 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
317 		    (config->pending_req_pin ||
318 		     config->pending_req_passphrase)) {
319 			/*
320 			 * Return without generating Nak in order to allow
321 			 * entering of PIN code or passphrase to retry the
322 			 * current EAP packet.
323 			 */
324 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
325 				   "request - skip Nak");
326 			return;
327 		}
328 
329 		goto nak;
330 	}
331 
332 	sm->methodState = METHOD_INIT;
333 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
334 		"EAP vendor %u method %u (%s) selected",
335 		sm->reqVendor, method, sm->m->name);
336 	return;
337 
338 nak:
339 	wpabuf_free(sm->eapRespData);
340 	sm->eapRespData = NULL;
341 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
342 }
343 
344 
345 /*
346  * The method processing happens here. The request from the authenticator is
347  * processed, and an appropriate response packet is built.
348  */
SM_STATE(EAP,METHOD)349 SM_STATE(EAP, METHOD)
350 {
351 	struct wpabuf *eapReqData;
352 	struct eap_method_ret ret;
353 	int min_len = 1;
354 
355 	SM_ENTRY(EAP, METHOD);
356 	if (sm->m == NULL) {
357 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
358 		return;
359 	}
360 
361 	eapReqData = eapol_get_eapReqData(sm);
362 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
363 		min_len = 0; /* LEAP uses EAP-Success without payload */
364 	if (!eap_hdr_len_valid(eapReqData, min_len))
365 		return;
366 
367 	/*
368 	 * Get ignore, methodState, decision, allowNotifications, and
369 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
370 	 * process, and buildResp) in this state. These have been combined into
371 	 * a single function call to m->process() in order to optimize EAP
372 	 * method implementation interface a bit. These procedures are only
373 	 * used from within this METHOD state, so there is no need to keep
374 	 * these as separate C functions.
375 	 *
376 	 * The RFC 4137 procedures return values as follows:
377 	 * ignore = m.check(eapReqData)
378 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
379 	 * eapRespData = m.buildResp(reqId)
380 	 */
381 	os_memset(&ret, 0, sizeof(ret));
382 	ret.ignore = sm->ignore;
383 	ret.methodState = sm->methodState;
384 	ret.decision = sm->decision;
385 	ret.allowNotifications = sm->allowNotifications;
386 	wpabuf_free(sm->eapRespData);
387 	sm->eapRespData = NULL;
388 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
389 					 eapReqData);
390 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
391 		   "methodState=%s decision=%s",
392 		   ret.ignore ? "TRUE" : "FALSE",
393 		   eap_sm_method_state_txt(ret.methodState),
394 		   eap_sm_decision_txt(ret.decision));
395 
396 	sm->ignore = ret.ignore;
397 	if (sm->ignore)
398 		return;
399 	sm->methodState = ret.methodState;
400 	sm->decision = ret.decision;
401 	sm->allowNotifications = ret.allowNotifications;
402 
403 	if (sm->m->isKeyAvailable && sm->m->getKey &&
404 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
405 		os_free(sm->eapKeyData);
406 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
407 					       &sm->eapKeyDataLen);
408 		os_free(sm->eapSessionId);
409 		sm->eapSessionId = sm->m->getSessionId(sm, sm->eap_method_priv,
410 						       &sm->eapSessionIdLen);
411 		if (sm->eapSessionId) {
412 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
413 				    sm->eapSessionId, sm->eapSessionIdLen);
414 		}
415 	}
416 }
417 
418 
419 /*
420  * This state signals the lower layer that a response packet is ready to be
421  * sent.
422  */
SM_STATE(EAP,SEND_RESPONSE)423 SM_STATE(EAP, SEND_RESPONSE)
424 {
425 	SM_ENTRY(EAP, SEND_RESPONSE);
426 	wpabuf_free(sm->lastRespData);
427 	if (sm->eapRespData) {
428 		if (sm->workaround)
429 			os_memcpy(sm->last_md5, sm->req_md5, 16);
430 		sm->lastId = sm->reqId;
431 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
432 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
433 	} else
434 		sm->lastRespData = NULL;
435 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
436 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
437 }
438 
439 
440 /*
441  * This state signals the lower layer that the request was discarded, and no
442  * response packet will be sent at this time.
443  */
SM_STATE(EAP,DISCARD)444 SM_STATE(EAP, DISCARD)
445 {
446 	SM_ENTRY(EAP, DISCARD);
447 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
448 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
449 }
450 
451 
452 /*
453  * Handles requests for Identity method and builds a response.
454  */
SM_STATE(EAP,IDENTITY)455 SM_STATE(EAP, IDENTITY)
456 {
457 	const struct wpabuf *eapReqData;
458 
459 	SM_ENTRY(EAP, IDENTITY);
460 	eapReqData = eapol_get_eapReqData(sm);
461 	if (!eap_hdr_len_valid(eapReqData, 1))
462 		return;
463 	eap_sm_processIdentity(sm, eapReqData);
464 	wpabuf_free(sm->eapRespData);
465 	sm->eapRespData = NULL;
466 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
467 }
468 
469 
470 /*
471  * Handles requests for Notification method and builds a response.
472  */
SM_STATE(EAP,NOTIFICATION)473 SM_STATE(EAP, NOTIFICATION)
474 {
475 	const struct wpabuf *eapReqData;
476 
477 	SM_ENTRY(EAP, NOTIFICATION);
478 	eapReqData = eapol_get_eapReqData(sm);
479 	if (!eap_hdr_len_valid(eapReqData, 1))
480 		return;
481 	eap_sm_processNotify(sm, eapReqData);
482 	wpabuf_free(sm->eapRespData);
483 	sm->eapRespData = NULL;
484 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
485 }
486 
487 
488 /*
489  * This state retransmits the previous response packet.
490  */
SM_STATE(EAP,RETRANSMIT)491 SM_STATE(EAP, RETRANSMIT)
492 {
493 	SM_ENTRY(EAP, RETRANSMIT);
494 	wpabuf_free(sm->eapRespData);
495 	if (sm->lastRespData)
496 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
497 	else
498 		sm->eapRespData = NULL;
499 }
500 
501 
502 /*
503  * This state is entered in case of a successful completion of authentication
504  * and state machine waits here until port is disabled or EAP authentication is
505  * restarted.
506  */
SM_STATE(EAP,SUCCESS)507 SM_STATE(EAP, SUCCESS)
508 {
509 	SM_ENTRY(EAP, SUCCESS);
510 	if (sm->eapKeyData != NULL)
511 		sm->eapKeyAvailable = TRUE;
512 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
513 
514 	/*
515 	 * RFC 4137 does not clear eapReq here, but this seems to be required
516 	 * to avoid processing the same request twice when state machine is
517 	 * initialized.
518 	 */
519 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
520 
521 	/*
522 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
523 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
524 	 * addition, either eapResp or eapNoResp is required to be set after
525 	 * processing the received EAP frame.
526 	 */
527 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
528 
529 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
530 		"EAP authentication completed successfully");
531 }
532 
533 
534 /*
535  * This state is entered in case of a failure and state machine waits here
536  * until port is disabled or EAP authentication is restarted.
537  */
SM_STATE(EAP,FAILURE)538 SM_STATE(EAP, FAILURE)
539 {
540 	SM_ENTRY(EAP, FAILURE);
541 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
542 
543 	/*
544 	 * RFC 4137 does not clear eapReq here, but this seems to be required
545 	 * to avoid processing the same request twice when state machine is
546 	 * initialized.
547 	 */
548 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
549 
550 	/*
551 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
552 	 * eapNoResp is required to be set after processing the received EAP
553 	 * frame.
554 	 */
555 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
556 
557 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
558 		"EAP authentication failed");
559 
560 	sm->prev_failure = 1;
561 }
562 
563 
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)564 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
565 {
566 	/*
567 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
568 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
569 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
570 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
571 	 *
572 	 * Accept this kind of Id if EAP workarounds are enabled. These are
573 	 * unauthenticated plaintext messages, so this should have minimal
574 	 * security implications (bit easier to fake EAP-Success/Failure).
575 	 */
576 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
577 			       reqId == ((lastId + 2) & 0xff))) {
578 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
579 			   "identifier field in EAP Success: "
580 			   "reqId=%d lastId=%d (these are supposed to be "
581 			   "same)", reqId, lastId);
582 		return 1;
583 	}
584 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
585 		   "lastId=%d", reqId, lastId);
586 	return 0;
587 }
588 
589 
590 /*
591  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
592  */
593 
eap_peer_sm_step_idle(struct eap_sm * sm)594 static void eap_peer_sm_step_idle(struct eap_sm *sm)
595 {
596 	/*
597 	 * The first three transitions are from RFC 4137. The last two are
598 	 * local additions to handle special cases with LEAP and PEAP server
599 	 * not sending EAP-Success in some cases.
600 	 */
601 	if (eapol_get_bool(sm, EAPOL_eapReq))
602 		SM_ENTER(EAP, RECEIVED);
603 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
604 		  sm->decision != DECISION_FAIL) ||
605 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
606 		  sm->decision == DECISION_UNCOND_SUCC))
607 		SM_ENTER(EAP, SUCCESS);
608 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
609 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
610 		  sm->decision != DECISION_UNCOND_SUCC) ||
611 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
612 		  sm->methodState != METHOD_CONT &&
613 		  sm->decision == DECISION_FAIL))
614 		SM_ENTER(EAP, FAILURE);
615 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
616 		 sm->leap_done && sm->decision != DECISION_FAIL &&
617 		 sm->methodState == METHOD_DONE)
618 		SM_ENTER(EAP, SUCCESS);
619 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
620 		 sm->peap_done && sm->decision != DECISION_FAIL &&
621 		 sm->methodState == METHOD_DONE)
622 		SM_ENTER(EAP, SUCCESS);
623 }
624 
625 
eap_peer_req_is_duplicate(struct eap_sm * sm)626 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
627 {
628 	int duplicate;
629 
630 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
631 	if (sm->workaround && duplicate &&
632 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
633 		/*
634 		 * RFC 4137 uses (reqId == lastId) as the only verification for
635 		 * duplicate EAP requests. However, this misses cases where the
636 		 * AS is incorrectly using the same id again; and
637 		 * unfortunately, such implementations exist. Use MD5 hash as
638 		 * an extra verification for the packets being duplicate to
639 		 * workaround these issues.
640 		 */
641 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
642 			   "EAP packets were not identical");
643 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
644 			   "duplicate packet");
645 		duplicate = 0;
646 	}
647 
648 	return duplicate;
649 }
650 
651 
eap_peer_sm_step_received(struct eap_sm * sm)652 static void eap_peer_sm_step_received(struct eap_sm *sm)
653 {
654 	int duplicate = eap_peer_req_is_duplicate(sm);
655 
656 	/*
657 	 * Two special cases below for LEAP are local additions to work around
658 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
659 	 * then swapped roles). Other transitions are based on RFC 4137.
660 	 */
661 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
662 	    (sm->reqId == sm->lastId ||
663 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
664 		SM_ENTER(EAP, SUCCESS);
665 	else if (sm->methodState != METHOD_CONT &&
666 		 ((sm->rxFailure &&
667 		   sm->decision != DECISION_UNCOND_SUCC) ||
668 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
669 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
670 		    sm->methodState != METHOD_MAY_CONT))) &&
671 		 (sm->reqId == sm->lastId ||
672 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
673 		SM_ENTER(EAP, FAILURE);
674 	else if (sm->rxReq && duplicate)
675 		SM_ENTER(EAP, RETRANSMIT);
676 	else if (sm->rxReq && !duplicate &&
677 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
678 		 sm->allowNotifications)
679 		SM_ENTER(EAP, NOTIFICATION);
680 	else if (sm->rxReq && !duplicate &&
681 		 sm->selectedMethod == EAP_TYPE_NONE &&
682 		 sm->reqMethod == EAP_TYPE_IDENTITY)
683 		SM_ENTER(EAP, IDENTITY);
684 	else if (sm->rxReq && !duplicate &&
685 		 sm->selectedMethod == EAP_TYPE_NONE &&
686 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
687 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
688 		SM_ENTER(EAP, GET_METHOD);
689 	else if (sm->rxReq && !duplicate &&
690 		 sm->reqMethod == sm->selectedMethod &&
691 		 sm->methodState != METHOD_DONE)
692 		SM_ENTER(EAP, METHOD);
693 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
694 		 (sm->rxSuccess || sm->rxResp))
695 		SM_ENTER(EAP, METHOD);
696 	else
697 		SM_ENTER(EAP, DISCARD);
698 }
699 
700 
eap_peer_sm_step_local(struct eap_sm * sm)701 static void eap_peer_sm_step_local(struct eap_sm *sm)
702 {
703 	switch (sm->EAP_state) {
704 	case EAP_INITIALIZE:
705 		SM_ENTER(EAP, IDLE);
706 		break;
707 	case EAP_DISABLED:
708 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
709 		    !sm->force_disabled)
710 			SM_ENTER(EAP, INITIALIZE);
711 		break;
712 	case EAP_IDLE:
713 		eap_peer_sm_step_idle(sm);
714 		break;
715 	case EAP_RECEIVED:
716 		eap_peer_sm_step_received(sm);
717 		break;
718 	case EAP_GET_METHOD:
719 		if (sm->selectedMethod == sm->reqMethod)
720 			SM_ENTER(EAP, METHOD);
721 		else
722 			SM_ENTER(EAP, SEND_RESPONSE);
723 		break;
724 	case EAP_METHOD:
725 		if (sm->ignore)
726 			SM_ENTER(EAP, DISCARD);
727 		else
728 			SM_ENTER(EAP, SEND_RESPONSE);
729 		break;
730 	case EAP_SEND_RESPONSE:
731 		SM_ENTER(EAP, IDLE);
732 		break;
733 	case EAP_DISCARD:
734 		SM_ENTER(EAP, IDLE);
735 		break;
736 	case EAP_IDENTITY:
737 		SM_ENTER(EAP, SEND_RESPONSE);
738 		break;
739 	case EAP_NOTIFICATION:
740 		SM_ENTER(EAP, SEND_RESPONSE);
741 		break;
742 	case EAP_RETRANSMIT:
743 		SM_ENTER(EAP, SEND_RESPONSE);
744 		break;
745 	case EAP_SUCCESS:
746 		break;
747 	case EAP_FAILURE:
748 		break;
749 	}
750 }
751 
752 
SM_STEP(EAP)753 SM_STEP(EAP)
754 {
755 	/* Global transitions */
756 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
757 	    eapol_get_bool(sm, EAPOL_portEnabled))
758 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
759 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
760 		SM_ENTER_GLOBAL(EAP, DISABLED);
761 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
762 		/* RFC 4137 does not place any limit on number of EAP messages
763 		 * in an authentication session. However, some error cases have
764 		 * ended up in a state were EAP messages were sent between the
765 		 * peer and server in a loop (e.g., TLS ACK frame in both
766 		 * direction). Since this is quite undesired outcome, limit the
767 		 * total number of EAP round-trips and abort authentication if
768 		 * this limit is exceeded.
769 		 */
770 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
771 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
772 				"authentication rounds - abort",
773 				EAP_MAX_AUTH_ROUNDS);
774 			sm->num_rounds++;
775 			SM_ENTER_GLOBAL(EAP, FAILURE);
776 		}
777 	} else {
778 		/* Local transitions */
779 		eap_peer_sm_step_local(sm);
780 	}
781 }
782 
783 
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)784 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
785 				  EapType method)
786 {
787 	if (!eap_allowed_method(sm, vendor, method)) {
788 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
789 			   "vendor %u method %u", vendor, method);
790 		return FALSE;
791 	}
792 	if (eap_peer_get_eap_method(vendor, method))
793 		return TRUE;
794 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
795 		   "vendor %u method %u", vendor, method);
796 	return FALSE;
797 }
798 
799 
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)800 static struct wpabuf * eap_sm_build_expanded_nak(
801 	struct eap_sm *sm, int id, const struct eap_method *methods,
802 	size_t count)
803 {
804 	struct wpabuf *resp;
805 	int found = 0;
806 	const struct eap_method *m;
807 
808 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
809 
810 	/* RFC 3748 - 5.3.2: Expanded Nak */
811 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
812 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
813 	if (resp == NULL)
814 		return NULL;
815 
816 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
817 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
818 
819 	for (m = methods; m; m = m->next) {
820 		if (sm->reqVendor == m->vendor &&
821 		    sm->reqVendorMethod == m->method)
822 			continue; /* do not allow the current method again */
823 		if (eap_allowed_method(sm, m->vendor, m->method)) {
824 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
825 				   "vendor=%u method=%u",
826 				   m->vendor, m->method);
827 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
828 			wpabuf_put_be24(resp, m->vendor);
829 			wpabuf_put_be32(resp, m->method);
830 
831 			found++;
832 		}
833 	}
834 	if (!found) {
835 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
836 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
837 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
838 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
839 	}
840 
841 	eap_update_len(resp);
842 
843 	return resp;
844 }
845 
846 
eap_sm_buildNak(struct eap_sm * sm,int id)847 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
848 {
849 	struct wpabuf *resp;
850 	u8 *start;
851 	int found = 0, expanded_found = 0;
852 	size_t count;
853 	const struct eap_method *methods, *m;
854 
855 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
856 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
857 		   sm->reqVendor, sm->reqVendorMethod);
858 	methods = eap_peer_get_methods(&count);
859 	if (methods == NULL)
860 		return NULL;
861 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
862 		return eap_sm_build_expanded_nak(sm, id, methods, count);
863 
864 	/* RFC 3748 - 5.3.1: Legacy Nak */
865 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
866 			     sizeof(struct eap_hdr) + 1 + count + 1,
867 			     EAP_CODE_RESPONSE, id);
868 	if (resp == NULL)
869 		return NULL;
870 
871 	start = wpabuf_put(resp, 0);
872 	for (m = methods; m; m = m->next) {
873 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
874 			continue; /* do not allow the current method again */
875 		if (eap_allowed_method(sm, m->vendor, m->method)) {
876 			if (m->vendor != EAP_VENDOR_IETF) {
877 				if (expanded_found)
878 					continue;
879 				expanded_found = 1;
880 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
881 			} else
882 				wpabuf_put_u8(resp, m->method);
883 			found++;
884 		}
885 	}
886 	if (!found)
887 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
888 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
889 
890 	eap_update_len(resp);
891 
892 	return resp;
893 }
894 
895 
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)896 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
897 {
898 	const u8 *pos;
899 	size_t msg_len;
900 
901 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
902 		"EAP authentication started");
903 	eap_notify_status(sm, "started", "");
904 
905 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
906 			       &msg_len);
907 	if (pos == NULL)
908 		return;
909 
910 	/*
911 	 * RFC 3748 - 5.1: Identity
912 	 * Data field may contain a displayable message in UTF-8. If this
913 	 * includes NUL-character, only the data before that should be
914 	 * displayed. Some EAP implementasitons may piggy-back additional
915 	 * options after the NUL.
916 	 */
917 	/* TODO: could save displayable message so that it can be shown to the
918 	 * user in case of interaction is required */
919 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
920 			  pos, msg_len);
921 }
922 
923 
924 #ifdef PCSC_FUNCS
925 
926 /*
927  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
928  * include MNC length field.
929  */
mnc_len_from_imsi(const char * imsi)930 static int mnc_len_from_imsi(const char *imsi)
931 {
932 	char mcc_str[4];
933 	unsigned int mcc;
934 
935 	os_memcpy(mcc_str, imsi, 3);
936 	mcc_str[3] = '\0';
937 	mcc = atoi(mcc_str);
938 
939 	if (mcc == 244)
940 		return 2; /* Networks in Finland use 2-digit MNC */
941 
942 	return -1;
943 }
944 
945 
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)946 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
947 				    size_t max_len, size_t *imsi_len)
948 {
949 	int mnc_len;
950 	char *pos, mnc[4];
951 
952 	if (*imsi_len + 36 > max_len) {
953 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
954 		return -1;
955 	}
956 
957 	/* MNC (2 or 3 digits) */
958 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
959 	if (mnc_len < 0)
960 		mnc_len = mnc_len_from_imsi(imsi);
961 	if (mnc_len < 0) {
962 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
963 			   "assuming 3");
964 		mnc_len = 3;
965 	}
966 
967 	if (mnc_len == 2) {
968 		mnc[0] = '0';
969 		mnc[1] = imsi[3];
970 		mnc[2] = imsi[4];
971 	} else if (mnc_len == 3) {
972 		mnc[0] = imsi[3];
973 		mnc[1] = imsi[4];
974 		mnc[2] = imsi[5];
975 	}
976 	mnc[3] = '\0';
977 
978 	pos = imsi + *imsi_len;
979 	pos += os_snprintf(pos, imsi + max_len - pos,
980 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
981 			   mnc, imsi[0], imsi[1], imsi[2]);
982 	*imsi_len = pos - imsi;
983 
984 	return 0;
985 }
986 
987 
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)988 static int eap_sm_imsi_identity(struct eap_sm *sm,
989 				struct eap_peer_config *conf)
990 {
991 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
992 	char imsi[100];
993 	size_t imsi_len;
994 	struct eap_method_type *m = conf->eap_methods;
995 	int i;
996 
997 	imsi_len = sizeof(imsi);
998 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
999 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1000 		return -1;
1001 	}
1002 
1003 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1004 
1005 	if (imsi_len < 7) {
1006 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1007 		return -1;
1008 	}
1009 
1010 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1011 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1012 		return -1;
1013 	}
1014 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1015 
1016 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1017 			  m[i].method != EAP_TYPE_NONE); i++) {
1018 		if (m[i].vendor == EAP_VENDOR_IETF &&
1019 		    m[i].method == EAP_TYPE_AKA_PRIME) {
1020 			method = EAP_SM_AKA_PRIME;
1021 			break;
1022 		}
1023 
1024 		if (m[i].vendor == EAP_VENDOR_IETF &&
1025 		    m[i].method == EAP_TYPE_AKA) {
1026 			method = EAP_SM_AKA;
1027 			break;
1028 		}
1029 	}
1030 
1031 	os_free(conf->identity);
1032 	conf->identity = os_malloc(1 + imsi_len);
1033 	if (conf->identity == NULL) {
1034 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1035 			   "IMSI-based identity");
1036 		return -1;
1037 	}
1038 
1039 	switch (method) {
1040 	case EAP_SM_SIM:
1041 		conf->identity[0] = '1';
1042 		break;
1043 	case EAP_SM_AKA:
1044 		conf->identity[0] = '0';
1045 		break;
1046 	case EAP_SM_AKA_PRIME:
1047 		conf->identity[0] = '6';
1048 		break;
1049 	}
1050 	os_memcpy(conf->identity + 1, imsi, imsi_len);
1051 	conf->identity_len = 1 + imsi_len;
1052 
1053 	return 0;
1054 }
1055 
1056 #endif /* PCSC_FUNCS */
1057 
1058 
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1059 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1060 				struct eap_peer_config *conf)
1061 {
1062 #ifdef PCSC_FUNCS
1063 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1064 		/*
1065 		 * Make sure the same PIN is not tried again in order to avoid
1066 		 * blocking SIM.
1067 		 */
1068 		os_free(conf->pin);
1069 		conf->pin = NULL;
1070 
1071 		wpa_printf(MSG_WARNING, "PIN validation failed");
1072 		eap_sm_request_pin(sm);
1073 		return -1;
1074 	}
1075 	return 0;
1076 #else /* PCSC_FUNCS */
1077 	return -1;
1078 #endif /* PCSC_FUNCS */
1079 }
1080 
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1081 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1082 				     struct eap_peer_config *conf)
1083 {
1084 #ifdef PCSC_FUNCS
1085 	if (eap_sm_set_scard_pin(sm, conf))
1086 		return -1;
1087 
1088 	return eap_sm_imsi_identity(sm, conf);
1089 #else /* PCSC_FUNCS */
1090 	return -1;
1091 #endif /* PCSC_FUNCS */
1092 }
1093 
1094 
1095 /**
1096  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1097  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1098  * @id: EAP identifier for the packet
1099  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1100  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1101  * failure
1102  *
1103  * This function allocates and builds an EAP-Identity/Response packet for the
1104  * current network. The caller is responsible for freeing the returned data.
1105  */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1106 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1107 {
1108 	struct eap_peer_config *config = eap_get_config(sm);
1109 	struct wpabuf *resp;
1110 	const u8 *identity;
1111 	size_t identity_len;
1112 
1113 	if (config == NULL) {
1114 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1115 			   "was not available");
1116 		return NULL;
1117 	}
1118 
1119 	if (sm->m && sm->m->get_identity &&
1120 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1121 					    &identity_len)) != NULL) {
1122 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1123 				  "identity", identity, identity_len);
1124 	} else if (!encrypted && config->anonymous_identity) {
1125 		identity = config->anonymous_identity;
1126 		identity_len = config->anonymous_identity_len;
1127 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1128 				  identity, identity_len);
1129 	} else {
1130 		identity = config->identity;
1131 		identity_len = config->identity_len;
1132 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1133 				  identity, identity_len);
1134 	}
1135 
1136 	if (identity == NULL) {
1137 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1138 			   "configuration was not available");
1139 		if (config->pcsc) {
1140 			if (eap_sm_get_scard_identity(sm, config) < 0)
1141 				return NULL;
1142 			identity = config->identity;
1143 			identity_len = config->identity_len;
1144 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1145 					  "IMSI", identity, identity_len);
1146 		} else {
1147 			eap_sm_request_identity(sm);
1148 			return NULL;
1149 		}
1150 	} else if (config->pcsc) {
1151 		if (eap_sm_set_scard_pin(sm, config) < 0)
1152 			return NULL;
1153 	}
1154 
1155 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1156 			     EAP_CODE_RESPONSE, id);
1157 	if (resp == NULL)
1158 		return NULL;
1159 
1160 	wpabuf_put_data(resp, identity, identity_len);
1161 
1162 	return resp;
1163 }
1164 
1165 
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1166 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1167 {
1168 	const u8 *pos;
1169 	char *msg;
1170 	size_t i, msg_len;
1171 
1172 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1173 			       &msg_len);
1174 	if (pos == NULL)
1175 		return;
1176 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1177 			  pos, msg_len);
1178 
1179 	msg = os_malloc(msg_len + 1);
1180 	if (msg == NULL)
1181 		return;
1182 	for (i = 0; i < msg_len; i++)
1183 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1184 	msg[msg_len] = '\0';
1185 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1186 		WPA_EVENT_EAP_NOTIFICATION, msg);
1187 	os_free(msg);
1188 }
1189 
1190 
eap_sm_buildNotify(int id)1191 static struct wpabuf * eap_sm_buildNotify(int id)
1192 {
1193 	struct wpabuf *resp;
1194 
1195 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1196 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1197 			     EAP_CODE_RESPONSE, id);
1198 	if (resp == NULL)
1199 		return NULL;
1200 
1201 	return resp;
1202 }
1203 
1204 
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1205 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1206 {
1207 	const struct eap_hdr *hdr;
1208 	size_t plen;
1209 	const u8 *pos;
1210 
1211 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1212 	sm->reqId = 0;
1213 	sm->reqMethod = EAP_TYPE_NONE;
1214 	sm->reqVendor = EAP_VENDOR_IETF;
1215 	sm->reqVendorMethod = EAP_TYPE_NONE;
1216 
1217 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1218 		return;
1219 
1220 	hdr = wpabuf_head(req);
1221 	plen = be_to_host16(hdr->length);
1222 	if (plen > wpabuf_len(req)) {
1223 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1224 			   "(len=%lu plen=%lu)",
1225 			   (unsigned long) wpabuf_len(req),
1226 			   (unsigned long) plen);
1227 		return;
1228 	}
1229 
1230 	sm->reqId = hdr->identifier;
1231 
1232 	if (sm->workaround) {
1233 		const u8 *addr[1];
1234 		addr[0] = wpabuf_head(req);
1235 		md5_vector(1, addr, &plen, sm->req_md5);
1236 	}
1237 
1238 	switch (hdr->code) {
1239 	case EAP_CODE_REQUEST:
1240 		if (plen < sizeof(*hdr) + 1) {
1241 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1242 				   "no Type field");
1243 			return;
1244 		}
1245 		sm->rxReq = TRUE;
1246 		pos = (const u8 *) (hdr + 1);
1247 		sm->reqMethod = *pos++;
1248 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1249 			if (plen < sizeof(*hdr) + 8) {
1250 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1251 					   "expanded EAP-Packet (plen=%lu)",
1252 					   (unsigned long) plen);
1253 				return;
1254 			}
1255 			sm->reqVendor = WPA_GET_BE24(pos);
1256 			pos += 3;
1257 			sm->reqVendorMethod = WPA_GET_BE32(pos);
1258 		}
1259 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1260 			   "method=%u vendor=%u vendorMethod=%u",
1261 			   sm->reqId, sm->reqMethod, sm->reqVendor,
1262 			   sm->reqVendorMethod);
1263 		break;
1264 	case EAP_CODE_RESPONSE:
1265 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1266 			/*
1267 			 * LEAP differs from RFC 4137 by using reversed roles
1268 			 * for mutual authentication and because of this, we
1269 			 * need to accept EAP-Response frames if LEAP is used.
1270 			 */
1271 			if (plen < sizeof(*hdr) + 1) {
1272 				wpa_printf(MSG_DEBUG, "EAP: Too short "
1273 					   "EAP-Response - no Type field");
1274 				return;
1275 			}
1276 			sm->rxResp = TRUE;
1277 			pos = (const u8 *) (hdr + 1);
1278 			sm->reqMethod = *pos;
1279 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1280 				   "LEAP method=%d id=%d",
1281 				   sm->reqMethod, sm->reqId);
1282 			break;
1283 		}
1284 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1285 		break;
1286 	case EAP_CODE_SUCCESS:
1287 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1288 		eap_notify_status(sm, "completion", "success");
1289 		sm->rxSuccess = TRUE;
1290 		break;
1291 	case EAP_CODE_FAILURE:
1292 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1293 		eap_notify_status(sm, "completion", "failure");
1294 		sm->rxFailure = TRUE;
1295 		break;
1296 	default:
1297 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1298 			   "code %d", hdr->code);
1299 		break;
1300 	}
1301 }
1302 
1303 
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1304 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1305 				  union tls_event_data *data)
1306 {
1307 	struct eap_sm *sm = ctx;
1308 	char *hash_hex = NULL;
1309 
1310 	switch (ev) {
1311 	case TLS_CERT_CHAIN_SUCCESS:
1312 		eap_notify_status(sm, "remote certificate verification",
1313 				  "success");
1314 		break;
1315 	case TLS_CERT_CHAIN_FAILURE:
1316 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1317 			"reason=%d depth=%d subject='%s' err='%s'",
1318 			data->cert_fail.reason,
1319 			data->cert_fail.depth,
1320 			data->cert_fail.subject,
1321 			data->cert_fail.reason_txt);
1322 		eap_notify_status(sm, "remote certificate verification",
1323 				  data->cert_fail.reason_txt);
1324 		break;
1325 	case TLS_PEER_CERTIFICATE:
1326 		if (!sm->eapol_cb->notify_cert)
1327 			break;
1328 
1329 		if (data->peer_cert.hash) {
1330 			size_t len = data->peer_cert.hash_len * 2 + 1;
1331 			hash_hex = os_malloc(len);
1332 			if (hash_hex) {
1333 				wpa_snprintf_hex(hash_hex, len,
1334 						 data->peer_cert.hash,
1335 						 data->peer_cert.hash_len);
1336 			}
1337 		}
1338 
1339 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1340 					  data->peer_cert.depth,
1341 					  data->peer_cert.subject,
1342 					  hash_hex, data->peer_cert.cert);
1343 		break;
1344 	case TLS_ALERT:
1345 		if (data->alert.is_local)
1346 			eap_notify_status(sm, "local TLS alert",
1347 					  data->alert.description);
1348 		else
1349 			eap_notify_status(sm, "remote TLS alert",
1350 					  data->alert.description);
1351 		break;
1352 	}
1353 
1354 	os_free(hash_hex);
1355 }
1356 
1357 
1358 /**
1359  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1360  * @eapol_ctx: Context data to be used with eapol_cb calls
1361  * @eapol_cb: Pointer to EAPOL callback functions
1362  * @msg_ctx: Context data for wpa_msg() calls
1363  * @conf: EAP configuration
1364  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1365  *
1366  * This function allocates and initializes an EAP state machine. In addition,
1367  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1368  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1369  * state machine. Consequently, the caller must make sure that this data
1370  * structure remains alive while the EAP state machine is active.
1371  */
eap_peer_sm_init(void * eapol_ctx,struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1372 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1373 				 struct eapol_callbacks *eapol_cb,
1374 				 void *msg_ctx, struct eap_config *conf)
1375 {
1376 	struct eap_sm *sm;
1377 	struct tls_config tlsconf;
1378 
1379 	sm = os_zalloc(sizeof(*sm));
1380 	if (sm == NULL)
1381 		return NULL;
1382 	sm->eapol_ctx = eapol_ctx;
1383 	sm->eapol_cb = eapol_cb;
1384 	sm->msg_ctx = msg_ctx;
1385 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1386 	sm->wps = conf->wps;
1387 
1388 	os_memset(&tlsconf, 0, sizeof(tlsconf));
1389 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1390 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1391 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1392 #ifdef CONFIG_FIPS
1393 	tlsconf.fips_mode = 1;
1394 #endif /* CONFIG_FIPS */
1395 	tlsconf.event_cb = eap_peer_sm_tls_event;
1396 	tlsconf.cb_ctx = sm;
1397 	tlsconf.cert_in_cb = conf->cert_in_cb;
1398 	sm->ssl_ctx = tls_init(&tlsconf);
1399 	if (sm->ssl_ctx == NULL) {
1400 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1401 			   "context.");
1402 		os_free(sm);
1403 		return NULL;
1404 	}
1405 
1406 	sm->ssl_ctx2 = tls_init(&tlsconf);
1407 	if (sm->ssl_ctx2 == NULL) {
1408 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1409 			   "context (2).");
1410 		/* Run without separate TLS context within TLS tunnel */
1411 	}
1412 
1413 	return sm;
1414 }
1415 
1416 
1417 /**
1418  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1419  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1420  *
1421  * This function deinitializes EAP state machine and frees all allocated
1422  * resources.
1423  */
eap_peer_sm_deinit(struct eap_sm * sm)1424 void eap_peer_sm_deinit(struct eap_sm *sm)
1425 {
1426 	if (sm == NULL)
1427 		return;
1428 	eap_deinit_prev_method(sm, "EAP deinit");
1429 	eap_sm_abort(sm);
1430 	if (sm->ssl_ctx2)
1431 		tls_deinit(sm->ssl_ctx2);
1432 	tls_deinit(sm->ssl_ctx);
1433 	os_free(sm);
1434 }
1435 
1436 
1437 /**
1438  * eap_peer_sm_step - Step EAP peer state machine
1439  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1440  * Returns: 1 if EAP state was changed or 0 if not
1441  *
1442  * This function advances EAP state machine to a new state to match with the
1443  * current variables. This should be called whenever variables used by the EAP
1444  * state machine have changed.
1445  */
eap_peer_sm_step(struct eap_sm * sm)1446 int eap_peer_sm_step(struct eap_sm *sm)
1447 {
1448 	int res = 0;
1449 	do {
1450 		sm->changed = FALSE;
1451 		SM_STEP_RUN(EAP);
1452 		if (sm->changed)
1453 			res = 1;
1454 	} while (sm->changed);
1455 	return res;
1456 }
1457 
1458 
1459 /**
1460  * eap_sm_abort - Abort EAP authentication
1461  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1462  *
1463  * Release system resources that have been allocated for the authentication
1464  * session without fully deinitializing the EAP state machine.
1465  */
eap_sm_abort(struct eap_sm * sm)1466 void eap_sm_abort(struct eap_sm *sm)
1467 {
1468 	wpabuf_free(sm->lastRespData);
1469 	sm->lastRespData = NULL;
1470 	wpabuf_free(sm->eapRespData);
1471 	sm->eapRespData = NULL;
1472 	os_free(sm->eapKeyData);
1473 	sm->eapKeyData = NULL;
1474 	os_free(sm->eapSessionId);
1475 	sm->eapSessionId = NULL;
1476 
1477 	/* This is not clearly specified in the EAP statemachines draft, but
1478 	 * it seems necessary to make sure that some of the EAPOL variables get
1479 	 * cleared for the next authentication. */
1480 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1481 }
1482 
1483 
1484 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)1485 static const char * eap_sm_state_txt(int state)
1486 {
1487 	switch (state) {
1488 	case EAP_INITIALIZE:
1489 		return "INITIALIZE";
1490 	case EAP_DISABLED:
1491 		return "DISABLED";
1492 	case EAP_IDLE:
1493 		return "IDLE";
1494 	case EAP_RECEIVED:
1495 		return "RECEIVED";
1496 	case EAP_GET_METHOD:
1497 		return "GET_METHOD";
1498 	case EAP_METHOD:
1499 		return "METHOD";
1500 	case EAP_SEND_RESPONSE:
1501 		return "SEND_RESPONSE";
1502 	case EAP_DISCARD:
1503 		return "DISCARD";
1504 	case EAP_IDENTITY:
1505 		return "IDENTITY";
1506 	case EAP_NOTIFICATION:
1507 		return "NOTIFICATION";
1508 	case EAP_RETRANSMIT:
1509 		return "RETRANSMIT";
1510 	case EAP_SUCCESS:
1511 		return "SUCCESS";
1512 	case EAP_FAILURE:
1513 		return "FAILURE";
1514 	default:
1515 		return "UNKNOWN";
1516 	}
1517 }
1518 #endif /* CONFIG_CTRL_IFACE */
1519 
1520 
1521 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)1522 static const char * eap_sm_method_state_txt(EapMethodState state)
1523 {
1524 	switch (state) {
1525 	case METHOD_NONE:
1526 		return "NONE";
1527 	case METHOD_INIT:
1528 		return "INIT";
1529 	case METHOD_CONT:
1530 		return "CONT";
1531 	case METHOD_MAY_CONT:
1532 		return "MAY_CONT";
1533 	case METHOD_DONE:
1534 		return "DONE";
1535 	default:
1536 		return "UNKNOWN";
1537 	}
1538 }
1539 
1540 
eap_sm_decision_txt(EapDecision decision)1541 static const char * eap_sm_decision_txt(EapDecision decision)
1542 {
1543 	switch (decision) {
1544 	case DECISION_FAIL:
1545 		return "FAIL";
1546 	case DECISION_COND_SUCC:
1547 		return "COND_SUCC";
1548 	case DECISION_UNCOND_SUCC:
1549 		return "UNCOND_SUCC";
1550 	default:
1551 		return "UNKNOWN";
1552 	}
1553 }
1554 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1555 
1556 
1557 #ifdef CONFIG_CTRL_IFACE
1558 
1559 /**
1560  * eap_sm_get_status - Get EAP state machine status
1561  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1562  * @buf: Buffer for status information
1563  * @buflen: Maximum buffer length
1564  * @verbose: Whether to include verbose status information
1565  * Returns: Number of bytes written to buf.
1566  *
1567  * Query EAP state machine for status information. This function fills in a
1568  * text area with current status information from the EAPOL state machine. If
1569  * the buffer (buf) is not large enough, status information will be truncated
1570  * to fit the buffer.
1571  */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)1572 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1573 {
1574 	int len, ret;
1575 
1576 	if (sm == NULL)
1577 		return 0;
1578 
1579 	len = os_snprintf(buf, buflen,
1580 			  "EAP state=%s\n",
1581 			  eap_sm_state_txt(sm->EAP_state));
1582 	if (len < 0 || (size_t) len >= buflen)
1583 		return 0;
1584 
1585 	if (sm->selectedMethod != EAP_TYPE_NONE) {
1586 		const char *name;
1587 		if (sm->m) {
1588 			name = sm->m->name;
1589 		} else {
1590 			const struct eap_method *m =
1591 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1592 							sm->selectedMethod);
1593 			if (m)
1594 				name = m->name;
1595 			else
1596 				name = "?";
1597 		}
1598 		ret = os_snprintf(buf + len, buflen - len,
1599 				  "selectedMethod=%d (EAP-%s)\n",
1600 				  sm->selectedMethod, name);
1601 		if (ret < 0 || (size_t) ret >= buflen - len)
1602 			return len;
1603 		len += ret;
1604 
1605 		if (sm->m && sm->m->get_status) {
1606 			len += sm->m->get_status(sm, sm->eap_method_priv,
1607 						 buf + len, buflen - len,
1608 						 verbose);
1609 		}
1610 	}
1611 
1612 	if (verbose) {
1613 		ret = os_snprintf(buf + len, buflen - len,
1614 				  "reqMethod=%d\n"
1615 				  "methodState=%s\n"
1616 				  "decision=%s\n"
1617 				  "ClientTimeout=%d\n",
1618 				  sm->reqMethod,
1619 				  eap_sm_method_state_txt(sm->methodState),
1620 				  eap_sm_decision_txt(sm->decision),
1621 				  sm->ClientTimeout);
1622 		if (ret < 0 || (size_t) ret >= buflen - len)
1623 			return len;
1624 		len += ret;
1625 	}
1626 
1627 	return len;
1628 }
1629 #endif /* CONFIG_CTRL_IFACE */
1630 
1631 
1632 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)1633 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1634 			   const char *msg, size_t msglen)
1635 {
1636 	struct eap_peer_config *config;
1637 	char *txt = NULL, *tmp;
1638 
1639 	if (sm == NULL)
1640 		return;
1641 	config = eap_get_config(sm);
1642 	if (config == NULL)
1643 		return;
1644 
1645 	switch (field) {
1646 	case WPA_CTRL_REQ_EAP_IDENTITY:
1647 		config->pending_req_identity++;
1648 		break;
1649 	case WPA_CTRL_REQ_EAP_PASSWORD:
1650 		config->pending_req_password++;
1651 		break;
1652 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1653 		config->pending_req_new_password++;
1654 		break;
1655 	case WPA_CTRL_REQ_EAP_PIN:
1656 		config->pending_req_pin++;
1657 		break;
1658 	case WPA_CTRL_REQ_EAP_OTP:
1659 		if (msg) {
1660 			tmp = os_malloc(msglen + 3);
1661 			if (tmp == NULL)
1662 				return;
1663 			tmp[0] = '[';
1664 			os_memcpy(tmp + 1, msg, msglen);
1665 			tmp[msglen + 1] = ']';
1666 			tmp[msglen + 2] = '\0';
1667 			txt = tmp;
1668 			os_free(config->pending_req_otp);
1669 			config->pending_req_otp = tmp;
1670 			config->pending_req_otp_len = msglen + 3;
1671 		} else {
1672 			if (config->pending_req_otp == NULL)
1673 				return;
1674 			txt = config->pending_req_otp;
1675 		}
1676 		break;
1677 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1678 		config->pending_req_passphrase++;
1679 		break;
1680 	default:
1681 		return;
1682 	}
1683 
1684 	if (sm->eapol_cb->eap_param_needed)
1685 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1686 }
1687 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1688 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1689 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1690 
eap_sm_get_method_name(struct eap_sm * sm)1691 const char * eap_sm_get_method_name(struct eap_sm *sm)
1692 {
1693 	if (sm->m == NULL)
1694 		return "UNKNOWN";
1695 	return sm->m->name;
1696 }
1697 
1698 
1699 /**
1700  * eap_sm_request_identity - Request identity from user (ctrl_iface)
1701  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1702  *
1703  * EAP methods can call this function to request identity information for the
1704  * current network. This is normally called when the identity is not included
1705  * in the network configuration. The request will be sent to monitor programs
1706  * through the control interface.
1707  */
eap_sm_request_identity(struct eap_sm * sm)1708 void eap_sm_request_identity(struct eap_sm *sm)
1709 {
1710 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1711 }
1712 
1713 
1714 /**
1715  * eap_sm_request_password - Request password from user (ctrl_iface)
1716  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1717  *
1718  * EAP methods can call this function to request password information for the
1719  * current network. This is normally called when the password is not included
1720  * in the network configuration. The request will be sent to monitor programs
1721  * through the control interface.
1722  */
eap_sm_request_password(struct eap_sm * sm)1723 void eap_sm_request_password(struct eap_sm *sm)
1724 {
1725 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1726 }
1727 
1728 
1729 /**
1730  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1731  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1732  *
1733  * EAP methods can call this function to request new password information for
1734  * the current network. This is normally called when the EAP method indicates
1735  * that the current password has expired and password change is required. The
1736  * request will be sent to monitor programs through the control interface.
1737  */
eap_sm_request_new_password(struct eap_sm * sm)1738 void eap_sm_request_new_password(struct eap_sm *sm)
1739 {
1740 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1741 }
1742 
1743 
1744 /**
1745  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1746  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1747  *
1748  * EAP methods can call this function to request SIM or smart card PIN
1749  * information for the current network. This is normally called when the PIN is
1750  * not included in the network configuration. The request will be sent to
1751  * monitor programs through the control interface.
1752  */
eap_sm_request_pin(struct eap_sm * sm)1753 void eap_sm_request_pin(struct eap_sm *sm)
1754 {
1755 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1756 }
1757 
1758 
1759 /**
1760  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1761  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1762  * @msg: Message to be displayed to the user when asking for OTP
1763  * @msg_len: Length of the user displayable message
1764  *
1765  * EAP methods can call this function to request open time password (OTP) for
1766  * the current network. The request will be sent to monitor programs through
1767  * the control interface.
1768  */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)1769 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1770 {
1771 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1772 }
1773 
1774 
1775 /**
1776  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1777  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1778  *
1779  * EAP methods can call this function to request passphrase for a private key
1780  * for the current network. This is normally called when the passphrase is not
1781  * included in the network configuration. The request will be sent to monitor
1782  * programs through the control interface.
1783  */
eap_sm_request_passphrase(struct eap_sm * sm)1784 void eap_sm_request_passphrase(struct eap_sm *sm)
1785 {
1786 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1787 }
1788 
1789 
1790 /**
1791  * eap_sm_notify_ctrl_attached - Notification of attached monitor
1792  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1793  *
1794  * Notify EAP state machines that a monitor was attached to the control
1795  * interface to trigger re-sending of pending requests for user input.
1796  */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)1797 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1798 {
1799 	struct eap_peer_config *config = eap_get_config(sm);
1800 
1801 	if (config == NULL)
1802 		return;
1803 
1804 	/* Re-send any pending requests for user data since a new control
1805 	 * interface was added. This handles cases where the EAP authentication
1806 	 * starts immediately after system startup when the user interface is
1807 	 * not yet running. */
1808 	if (config->pending_req_identity)
1809 		eap_sm_request_identity(sm);
1810 	if (config->pending_req_password)
1811 		eap_sm_request_password(sm);
1812 	if (config->pending_req_new_password)
1813 		eap_sm_request_new_password(sm);
1814 	if (config->pending_req_otp)
1815 		eap_sm_request_otp(sm, NULL, 0);
1816 	if (config->pending_req_pin)
1817 		eap_sm_request_pin(sm);
1818 	if (config->pending_req_passphrase)
1819 		eap_sm_request_passphrase(sm);
1820 }
1821 
1822 
eap_allowed_phase2_type(int vendor,int type)1823 static int eap_allowed_phase2_type(int vendor, int type)
1824 {
1825 	if (vendor != EAP_VENDOR_IETF)
1826 		return 0;
1827 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1828 		type != EAP_TYPE_FAST;
1829 }
1830 
1831 
1832 /**
1833  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1834  * @name: EAP method name, e.g., MD5
1835  * @vendor: Buffer for returning EAP Vendor-Id
1836  * Returns: EAP method type or %EAP_TYPE_NONE if not found
1837  *
1838  * This function maps EAP type names into EAP type numbers that are allowed for
1839  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1840  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1841  */
eap_get_phase2_type(const char * name,int * vendor)1842 u32 eap_get_phase2_type(const char *name, int *vendor)
1843 {
1844 	int v;
1845 	u8 type = eap_peer_get_type(name, &v);
1846 	if (eap_allowed_phase2_type(v, type)) {
1847 		*vendor = v;
1848 		return type;
1849 	}
1850 	*vendor = EAP_VENDOR_IETF;
1851 	return EAP_TYPE_NONE;
1852 }
1853 
1854 
1855 /**
1856  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1857  * @config: Pointer to a network configuration
1858  * @count: Pointer to a variable to be filled with number of returned EAP types
1859  * Returns: Pointer to allocated type list or %NULL on failure
1860  *
1861  * This function generates an array of allowed EAP phase 2 (tunneled) types for
1862  * the given network configuration.
1863  */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)1864 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1865 					      size_t *count)
1866 {
1867 	struct eap_method_type *buf;
1868 	u32 method;
1869 	int vendor;
1870 	size_t mcount;
1871 	const struct eap_method *methods, *m;
1872 
1873 	methods = eap_peer_get_methods(&mcount);
1874 	if (methods == NULL)
1875 		return NULL;
1876 	*count = 0;
1877 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1878 	if (buf == NULL)
1879 		return NULL;
1880 
1881 	for (m = methods; m; m = m->next) {
1882 		vendor = m->vendor;
1883 		method = m->method;
1884 		if (eap_allowed_phase2_type(vendor, method)) {
1885 			if (vendor == EAP_VENDOR_IETF &&
1886 			    method == EAP_TYPE_TLS && config &&
1887 			    config->private_key2 == NULL)
1888 				continue;
1889 			buf[*count].vendor = vendor;
1890 			buf[*count].method = method;
1891 			(*count)++;
1892 		}
1893 	}
1894 
1895 	return buf;
1896 }
1897 
1898 
1899 /**
1900  * eap_set_fast_reauth - Update fast_reauth setting
1901  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1902  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1903  */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)1904 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1905 {
1906 	sm->fast_reauth = enabled;
1907 }
1908 
1909 
1910 /**
1911  * eap_set_workaround - Update EAP workarounds setting
1912  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1913  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1914  */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)1915 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1916 {
1917 	sm->workaround = workaround;
1918 }
1919 
1920 
1921 /**
1922  * eap_get_config - Get current network configuration
1923  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1924  * Returns: Pointer to the current network configuration or %NULL if not found
1925  *
1926  * EAP peer methods should avoid using this function if they can use other
1927  * access functions, like eap_get_config_identity() and
1928  * eap_get_config_password(), that do not require direct access to
1929  * struct eap_peer_config.
1930  */
eap_get_config(struct eap_sm * sm)1931 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1932 {
1933 	return sm->eapol_cb->get_config(sm->eapol_ctx);
1934 }
1935 
1936 
1937 /**
1938  * eap_get_config_identity - Get identity from the network configuration
1939  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1940  * @len: Buffer for the length of the identity
1941  * Returns: Pointer to the identity or %NULL if not found
1942  */
eap_get_config_identity(struct eap_sm * sm,size_t * len)1943 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1944 {
1945 	struct eap_peer_config *config = eap_get_config(sm);
1946 	if (config == NULL)
1947 		return NULL;
1948 	*len = config->identity_len;
1949 	return config->identity;
1950 }
1951 
1952 
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)1953 static int eap_get_ext_password(struct eap_sm *sm,
1954 				struct eap_peer_config *config)
1955 {
1956 	char *name;
1957 
1958 	if (config->password == NULL)
1959 		return -1;
1960 
1961 	name = os_zalloc(config->password_len + 1);
1962 	if (name == NULL)
1963 		return -1;
1964 	os_memcpy(name, config->password, config->password_len);
1965 
1966 	ext_password_free(sm->ext_pw_buf);
1967 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
1968 	os_free(name);
1969 
1970 	return sm->ext_pw_buf == NULL ? -1 : 0;
1971 }
1972 
1973 
1974 /**
1975  * eap_get_config_password - Get password from the network configuration
1976  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1977  * @len: Buffer for the length of the password
1978  * Returns: Pointer to the password or %NULL if not found
1979  */
eap_get_config_password(struct eap_sm * sm,size_t * len)1980 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1981 {
1982 	struct eap_peer_config *config = eap_get_config(sm);
1983 	if (config == NULL)
1984 		return NULL;
1985 
1986 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1987 		if (eap_get_ext_password(sm, config) < 0)
1988 			return NULL;
1989 		*len = wpabuf_len(sm->ext_pw_buf);
1990 		return wpabuf_head(sm->ext_pw_buf);
1991 	}
1992 
1993 	*len = config->password_len;
1994 	return config->password;
1995 }
1996 
1997 
1998 /**
1999  * eap_get_config_password2 - Get password from the network configuration
2000  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2001  * @len: Buffer for the length of the password
2002  * @hash: Buffer for returning whether the password is stored as a
2003  * NtPasswordHash instead of plaintext password; can be %NULL if this
2004  * information is not needed
2005  * Returns: Pointer to the password or %NULL if not found
2006  */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2007 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2008 {
2009 	struct eap_peer_config *config = eap_get_config(sm);
2010 	if (config == NULL)
2011 		return NULL;
2012 
2013 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2014 		if (eap_get_ext_password(sm, config) < 0)
2015 			return NULL;
2016 		*len = wpabuf_len(sm->ext_pw_buf);
2017 		return wpabuf_head(sm->ext_pw_buf);
2018 	}
2019 
2020 	*len = config->password_len;
2021 	if (hash)
2022 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2023 	return config->password;
2024 }
2025 
2026 
2027 /**
2028  * eap_get_config_new_password - Get new password from network configuration
2029  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2030  * @len: Buffer for the length of the new password
2031  * Returns: Pointer to the new password or %NULL if not found
2032  */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2033 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2034 {
2035 	struct eap_peer_config *config = eap_get_config(sm);
2036 	if (config == NULL)
2037 		return NULL;
2038 	*len = config->new_password_len;
2039 	return config->new_password;
2040 }
2041 
2042 
2043 /**
2044  * eap_get_config_otp - Get one-time password from the network configuration
2045  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2046  * @len: Buffer for the length of the one-time password
2047  * Returns: Pointer to the one-time password or %NULL if not found
2048  */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2049 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2050 {
2051 	struct eap_peer_config *config = eap_get_config(sm);
2052 	if (config == NULL)
2053 		return NULL;
2054 	*len = config->otp_len;
2055 	return config->otp;
2056 }
2057 
2058 
2059 /**
2060  * eap_clear_config_otp - Clear used one-time password
2061  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2062  *
2063  * This function clears a used one-time password (OTP) from the current network
2064  * configuration. This should be called when the OTP has been used and is not
2065  * needed anymore.
2066  */
eap_clear_config_otp(struct eap_sm * sm)2067 void eap_clear_config_otp(struct eap_sm *sm)
2068 {
2069 	struct eap_peer_config *config = eap_get_config(sm);
2070 	if (config == NULL)
2071 		return;
2072 	os_memset(config->otp, 0, config->otp_len);
2073 	os_free(config->otp);
2074 	config->otp = NULL;
2075 	config->otp_len = 0;
2076 }
2077 
2078 
2079 /**
2080  * eap_get_config_phase1 - Get phase1 data from the network configuration
2081  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2082  * Returns: Pointer to the phase1 data or %NULL if not found
2083  */
eap_get_config_phase1(struct eap_sm * sm)2084 const char * eap_get_config_phase1(struct eap_sm *sm)
2085 {
2086 	struct eap_peer_config *config = eap_get_config(sm);
2087 	if (config == NULL)
2088 		return NULL;
2089 	return config->phase1;
2090 }
2091 
2092 
2093 /**
2094  * eap_get_config_phase2 - Get phase2 data from the network configuration
2095  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2096  * Returns: Pointer to the phase1 data or %NULL if not found
2097  */
eap_get_config_phase2(struct eap_sm * sm)2098 const char * eap_get_config_phase2(struct eap_sm *sm)
2099 {
2100 	struct eap_peer_config *config = eap_get_config(sm);
2101 	if (config == NULL)
2102 		return NULL;
2103 	return config->phase2;
2104 }
2105 
2106 
eap_get_config_fragment_size(struct eap_sm * sm)2107 int eap_get_config_fragment_size(struct eap_sm *sm)
2108 {
2109 	struct eap_peer_config *config = eap_get_config(sm);
2110 	if (config == NULL)
2111 		return -1;
2112 	return config->fragment_size;
2113 }
2114 
2115 
2116 /**
2117  * eap_key_available - Get key availability (eapKeyAvailable variable)
2118  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2119  * Returns: 1 if EAP keying material is available, 0 if not
2120  */
eap_key_available(struct eap_sm * sm)2121 int eap_key_available(struct eap_sm *sm)
2122 {
2123 	return sm ? sm->eapKeyAvailable : 0;
2124 }
2125 
2126 
2127 /**
2128  * eap_notify_success - Notify EAP state machine about external success trigger
2129  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2130  *
2131  * This function is called when external event, e.g., successful completion of
2132  * WPA-PSK key handshake, is indicating that EAP state machine should move to
2133  * success state. This is mainly used with security modes that do not use EAP
2134  * state machine (e.g., WPA-PSK).
2135  */
eap_notify_success(struct eap_sm * sm)2136 void eap_notify_success(struct eap_sm *sm)
2137 {
2138 	if (sm) {
2139 		sm->decision = DECISION_COND_SUCC;
2140 		sm->EAP_state = EAP_SUCCESS;
2141 	}
2142 }
2143 
2144 
2145 /**
2146  * eap_notify_lower_layer_success - Notification of lower layer success
2147  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2148  *
2149  * Notify EAP state machines that a lower layer has detected a successful
2150  * authentication. This is used to recover from dropped EAP-Success messages.
2151  */
eap_notify_lower_layer_success(struct eap_sm * sm)2152 void eap_notify_lower_layer_success(struct eap_sm *sm)
2153 {
2154 	if (sm == NULL)
2155 		return;
2156 
2157 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2158 	    sm->decision == DECISION_FAIL ||
2159 	    (sm->methodState != METHOD_MAY_CONT &&
2160 	     sm->methodState != METHOD_DONE))
2161 		return;
2162 
2163 	if (sm->eapKeyData != NULL)
2164 		sm->eapKeyAvailable = TRUE;
2165 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2166 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2167 		"EAP authentication completed successfully (based on lower "
2168 		"layer success)");
2169 }
2170 
2171 
2172 /**
2173  * eap_get_eapSessionId - Get Session-Id from EAP state machine
2174  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2175  * @len: Pointer to variable that will be set to number of bytes in the session
2176  * Returns: Pointer to the EAP Session-Id or %NULL on failure
2177  *
2178  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2179  * only after a successful authentication. EAP state machine continues to manage
2180  * the Session-Id and the caller must not change or free the returned data.
2181  */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2182 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2183 {
2184 	if (sm == NULL || sm->eapSessionId == NULL) {
2185 		*len = 0;
2186 		return NULL;
2187 	}
2188 
2189 	*len = sm->eapSessionIdLen;
2190 	return sm->eapSessionId;
2191 }
2192 
2193 
2194 /**
2195  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2196  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2197  * @len: Pointer to variable that will be set to number of bytes in the key
2198  * Returns: Pointer to the EAP keying data or %NULL on failure
2199  *
2200  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2201  * key is available only after a successful authentication. EAP state machine
2202  * continues to manage the key data and the caller must not change or free the
2203  * returned data.
2204  */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2205 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2206 {
2207 	if (sm == NULL || sm->eapKeyData == NULL) {
2208 		*len = 0;
2209 		return NULL;
2210 	}
2211 
2212 	*len = sm->eapKeyDataLen;
2213 	return sm->eapKeyData;
2214 }
2215 
2216 
2217 /**
2218  * eap_get_eapKeyData - Get EAP response data
2219  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2220  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2221  *
2222  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2223  * available when EAP state machine has processed an incoming EAP request. The
2224  * EAP state machine does not maintain a reference to the response after this
2225  * function is called and the caller is responsible for freeing the data.
2226  */
eap_get_eapRespData(struct eap_sm * sm)2227 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2228 {
2229 	struct wpabuf *resp;
2230 
2231 	if (sm == NULL || sm->eapRespData == NULL)
2232 		return NULL;
2233 
2234 	resp = sm->eapRespData;
2235 	sm->eapRespData = NULL;
2236 
2237 	return resp;
2238 }
2239 
2240 
2241 /**
2242  * eap_sm_register_scard_ctx - Notification of smart card context
2243  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2244  * @ctx: Context data for smart card operations
2245  *
2246  * Notify EAP state machines of context data for smart card operations. This
2247  * context data will be used as a parameter for scard_*() functions.
2248  */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2249 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2250 {
2251 	if (sm)
2252 		sm->scard_ctx = ctx;
2253 }
2254 
2255 
2256 /**
2257  * eap_set_config_blob - Set or add a named configuration blob
2258  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2259  * @blob: New value for the blob
2260  *
2261  * Adds a new configuration blob or replaces the current value of an existing
2262  * blob.
2263  */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2264 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2265 {
2266 #ifndef CONFIG_NO_CONFIG_BLOBS
2267 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2268 #endif /* CONFIG_NO_CONFIG_BLOBS */
2269 }
2270 
2271 
2272 /**
2273  * eap_get_config_blob - Get a named configuration blob
2274  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2275  * @name: Name of the blob
2276  * Returns: Pointer to blob data or %NULL if not found
2277  */
eap_get_config_blob(struct eap_sm * sm,const char * name)2278 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2279 						   const char *name)
2280 {
2281 #ifndef CONFIG_NO_CONFIG_BLOBS
2282 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2283 #else /* CONFIG_NO_CONFIG_BLOBS */
2284 	return NULL;
2285 #endif /* CONFIG_NO_CONFIG_BLOBS */
2286 }
2287 
2288 
2289 /**
2290  * eap_set_force_disabled - Set force_disabled flag
2291  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2292  * @disabled: 1 = EAP disabled, 0 = EAP enabled
2293  *
2294  * This function is used to force EAP state machine to be disabled when it is
2295  * not in use (e.g., with WPA-PSK or plaintext connections).
2296  */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2297 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2298 {
2299 	sm->force_disabled = disabled;
2300 }
2301 
2302 
2303  /**
2304  * eap_notify_pending - Notify that EAP method is ready to re-process a request
2305  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2306  *
2307  * An EAP method can perform a pending operation (e.g., to get a response from
2308  * an external process). Once the response is available, this function can be
2309  * used to request EAPOL state machine to retry delivering the previously
2310  * received (and still unanswered) EAP request to EAP state machine.
2311  */
eap_notify_pending(struct eap_sm * sm)2312 void eap_notify_pending(struct eap_sm *sm)
2313 {
2314 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2315 }
2316 
2317 
2318 /**
2319  * eap_invalidate_cached_session - Mark cached session data invalid
2320  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2321  */
eap_invalidate_cached_session(struct eap_sm * sm)2322 void eap_invalidate_cached_session(struct eap_sm *sm)
2323 {
2324 	if (sm)
2325 		eap_deinit_prev_method(sm, "invalidate");
2326 }
2327 
2328 
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2329 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2330 {
2331 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2332 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2333 		return 0; /* Not a WPS Enrollee */
2334 
2335 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2336 		return 0; /* Not using PBC */
2337 
2338 	return 1;
2339 }
2340 
2341 
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2342 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2343 {
2344 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2345 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2346 		return 0; /* Not a WPS Enrollee */
2347 
2348 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2349 		return 0; /* Not using PIN */
2350 
2351 	return 1;
2352 }
2353 
2354 
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2355 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2356 {
2357 	ext_password_free(sm->ext_pw_buf);
2358 	sm->ext_pw_buf = NULL;
2359 	sm->ext_pw = ext;
2360 }
2361 
2362 
2363 /**
2364  * eap_set_anon_id - Set or add anonymous identity
2365  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2366  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2367  * @len: Length of anonymous identity in octets
2368  */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2369 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2370 {
2371 	if (sm->eapol_cb->set_anon_id)
2372 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2373 }
2374