1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18 #include "includes.h"
19
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "common/wpa_ctrl.h"
27 #include "eap_common/eap_wsc_common.h"
28 #include "eap_i.h"
29 #include "eap_config.h"
30
31 #define STATE_MACHINE_DATA struct eap_sm
32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
33
34 #define EAP_MAX_AUTH_ROUNDS 50
35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
36
37
38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39 EapType method);
40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41 static void eap_sm_processIdentity(struct eap_sm *sm,
42 const struct wpabuf *req);
43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44 static struct wpabuf * eap_sm_buildNotify(int id);
45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47 static const char * eap_sm_method_state_txt(EapMethodState state);
48 static const char * eap_sm_decision_txt(EapDecision decision);
49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50
51
52
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54 {
55 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56 }
57
58
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60 Boolean value)
61 {
62 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63 }
64
65
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67 {
68 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69 }
70
71
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73 unsigned int value)
74 {
75 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76 }
77
78
eapol_get_eapReqData(struct eap_sm * sm)79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80 {
81 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82 }
83
84
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)85 static void eap_notify_status(struct eap_sm *sm, const char *status,
86 const char *parameter)
87 {
88 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89 status, parameter);
90 if (sm->eapol_cb->notify_status)
91 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92 }
93
94
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)95 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
96 {
97 ext_password_free(sm->ext_pw_buf);
98 sm->ext_pw_buf = NULL;
99
100 if (sm->m == NULL || sm->eap_method_priv == NULL)
101 return;
102
103 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
104 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
105 sm->m->deinit(sm, sm->eap_method_priv);
106 sm->eap_method_priv = NULL;
107 sm->m = NULL;
108 }
109
110
111 /**
112 * eap_allowed_method - Check whether EAP method is allowed
113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
114 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
115 * @method: EAP type
116 * Returns: 1 = allowed EAP method, 0 = not allowed
117 */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)118 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
119 {
120 struct eap_peer_config *config = eap_get_config(sm);
121 int i;
122 struct eap_method_type *m;
123
124 if (config == NULL || config->eap_methods == NULL)
125 return 1;
126
127 m = config->eap_methods;
128 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
129 m[i].method != EAP_TYPE_NONE; i++) {
130 if (m[i].vendor == vendor && m[i].method == method)
131 return 1;
132 }
133 return 0;
134 }
135
136
137 /*
138 * This state initializes state machine variables when the machine is
139 * activated (portEnabled = TRUE). This is also used when re-starting
140 * authentication (eapRestart == TRUE).
141 */
SM_STATE(EAP,INITIALIZE)142 SM_STATE(EAP, INITIALIZE)
143 {
144 SM_ENTRY(EAP, INITIALIZE);
145 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
146 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
147 !sm->prev_failure) {
148 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
149 "fast reauthentication");
150 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
151 } else {
152 eap_deinit_prev_method(sm, "INITIALIZE");
153 }
154 sm->selectedMethod = EAP_TYPE_NONE;
155 sm->methodState = METHOD_NONE;
156 sm->allowNotifications = TRUE;
157 sm->decision = DECISION_FAIL;
158 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
159 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
160 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
161 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
162 os_free(sm->eapKeyData);
163 sm->eapKeyData = NULL;
164 os_free(sm->eapSessionId);
165 sm->eapSessionId = NULL;
166 sm->eapKeyAvailable = FALSE;
167 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
168 sm->lastId = -1; /* new session - make sure this does not match with
169 * the first EAP-Packet */
170 /*
171 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
172 * seemed to be able to trigger cases where both were set and if EAPOL
173 * state machine uses eapNoResp first, it may end up not sending a real
174 * reply correctly. This occurred when the workaround in FAIL state set
175 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
176 * something else(?)
177 */
178 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
179 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
180 sm->num_rounds = 0;
181 sm->prev_failure = 0;
182 }
183
184
185 /*
186 * This state is reached whenever service from the lower layer is interrupted
187 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
188 * occurs when the port becomes enabled.
189 */
SM_STATE(EAP,DISABLED)190 SM_STATE(EAP, DISABLED)
191 {
192 SM_ENTRY(EAP, DISABLED);
193 sm->num_rounds = 0;
194 /*
195 * RFC 4137 does not describe clearing of idleWhile here, but doing so
196 * allows the timer tick to be stopped more quickly when EAP is not in
197 * use.
198 */
199 eapol_set_int(sm, EAPOL_idleWhile, 0);
200 }
201
202
203 /*
204 * The state machine spends most of its time here, waiting for something to
205 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
206 * SEND_RESPONSE states.
207 */
SM_STATE(EAP,IDLE)208 SM_STATE(EAP, IDLE)
209 {
210 SM_ENTRY(EAP, IDLE);
211 }
212
213
214 /*
215 * This state is entered when an EAP packet is received (eapReq == TRUE) to
216 * parse the packet header.
217 */
SM_STATE(EAP,RECEIVED)218 SM_STATE(EAP, RECEIVED)
219 {
220 const struct wpabuf *eapReqData;
221
222 SM_ENTRY(EAP, RECEIVED);
223 eapReqData = eapol_get_eapReqData(sm);
224 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
225 eap_sm_parseEapReq(sm, eapReqData);
226 sm->num_rounds++;
227 }
228
229
230 /*
231 * This state is entered when a request for a new type comes in. Either the
232 * correct method is started, or a Nak response is built.
233 */
SM_STATE(EAP,GET_METHOD)234 SM_STATE(EAP, GET_METHOD)
235 {
236 int reinit;
237 EapType method;
238 const struct eap_method *eap_method;
239
240 SM_ENTRY(EAP, GET_METHOD);
241
242 if (sm->reqMethod == EAP_TYPE_EXPANDED)
243 method = sm->reqVendorMethod;
244 else
245 method = sm->reqMethod;
246
247 eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
248
249 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
250 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
251 sm->reqVendor, method);
252 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
253 "vendor=%u method=%u -> NAK",
254 sm->reqVendor, method);
255 eap_notify_status(sm, "refuse proposed method",
256 eap_method ? eap_method->name : "unknown");
257 goto nak;
258 }
259
260 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
261 "vendor=%u method=%u", sm->reqVendor, method);
262
263 eap_notify_status(sm, "accept proposed method",
264 eap_method ? eap_method->name : "unknown");
265 /*
266 * RFC 4137 does not define specific operation for fast
267 * re-authentication (session resumption). The design here is to allow
268 * the previously used method data to be maintained for
269 * re-authentication if the method support session resumption.
270 * Otherwise, the previously used method data is freed and a new method
271 * is allocated here.
272 */
273 if (sm->fast_reauth &&
274 sm->m && sm->m->vendor == sm->reqVendor &&
275 sm->m->method == method &&
276 sm->m->has_reauth_data &&
277 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
278 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
279 " for fast re-authentication");
280 reinit = 1;
281 } else {
282 eap_deinit_prev_method(sm, "GET_METHOD");
283 reinit = 0;
284 }
285
286 sm->selectedMethod = sm->reqMethod;
287 if (sm->m == NULL)
288 sm->m = eap_method;
289 if (!sm->m) {
290 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
291 "vendor %d method %d",
292 sm->reqVendor, method);
293 goto nak;
294 }
295
296 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
297
298 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
299 "vendor %u method %u (%s)",
300 sm->reqVendor, method, sm->m->name);
301 if (reinit)
302 sm->eap_method_priv = sm->m->init_for_reauth(
303 sm, sm->eap_method_priv);
304 else
305 sm->eap_method_priv = sm->m->init(sm);
306
307 if (sm->eap_method_priv == NULL) {
308 struct eap_peer_config *config = eap_get_config(sm);
309 wpa_msg(sm->msg_ctx, MSG_INFO,
310 "EAP: Failed to initialize EAP method: vendor %u "
311 "method %u (%s)",
312 sm->reqVendor, method, sm->m->name);
313 sm->m = NULL;
314 sm->methodState = METHOD_NONE;
315 sm->selectedMethod = EAP_TYPE_NONE;
316 if (sm->reqMethod == EAP_TYPE_TLS && config &&
317 (config->pending_req_pin ||
318 config->pending_req_passphrase)) {
319 /*
320 * Return without generating Nak in order to allow
321 * entering of PIN code or passphrase to retry the
322 * current EAP packet.
323 */
324 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
325 "request - skip Nak");
326 return;
327 }
328
329 goto nak;
330 }
331
332 sm->methodState = METHOD_INIT;
333 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
334 "EAP vendor %u method %u (%s) selected",
335 sm->reqVendor, method, sm->m->name);
336 return;
337
338 nak:
339 wpabuf_free(sm->eapRespData);
340 sm->eapRespData = NULL;
341 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
342 }
343
344
345 /*
346 * The method processing happens here. The request from the authenticator is
347 * processed, and an appropriate response packet is built.
348 */
SM_STATE(EAP,METHOD)349 SM_STATE(EAP, METHOD)
350 {
351 struct wpabuf *eapReqData;
352 struct eap_method_ret ret;
353 int min_len = 1;
354
355 SM_ENTRY(EAP, METHOD);
356 if (sm->m == NULL) {
357 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
358 return;
359 }
360
361 eapReqData = eapol_get_eapReqData(sm);
362 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
363 min_len = 0; /* LEAP uses EAP-Success without payload */
364 if (!eap_hdr_len_valid(eapReqData, min_len))
365 return;
366
367 /*
368 * Get ignore, methodState, decision, allowNotifications, and
369 * eapRespData. RFC 4137 uses three separate method procedure (check,
370 * process, and buildResp) in this state. These have been combined into
371 * a single function call to m->process() in order to optimize EAP
372 * method implementation interface a bit. These procedures are only
373 * used from within this METHOD state, so there is no need to keep
374 * these as separate C functions.
375 *
376 * The RFC 4137 procedures return values as follows:
377 * ignore = m.check(eapReqData)
378 * (methodState, decision, allowNotifications) = m.process(eapReqData)
379 * eapRespData = m.buildResp(reqId)
380 */
381 os_memset(&ret, 0, sizeof(ret));
382 ret.ignore = sm->ignore;
383 ret.methodState = sm->methodState;
384 ret.decision = sm->decision;
385 ret.allowNotifications = sm->allowNotifications;
386 wpabuf_free(sm->eapRespData);
387 sm->eapRespData = NULL;
388 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
389 eapReqData);
390 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
391 "methodState=%s decision=%s",
392 ret.ignore ? "TRUE" : "FALSE",
393 eap_sm_method_state_txt(ret.methodState),
394 eap_sm_decision_txt(ret.decision));
395
396 sm->ignore = ret.ignore;
397 if (sm->ignore)
398 return;
399 sm->methodState = ret.methodState;
400 sm->decision = ret.decision;
401 sm->allowNotifications = ret.allowNotifications;
402
403 if (sm->m->isKeyAvailable && sm->m->getKey &&
404 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
405 os_free(sm->eapKeyData);
406 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
407 &sm->eapKeyDataLen);
408 os_free(sm->eapSessionId);
409 sm->eapSessionId = sm->m->getSessionId(sm, sm->eap_method_priv,
410 &sm->eapSessionIdLen);
411 if (sm->eapSessionId) {
412 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
413 sm->eapSessionId, sm->eapSessionIdLen);
414 }
415 }
416 }
417
418
419 /*
420 * This state signals the lower layer that a response packet is ready to be
421 * sent.
422 */
SM_STATE(EAP,SEND_RESPONSE)423 SM_STATE(EAP, SEND_RESPONSE)
424 {
425 SM_ENTRY(EAP, SEND_RESPONSE);
426 wpabuf_free(sm->lastRespData);
427 if (sm->eapRespData) {
428 if (sm->workaround)
429 os_memcpy(sm->last_md5, sm->req_md5, 16);
430 sm->lastId = sm->reqId;
431 sm->lastRespData = wpabuf_dup(sm->eapRespData);
432 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
433 } else
434 sm->lastRespData = NULL;
435 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
436 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
437 }
438
439
440 /*
441 * This state signals the lower layer that the request was discarded, and no
442 * response packet will be sent at this time.
443 */
SM_STATE(EAP,DISCARD)444 SM_STATE(EAP, DISCARD)
445 {
446 SM_ENTRY(EAP, DISCARD);
447 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
448 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
449 }
450
451
452 /*
453 * Handles requests for Identity method and builds a response.
454 */
SM_STATE(EAP,IDENTITY)455 SM_STATE(EAP, IDENTITY)
456 {
457 const struct wpabuf *eapReqData;
458
459 SM_ENTRY(EAP, IDENTITY);
460 eapReqData = eapol_get_eapReqData(sm);
461 if (!eap_hdr_len_valid(eapReqData, 1))
462 return;
463 eap_sm_processIdentity(sm, eapReqData);
464 wpabuf_free(sm->eapRespData);
465 sm->eapRespData = NULL;
466 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
467 }
468
469
470 /*
471 * Handles requests for Notification method and builds a response.
472 */
SM_STATE(EAP,NOTIFICATION)473 SM_STATE(EAP, NOTIFICATION)
474 {
475 const struct wpabuf *eapReqData;
476
477 SM_ENTRY(EAP, NOTIFICATION);
478 eapReqData = eapol_get_eapReqData(sm);
479 if (!eap_hdr_len_valid(eapReqData, 1))
480 return;
481 eap_sm_processNotify(sm, eapReqData);
482 wpabuf_free(sm->eapRespData);
483 sm->eapRespData = NULL;
484 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
485 }
486
487
488 /*
489 * This state retransmits the previous response packet.
490 */
SM_STATE(EAP,RETRANSMIT)491 SM_STATE(EAP, RETRANSMIT)
492 {
493 SM_ENTRY(EAP, RETRANSMIT);
494 wpabuf_free(sm->eapRespData);
495 if (sm->lastRespData)
496 sm->eapRespData = wpabuf_dup(sm->lastRespData);
497 else
498 sm->eapRespData = NULL;
499 }
500
501
502 /*
503 * This state is entered in case of a successful completion of authentication
504 * and state machine waits here until port is disabled or EAP authentication is
505 * restarted.
506 */
SM_STATE(EAP,SUCCESS)507 SM_STATE(EAP, SUCCESS)
508 {
509 SM_ENTRY(EAP, SUCCESS);
510 if (sm->eapKeyData != NULL)
511 sm->eapKeyAvailable = TRUE;
512 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
513
514 /*
515 * RFC 4137 does not clear eapReq here, but this seems to be required
516 * to avoid processing the same request twice when state machine is
517 * initialized.
518 */
519 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
520
521 /*
522 * RFC 4137 does not set eapNoResp here, but this seems to be required
523 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
524 * addition, either eapResp or eapNoResp is required to be set after
525 * processing the received EAP frame.
526 */
527 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
528
529 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
530 "EAP authentication completed successfully");
531 }
532
533
534 /*
535 * This state is entered in case of a failure and state machine waits here
536 * until port is disabled or EAP authentication is restarted.
537 */
SM_STATE(EAP,FAILURE)538 SM_STATE(EAP, FAILURE)
539 {
540 SM_ENTRY(EAP, FAILURE);
541 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
542
543 /*
544 * RFC 4137 does not clear eapReq here, but this seems to be required
545 * to avoid processing the same request twice when state machine is
546 * initialized.
547 */
548 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
549
550 /*
551 * RFC 4137 does not set eapNoResp here. However, either eapResp or
552 * eapNoResp is required to be set after processing the received EAP
553 * frame.
554 */
555 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
556
557 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
558 "EAP authentication failed");
559
560 sm->prev_failure = 1;
561 }
562
563
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)564 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
565 {
566 /*
567 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
568 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
569 * RFC 4137 require that reqId == lastId. In addition, it looks like
570 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
571 *
572 * Accept this kind of Id if EAP workarounds are enabled. These are
573 * unauthenticated plaintext messages, so this should have minimal
574 * security implications (bit easier to fake EAP-Success/Failure).
575 */
576 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
577 reqId == ((lastId + 2) & 0xff))) {
578 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
579 "identifier field in EAP Success: "
580 "reqId=%d lastId=%d (these are supposed to be "
581 "same)", reqId, lastId);
582 return 1;
583 }
584 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
585 "lastId=%d", reqId, lastId);
586 return 0;
587 }
588
589
590 /*
591 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
592 */
593
eap_peer_sm_step_idle(struct eap_sm * sm)594 static void eap_peer_sm_step_idle(struct eap_sm *sm)
595 {
596 /*
597 * The first three transitions are from RFC 4137. The last two are
598 * local additions to handle special cases with LEAP and PEAP server
599 * not sending EAP-Success in some cases.
600 */
601 if (eapol_get_bool(sm, EAPOL_eapReq))
602 SM_ENTER(EAP, RECEIVED);
603 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
604 sm->decision != DECISION_FAIL) ||
605 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
606 sm->decision == DECISION_UNCOND_SUCC))
607 SM_ENTER(EAP, SUCCESS);
608 else if (eapol_get_bool(sm, EAPOL_altReject) ||
609 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
610 sm->decision != DECISION_UNCOND_SUCC) ||
611 (eapol_get_bool(sm, EAPOL_altAccept) &&
612 sm->methodState != METHOD_CONT &&
613 sm->decision == DECISION_FAIL))
614 SM_ENTER(EAP, FAILURE);
615 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
616 sm->leap_done && sm->decision != DECISION_FAIL &&
617 sm->methodState == METHOD_DONE)
618 SM_ENTER(EAP, SUCCESS);
619 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
620 sm->peap_done && sm->decision != DECISION_FAIL &&
621 sm->methodState == METHOD_DONE)
622 SM_ENTER(EAP, SUCCESS);
623 }
624
625
eap_peer_req_is_duplicate(struct eap_sm * sm)626 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
627 {
628 int duplicate;
629
630 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
631 if (sm->workaround && duplicate &&
632 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
633 /*
634 * RFC 4137 uses (reqId == lastId) as the only verification for
635 * duplicate EAP requests. However, this misses cases where the
636 * AS is incorrectly using the same id again; and
637 * unfortunately, such implementations exist. Use MD5 hash as
638 * an extra verification for the packets being duplicate to
639 * workaround these issues.
640 */
641 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
642 "EAP packets were not identical");
643 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
644 "duplicate packet");
645 duplicate = 0;
646 }
647
648 return duplicate;
649 }
650
651
eap_peer_sm_step_received(struct eap_sm * sm)652 static void eap_peer_sm_step_received(struct eap_sm *sm)
653 {
654 int duplicate = eap_peer_req_is_duplicate(sm);
655
656 /*
657 * Two special cases below for LEAP are local additions to work around
658 * odd LEAP behavior (EAP-Success in the middle of authentication and
659 * then swapped roles). Other transitions are based on RFC 4137.
660 */
661 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
662 (sm->reqId == sm->lastId ||
663 eap_success_workaround(sm, sm->reqId, sm->lastId)))
664 SM_ENTER(EAP, SUCCESS);
665 else if (sm->methodState != METHOD_CONT &&
666 ((sm->rxFailure &&
667 sm->decision != DECISION_UNCOND_SUCC) ||
668 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
669 (sm->selectedMethod != EAP_TYPE_LEAP ||
670 sm->methodState != METHOD_MAY_CONT))) &&
671 (sm->reqId == sm->lastId ||
672 eap_success_workaround(sm, sm->reqId, sm->lastId)))
673 SM_ENTER(EAP, FAILURE);
674 else if (sm->rxReq && duplicate)
675 SM_ENTER(EAP, RETRANSMIT);
676 else if (sm->rxReq && !duplicate &&
677 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
678 sm->allowNotifications)
679 SM_ENTER(EAP, NOTIFICATION);
680 else if (sm->rxReq && !duplicate &&
681 sm->selectedMethod == EAP_TYPE_NONE &&
682 sm->reqMethod == EAP_TYPE_IDENTITY)
683 SM_ENTER(EAP, IDENTITY);
684 else if (sm->rxReq && !duplicate &&
685 sm->selectedMethod == EAP_TYPE_NONE &&
686 sm->reqMethod != EAP_TYPE_IDENTITY &&
687 sm->reqMethod != EAP_TYPE_NOTIFICATION)
688 SM_ENTER(EAP, GET_METHOD);
689 else if (sm->rxReq && !duplicate &&
690 sm->reqMethod == sm->selectedMethod &&
691 sm->methodState != METHOD_DONE)
692 SM_ENTER(EAP, METHOD);
693 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
694 (sm->rxSuccess || sm->rxResp))
695 SM_ENTER(EAP, METHOD);
696 else
697 SM_ENTER(EAP, DISCARD);
698 }
699
700
eap_peer_sm_step_local(struct eap_sm * sm)701 static void eap_peer_sm_step_local(struct eap_sm *sm)
702 {
703 switch (sm->EAP_state) {
704 case EAP_INITIALIZE:
705 SM_ENTER(EAP, IDLE);
706 break;
707 case EAP_DISABLED:
708 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
709 !sm->force_disabled)
710 SM_ENTER(EAP, INITIALIZE);
711 break;
712 case EAP_IDLE:
713 eap_peer_sm_step_idle(sm);
714 break;
715 case EAP_RECEIVED:
716 eap_peer_sm_step_received(sm);
717 break;
718 case EAP_GET_METHOD:
719 if (sm->selectedMethod == sm->reqMethod)
720 SM_ENTER(EAP, METHOD);
721 else
722 SM_ENTER(EAP, SEND_RESPONSE);
723 break;
724 case EAP_METHOD:
725 if (sm->ignore)
726 SM_ENTER(EAP, DISCARD);
727 else
728 SM_ENTER(EAP, SEND_RESPONSE);
729 break;
730 case EAP_SEND_RESPONSE:
731 SM_ENTER(EAP, IDLE);
732 break;
733 case EAP_DISCARD:
734 SM_ENTER(EAP, IDLE);
735 break;
736 case EAP_IDENTITY:
737 SM_ENTER(EAP, SEND_RESPONSE);
738 break;
739 case EAP_NOTIFICATION:
740 SM_ENTER(EAP, SEND_RESPONSE);
741 break;
742 case EAP_RETRANSMIT:
743 SM_ENTER(EAP, SEND_RESPONSE);
744 break;
745 case EAP_SUCCESS:
746 break;
747 case EAP_FAILURE:
748 break;
749 }
750 }
751
752
SM_STEP(EAP)753 SM_STEP(EAP)
754 {
755 /* Global transitions */
756 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
757 eapol_get_bool(sm, EAPOL_portEnabled))
758 SM_ENTER_GLOBAL(EAP, INITIALIZE);
759 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
760 SM_ENTER_GLOBAL(EAP, DISABLED);
761 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
762 /* RFC 4137 does not place any limit on number of EAP messages
763 * in an authentication session. However, some error cases have
764 * ended up in a state were EAP messages were sent between the
765 * peer and server in a loop (e.g., TLS ACK frame in both
766 * direction). Since this is quite undesired outcome, limit the
767 * total number of EAP round-trips and abort authentication if
768 * this limit is exceeded.
769 */
770 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
771 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
772 "authentication rounds - abort",
773 EAP_MAX_AUTH_ROUNDS);
774 sm->num_rounds++;
775 SM_ENTER_GLOBAL(EAP, FAILURE);
776 }
777 } else {
778 /* Local transitions */
779 eap_peer_sm_step_local(sm);
780 }
781 }
782
783
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)784 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
785 EapType method)
786 {
787 if (!eap_allowed_method(sm, vendor, method)) {
788 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
789 "vendor %u method %u", vendor, method);
790 return FALSE;
791 }
792 if (eap_peer_get_eap_method(vendor, method))
793 return TRUE;
794 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
795 "vendor %u method %u", vendor, method);
796 return FALSE;
797 }
798
799
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)800 static struct wpabuf * eap_sm_build_expanded_nak(
801 struct eap_sm *sm, int id, const struct eap_method *methods,
802 size_t count)
803 {
804 struct wpabuf *resp;
805 int found = 0;
806 const struct eap_method *m;
807
808 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
809
810 /* RFC 3748 - 5.3.2: Expanded Nak */
811 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
812 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
813 if (resp == NULL)
814 return NULL;
815
816 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
817 wpabuf_put_be32(resp, EAP_TYPE_NAK);
818
819 for (m = methods; m; m = m->next) {
820 if (sm->reqVendor == m->vendor &&
821 sm->reqVendorMethod == m->method)
822 continue; /* do not allow the current method again */
823 if (eap_allowed_method(sm, m->vendor, m->method)) {
824 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
825 "vendor=%u method=%u",
826 m->vendor, m->method);
827 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
828 wpabuf_put_be24(resp, m->vendor);
829 wpabuf_put_be32(resp, m->method);
830
831 found++;
832 }
833 }
834 if (!found) {
835 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
836 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
837 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
838 wpabuf_put_be32(resp, EAP_TYPE_NONE);
839 }
840
841 eap_update_len(resp);
842
843 return resp;
844 }
845
846
eap_sm_buildNak(struct eap_sm * sm,int id)847 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
848 {
849 struct wpabuf *resp;
850 u8 *start;
851 int found = 0, expanded_found = 0;
852 size_t count;
853 const struct eap_method *methods, *m;
854
855 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
856 "vendor=%u method=%u not allowed)", sm->reqMethod,
857 sm->reqVendor, sm->reqVendorMethod);
858 methods = eap_peer_get_methods(&count);
859 if (methods == NULL)
860 return NULL;
861 if (sm->reqMethod == EAP_TYPE_EXPANDED)
862 return eap_sm_build_expanded_nak(sm, id, methods, count);
863
864 /* RFC 3748 - 5.3.1: Legacy Nak */
865 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
866 sizeof(struct eap_hdr) + 1 + count + 1,
867 EAP_CODE_RESPONSE, id);
868 if (resp == NULL)
869 return NULL;
870
871 start = wpabuf_put(resp, 0);
872 for (m = methods; m; m = m->next) {
873 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
874 continue; /* do not allow the current method again */
875 if (eap_allowed_method(sm, m->vendor, m->method)) {
876 if (m->vendor != EAP_VENDOR_IETF) {
877 if (expanded_found)
878 continue;
879 expanded_found = 1;
880 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
881 } else
882 wpabuf_put_u8(resp, m->method);
883 found++;
884 }
885 }
886 if (!found)
887 wpabuf_put_u8(resp, EAP_TYPE_NONE);
888 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
889
890 eap_update_len(resp);
891
892 return resp;
893 }
894
895
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)896 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
897 {
898 const u8 *pos;
899 size_t msg_len;
900
901 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
902 "EAP authentication started");
903 eap_notify_status(sm, "started", "");
904
905 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
906 &msg_len);
907 if (pos == NULL)
908 return;
909
910 /*
911 * RFC 3748 - 5.1: Identity
912 * Data field may contain a displayable message in UTF-8. If this
913 * includes NUL-character, only the data before that should be
914 * displayed. Some EAP implementasitons may piggy-back additional
915 * options after the NUL.
916 */
917 /* TODO: could save displayable message so that it can be shown to the
918 * user in case of interaction is required */
919 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
920 pos, msg_len);
921 }
922
923
924 #ifdef PCSC_FUNCS
925
926 /*
927 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
928 * include MNC length field.
929 */
mnc_len_from_imsi(const char * imsi)930 static int mnc_len_from_imsi(const char *imsi)
931 {
932 char mcc_str[4];
933 unsigned int mcc;
934
935 os_memcpy(mcc_str, imsi, 3);
936 mcc_str[3] = '\0';
937 mcc = atoi(mcc_str);
938
939 if (mcc == 244)
940 return 2; /* Networks in Finland use 2-digit MNC */
941
942 return -1;
943 }
944
945
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)946 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
947 size_t max_len, size_t *imsi_len)
948 {
949 int mnc_len;
950 char *pos, mnc[4];
951
952 if (*imsi_len + 36 > max_len) {
953 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
954 return -1;
955 }
956
957 /* MNC (2 or 3 digits) */
958 mnc_len = scard_get_mnc_len(sm->scard_ctx);
959 if (mnc_len < 0)
960 mnc_len = mnc_len_from_imsi(imsi);
961 if (mnc_len < 0) {
962 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
963 "assuming 3");
964 mnc_len = 3;
965 }
966
967 if (mnc_len == 2) {
968 mnc[0] = '0';
969 mnc[1] = imsi[3];
970 mnc[2] = imsi[4];
971 } else if (mnc_len == 3) {
972 mnc[0] = imsi[3];
973 mnc[1] = imsi[4];
974 mnc[2] = imsi[5];
975 }
976 mnc[3] = '\0';
977
978 pos = imsi + *imsi_len;
979 pos += os_snprintf(pos, imsi + max_len - pos,
980 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
981 mnc, imsi[0], imsi[1], imsi[2]);
982 *imsi_len = pos - imsi;
983
984 return 0;
985 }
986
987
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)988 static int eap_sm_imsi_identity(struct eap_sm *sm,
989 struct eap_peer_config *conf)
990 {
991 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
992 char imsi[100];
993 size_t imsi_len;
994 struct eap_method_type *m = conf->eap_methods;
995 int i;
996
997 imsi_len = sizeof(imsi);
998 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
999 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1000 return -1;
1001 }
1002
1003 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1004
1005 if (imsi_len < 7) {
1006 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1007 return -1;
1008 }
1009
1010 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1011 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1012 return -1;
1013 }
1014 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1015
1016 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1017 m[i].method != EAP_TYPE_NONE); i++) {
1018 if (m[i].vendor == EAP_VENDOR_IETF &&
1019 m[i].method == EAP_TYPE_AKA_PRIME) {
1020 method = EAP_SM_AKA_PRIME;
1021 break;
1022 }
1023
1024 if (m[i].vendor == EAP_VENDOR_IETF &&
1025 m[i].method == EAP_TYPE_AKA) {
1026 method = EAP_SM_AKA;
1027 break;
1028 }
1029 }
1030
1031 os_free(conf->identity);
1032 conf->identity = os_malloc(1 + imsi_len);
1033 if (conf->identity == NULL) {
1034 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1035 "IMSI-based identity");
1036 return -1;
1037 }
1038
1039 switch (method) {
1040 case EAP_SM_SIM:
1041 conf->identity[0] = '1';
1042 break;
1043 case EAP_SM_AKA:
1044 conf->identity[0] = '0';
1045 break;
1046 case EAP_SM_AKA_PRIME:
1047 conf->identity[0] = '6';
1048 break;
1049 }
1050 os_memcpy(conf->identity + 1, imsi, imsi_len);
1051 conf->identity_len = 1 + imsi_len;
1052
1053 return 0;
1054 }
1055
1056 #endif /* PCSC_FUNCS */
1057
1058
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1059 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1060 struct eap_peer_config *conf)
1061 {
1062 #ifdef PCSC_FUNCS
1063 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1064 /*
1065 * Make sure the same PIN is not tried again in order to avoid
1066 * blocking SIM.
1067 */
1068 os_free(conf->pin);
1069 conf->pin = NULL;
1070
1071 wpa_printf(MSG_WARNING, "PIN validation failed");
1072 eap_sm_request_pin(sm);
1073 return -1;
1074 }
1075 return 0;
1076 #else /* PCSC_FUNCS */
1077 return -1;
1078 #endif /* PCSC_FUNCS */
1079 }
1080
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1081 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1082 struct eap_peer_config *conf)
1083 {
1084 #ifdef PCSC_FUNCS
1085 if (eap_sm_set_scard_pin(sm, conf))
1086 return -1;
1087
1088 return eap_sm_imsi_identity(sm, conf);
1089 #else /* PCSC_FUNCS */
1090 return -1;
1091 #endif /* PCSC_FUNCS */
1092 }
1093
1094
1095 /**
1096 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1097 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1098 * @id: EAP identifier for the packet
1099 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1100 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1101 * failure
1102 *
1103 * This function allocates and builds an EAP-Identity/Response packet for the
1104 * current network. The caller is responsible for freeing the returned data.
1105 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1106 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1107 {
1108 struct eap_peer_config *config = eap_get_config(sm);
1109 struct wpabuf *resp;
1110 const u8 *identity;
1111 size_t identity_len;
1112
1113 if (config == NULL) {
1114 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1115 "was not available");
1116 return NULL;
1117 }
1118
1119 if (sm->m && sm->m->get_identity &&
1120 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1121 &identity_len)) != NULL) {
1122 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1123 "identity", identity, identity_len);
1124 } else if (!encrypted && config->anonymous_identity) {
1125 identity = config->anonymous_identity;
1126 identity_len = config->anonymous_identity_len;
1127 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1128 identity, identity_len);
1129 } else {
1130 identity = config->identity;
1131 identity_len = config->identity_len;
1132 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1133 identity, identity_len);
1134 }
1135
1136 if (identity == NULL) {
1137 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1138 "configuration was not available");
1139 if (config->pcsc) {
1140 if (eap_sm_get_scard_identity(sm, config) < 0)
1141 return NULL;
1142 identity = config->identity;
1143 identity_len = config->identity_len;
1144 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1145 "IMSI", identity, identity_len);
1146 } else {
1147 eap_sm_request_identity(sm);
1148 return NULL;
1149 }
1150 } else if (config->pcsc) {
1151 if (eap_sm_set_scard_pin(sm, config) < 0)
1152 return NULL;
1153 }
1154
1155 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1156 EAP_CODE_RESPONSE, id);
1157 if (resp == NULL)
1158 return NULL;
1159
1160 wpabuf_put_data(resp, identity, identity_len);
1161
1162 return resp;
1163 }
1164
1165
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1166 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1167 {
1168 const u8 *pos;
1169 char *msg;
1170 size_t i, msg_len;
1171
1172 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1173 &msg_len);
1174 if (pos == NULL)
1175 return;
1176 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1177 pos, msg_len);
1178
1179 msg = os_malloc(msg_len + 1);
1180 if (msg == NULL)
1181 return;
1182 for (i = 0; i < msg_len; i++)
1183 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1184 msg[msg_len] = '\0';
1185 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1186 WPA_EVENT_EAP_NOTIFICATION, msg);
1187 os_free(msg);
1188 }
1189
1190
eap_sm_buildNotify(int id)1191 static struct wpabuf * eap_sm_buildNotify(int id)
1192 {
1193 struct wpabuf *resp;
1194
1195 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1196 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1197 EAP_CODE_RESPONSE, id);
1198 if (resp == NULL)
1199 return NULL;
1200
1201 return resp;
1202 }
1203
1204
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1205 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1206 {
1207 const struct eap_hdr *hdr;
1208 size_t plen;
1209 const u8 *pos;
1210
1211 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1212 sm->reqId = 0;
1213 sm->reqMethod = EAP_TYPE_NONE;
1214 sm->reqVendor = EAP_VENDOR_IETF;
1215 sm->reqVendorMethod = EAP_TYPE_NONE;
1216
1217 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1218 return;
1219
1220 hdr = wpabuf_head(req);
1221 plen = be_to_host16(hdr->length);
1222 if (plen > wpabuf_len(req)) {
1223 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1224 "(len=%lu plen=%lu)",
1225 (unsigned long) wpabuf_len(req),
1226 (unsigned long) plen);
1227 return;
1228 }
1229
1230 sm->reqId = hdr->identifier;
1231
1232 if (sm->workaround) {
1233 const u8 *addr[1];
1234 addr[0] = wpabuf_head(req);
1235 md5_vector(1, addr, &plen, sm->req_md5);
1236 }
1237
1238 switch (hdr->code) {
1239 case EAP_CODE_REQUEST:
1240 if (plen < sizeof(*hdr) + 1) {
1241 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1242 "no Type field");
1243 return;
1244 }
1245 sm->rxReq = TRUE;
1246 pos = (const u8 *) (hdr + 1);
1247 sm->reqMethod = *pos++;
1248 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1249 if (plen < sizeof(*hdr) + 8) {
1250 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1251 "expanded EAP-Packet (plen=%lu)",
1252 (unsigned long) plen);
1253 return;
1254 }
1255 sm->reqVendor = WPA_GET_BE24(pos);
1256 pos += 3;
1257 sm->reqVendorMethod = WPA_GET_BE32(pos);
1258 }
1259 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1260 "method=%u vendor=%u vendorMethod=%u",
1261 sm->reqId, sm->reqMethod, sm->reqVendor,
1262 sm->reqVendorMethod);
1263 break;
1264 case EAP_CODE_RESPONSE:
1265 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1266 /*
1267 * LEAP differs from RFC 4137 by using reversed roles
1268 * for mutual authentication and because of this, we
1269 * need to accept EAP-Response frames if LEAP is used.
1270 */
1271 if (plen < sizeof(*hdr) + 1) {
1272 wpa_printf(MSG_DEBUG, "EAP: Too short "
1273 "EAP-Response - no Type field");
1274 return;
1275 }
1276 sm->rxResp = TRUE;
1277 pos = (const u8 *) (hdr + 1);
1278 sm->reqMethod = *pos;
1279 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1280 "LEAP method=%d id=%d",
1281 sm->reqMethod, sm->reqId);
1282 break;
1283 }
1284 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1285 break;
1286 case EAP_CODE_SUCCESS:
1287 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1288 eap_notify_status(sm, "completion", "success");
1289 sm->rxSuccess = TRUE;
1290 break;
1291 case EAP_CODE_FAILURE:
1292 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1293 eap_notify_status(sm, "completion", "failure");
1294 sm->rxFailure = TRUE;
1295 break;
1296 default:
1297 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1298 "code %d", hdr->code);
1299 break;
1300 }
1301 }
1302
1303
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1304 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1305 union tls_event_data *data)
1306 {
1307 struct eap_sm *sm = ctx;
1308 char *hash_hex = NULL;
1309
1310 switch (ev) {
1311 case TLS_CERT_CHAIN_SUCCESS:
1312 eap_notify_status(sm, "remote certificate verification",
1313 "success");
1314 break;
1315 case TLS_CERT_CHAIN_FAILURE:
1316 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1317 "reason=%d depth=%d subject='%s' err='%s'",
1318 data->cert_fail.reason,
1319 data->cert_fail.depth,
1320 data->cert_fail.subject,
1321 data->cert_fail.reason_txt);
1322 eap_notify_status(sm, "remote certificate verification",
1323 data->cert_fail.reason_txt);
1324 break;
1325 case TLS_PEER_CERTIFICATE:
1326 if (!sm->eapol_cb->notify_cert)
1327 break;
1328
1329 if (data->peer_cert.hash) {
1330 size_t len = data->peer_cert.hash_len * 2 + 1;
1331 hash_hex = os_malloc(len);
1332 if (hash_hex) {
1333 wpa_snprintf_hex(hash_hex, len,
1334 data->peer_cert.hash,
1335 data->peer_cert.hash_len);
1336 }
1337 }
1338
1339 sm->eapol_cb->notify_cert(sm->eapol_ctx,
1340 data->peer_cert.depth,
1341 data->peer_cert.subject,
1342 hash_hex, data->peer_cert.cert);
1343 break;
1344 case TLS_ALERT:
1345 if (data->alert.is_local)
1346 eap_notify_status(sm, "local TLS alert",
1347 data->alert.description);
1348 else
1349 eap_notify_status(sm, "remote TLS alert",
1350 data->alert.description);
1351 break;
1352 }
1353
1354 os_free(hash_hex);
1355 }
1356
1357
1358 /**
1359 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1360 * @eapol_ctx: Context data to be used with eapol_cb calls
1361 * @eapol_cb: Pointer to EAPOL callback functions
1362 * @msg_ctx: Context data for wpa_msg() calls
1363 * @conf: EAP configuration
1364 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1365 *
1366 * This function allocates and initializes an EAP state machine. In addition,
1367 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1368 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1369 * state machine. Consequently, the caller must make sure that this data
1370 * structure remains alive while the EAP state machine is active.
1371 */
eap_peer_sm_init(void * eapol_ctx,struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1372 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1373 struct eapol_callbacks *eapol_cb,
1374 void *msg_ctx, struct eap_config *conf)
1375 {
1376 struct eap_sm *sm;
1377 struct tls_config tlsconf;
1378
1379 sm = os_zalloc(sizeof(*sm));
1380 if (sm == NULL)
1381 return NULL;
1382 sm->eapol_ctx = eapol_ctx;
1383 sm->eapol_cb = eapol_cb;
1384 sm->msg_ctx = msg_ctx;
1385 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1386 sm->wps = conf->wps;
1387
1388 os_memset(&tlsconf, 0, sizeof(tlsconf));
1389 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1390 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1391 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1392 #ifdef CONFIG_FIPS
1393 tlsconf.fips_mode = 1;
1394 #endif /* CONFIG_FIPS */
1395 tlsconf.event_cb = eap_peer_sm_tls_event;
1396 tlsconf.cb_ctx = sm;
1397 tlsconf.cert_in_cb = conf->cert_in_cb;
1398 sm->ssl_ctx = tls_init(&tlsconf);
1399 if (sm->ssl_ctx == NULL) {
1400 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1401 "context.");
1402 os_free(sm);
1403 return NULL;
1404 }
1405
1406 sm->ssl_ctx2 = tls_init(&tlsconf);
1407 if (sm->ssl_ctx2 == NULL) {
1408 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1409 "context (2).");
1410 /* Run without separate TLS context within TLS tunnel */
1411 }
1412
1413 return sm;
1414 }
1415
1416
1417 /**
1418 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1419 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1420 *
1421 * This function deinitializes EAP state machine and frees all allocated
1422 * resources.
1423 */
eap_peer_sm_deinit(struct eap_sm * sm)1424 void eap_peer_sm_deinit(struct eap_sm *sm)
1425 {
1426 if (sm == NULL)
1427 return;
1428 eap_deinit_prev_method(sm, "EAP deinit");
1429 eap_sm_abort(sm);
1430 if (sm->ssl_ctx2)
1431 tls_deinit(sm->ssl_ctx2);
1432 tls_deinit(sm->ssl_ctx);
1433 os_free(sm);
1434 }
1435
1436
1437 /**
1438 * eap_peer_sm_step - Step EAP peer state machine
1439 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1440 * Returns: 1 if EAP state was changed or 0 if not
1441 *
1442 * This function advances EAP state machine to a new state to match with the
1443 * current variables. This should be called whenever variables used by the EAP
1444 * state machine have changed.
1445 */
eap_peer_sm_step(struct eap_sm * sm)1446 int eap_peer_sm_step(struct eap_sm *sm)
1447 {
1448 int res = 0;
1449 do {
1450 sm->changed = FALSE;
1451 SM_STEP_RUN(EAP);
1452 if (sm->changed)
1453 res = 1;
1454 } while (sm->changed);
1455 return res;
1456 }
1457
1458
1459 /**
1460 * eap_sm_abort - Abort EAP authentication
1461 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1462 *
1463 * Release system resources that have been allocated for the authentication
1464 * session without fully deinitializing the EAP state machine.
1465 */
eap_sm_abort(struct eap_sm * sm)1466 void eap_sm_abort(struct eap_sm *sm)
1467 {
1468 wpabuf_free(sm->lastRespData);
1469 sm->lastRespData = NULL;
1470 wpabuf_free(sm->eapRespData);
1471 sm->eapRespData = NULL;
1472 os_free(sm->eapKeyData);
1473 sm->eapKeyData = NULL;
1474 os_free(sm->eapSessionId);
1475 sm->eapSessionId = NULL;
1476
1477 /* This is not clearly specified in the EAP statemachines draft, but
1478 * it seems necessary to make sure that some of the EAPOL variables get
1479 * cleared for the next authentication. */
1480 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1481 }
1482
1483
1484 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)1485 static const char * eap_sm_state_txt(int state)
1486 {
1487 switch (state) {
1488 case EAP_INITIALIZE:
1489 return "INITIALIZE";
1490 case EAP_DISABLED:
1491 return "DISABLED";
1492 case EAP_IDLE:
1493 return "IDLE";
1494 case EAP_RECEIVED:
1495 return "RECEIVED";
1496 case EAP_GET_METHOD:
1497 return "GET_METHOD";
1498 case EAP_METHOD:
1499 return "METHOD";
1500 case EAP_SEND_RESPONSE:
1501 return "SEND_RESPONSE";
1502 case EAP_DISCARD:
1503 return "DISCARD";
1504 case EAP_IDENTITY:
1505 return "IDENTITY";
1506 case EAP_NOTIFICATION:
1507 return "NOTIFICATION";
1508 case EAP_RETRANSMIT:
1509 return "RETRANSMIT";
1510 case EAP_SUCCESS:
1511 return "SUCCESS";
1512 case EAP_FAILURE:
1513 return "FAILURE";
1514 default:
1515 return "UNKNOWN";
1516 }
1517 }
1518 #endif /* CONFIG_CTRL_IFACE */
1519
1520
1521 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)1522 static const char * eap_sm_method_state_txt(EapMethodState state)
1523 {
1524 switch (state) {
1525 case METHOD_NONE:
1526 return "NONE";
1527 case METHOD_INIT:
1528 return "INIT";
1529 case METHOD_CONT:
1530 return "CONT";
1531 case METHOD_MAY_CONT:
1532 return "MAY_CONT";
1533 case METHOD_DONE:
1534 return "DONE";
1535 default:
1536 return "UNKNOWN";
1537 }
1538 }
1539
1540
eap_sm_decision_txt(EapDecision decision)1541 static const char * eap_sm_decision_txt(EapDecision decision)
1542 {
1543 switch (decision) {
1544 case DECISION_FAIL:
1545 return "FAIL";
1546 case DECISION_COND_SUCC:
1547 return "COND_SUCC";
1548 case DECISION_UNCOND_SUCC:
1549 return "UNCOND_SUCC";
1550 default:
1551 return "UNKNOWN";
1552 }
1553 }
1554 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1555
1556
1557 #ifdef CONFIG_CTRL_IFACE
1558
1559 /**
1560 * eap_sm_get_status - Get EAP state machine status
1561 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1562 * @buf: Buffer for status information
1563 * @buflen: Maximum buffer length
1564 * @verbose: Whether to include verbose status information
1565 * Returns: Number of bytes written to buf.
1566 *
1567 * Query EAP state machine for status information. This function fills in a
1568 * text area with current status information from the EAPOL state machine. If
1569 * the buffer (buf) is not large enough, status information will be truncated
1570 * to fit the buffer.
1571 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)1572 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1573 {
1574 int len, ret;
1575
1576 if (sm == NULL)
1577 return 0;
1578
1579 len = os_snprintf(buf, buflen,
1580 "EAP state=%s\n",
1581 eap_sm_state_txt(sm->EAP_state));
1582 if (len < 0 || (size_t) len >= buflen)
1583 return 0;
1584
1585 if (sm->selectedMethod != EAP_TYPE_NONE) {
1586 const char *name;
1587 if (sm->m) {
1588 name = sm->m->name;
1589 } else {
1590 const struct eap_method *m =
1591 eap_peer_get_eap_method(EAP_VENDOR_IETF,
1592 sm->selectedMethod);
1593 if (m)
1594 name = m->name;
1595 else
1596 name = "?";
1597 }
1598 ret = os_snprintf(buf + len, buflen - len,
1599 "selectedMethod=%d (EAP-%s)\n",
1600 sm->selectedMethod, name);
1601 if (ret < 0 || (size_t) ret >= buflen - len)
1602 return len;
1603 len += ret;
1604
1605 if (sm->m && sm->m->get_status) {
1606 len += sm->m->get_status(sm, sm->eap_method_priv,
1607 buf + len, buflen - len,
1608 verbose);
1609 }
1610 }
1611
1612 if (verbose) {
1613 ret = os_snprintf(buf + len, buflen - len,
1614 "reqMethod=%d\n"
1615 "methodState=%s\n"
1616 "decision=%s\n"
1617 "ClientTimeout=%d\n",
1618 sm->reqMethod,
1619 eap_sm_method_state_txt(sm->methodState),
1620 eap_sm_decision_txt(sm->decision),
1621 sm->ClientTimeout);
1622 if (ret < 0 || (size_t) ret >= buflen - len)
1623 return len;
1624 len += ret;
1625 }
1626
1627 return len;
1628 }
1629 #endif /* CONFIG_CTRL_IFACE */
1630
1631
1632 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)1633 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1634 const char *msg, size_t msglen)
1635 {
1636 struct eap_peer_config *config;
1637 char *txt = NULL, *tmp;
1638
1639 if (sm == NULL)
1640 return;
1641 config = eap_get_config(sm);
1642 if (config == NULL)
1643 return;
1644
1645 switch (field) {
1646 case WPA_CTRL_REQ_EAP_IDENTITY:
1647 config->pending_req_identity++;
1648 break;
1649 case WPA_CTRL_REQ_EAP_PASSWORD:
1650 config->pending_req_password++;
1651 break;
1652 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1653 config->pending_req_new_password++;
1654 break;
1655 case WPA_CTRL_REQ_EAP_PIN:
1656 config->pending_req_pin++;
1657 break;
1658 case WPA_CTRL_REQ_EAP_OTP:
1659 if (msg) {
1660 tmp = os_malloc(msglen + 3);
1661 if (tmp == NULL)
1662 return;
1663 tmp[0] = '[';
1664 os_memcpy(tmp + 1, msg, msglen);
1665 tmp[msglen + 1] = ']';
1666 tmp[msglen + 2] = '\0';
1667 txt = tmp;
1668 os_free(config->pending_req_otp);
1669 config->pending_req_otp = tmp;
1670 config->pending_req_otp_len = msglen + 3;
1671 } else {
1672 if (config->pending_req_otp == NULL)
1673 return;
1674 txt = config->pending_req_otp;
1675 }
1676 break;
1677 case WPA_CTRL_REQ_EAP_PASSPHRASE:
1678 config->pending_req_passphrase++;
1679 break;
1680 default:
1681 return;
1682 }
1683
1684 if (sm->eapol_cb->eap_param_needed)
1685 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1686 }
1687 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1688 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1689 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1690
eap_sm_get_method_name(struct eap_sm * sm)1691 const char * eap_sm_get_method_name(struct eap_sm *sm)
1692 {
1693 if (sm->m == NULL)
1694 return "UNKNOWN";
1695 return sm->m->name;
1696 }
1697
1698
1699 /**
1700 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1701 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1702 *
1703 * EAP methods can call this function to request identity information for the
1704 * current network. This is normally called when the identity is not included
1705 * in the network configuration. The request will be sent to monitor programs
1706 * through the control interface.
1707 */
eap_sm_request_identity(struct eap_sm * sm)1708 void eap_sm_request_identity(struct eap_sm *sm)
1709 {
1710 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1711 }
1712
1713
1714 /**
1715 * eap_sm_request_password - Request password from user (ctrl_iface)
1716 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1717 *
1718 * EAP methods can call this function to request password information for the
1719 * current network. This is normally called when the password is not included
1720 * in the network configuration. The request will be sent to monitor programs
1721 * through the control interface.
1722 */
eap_sm_request_password(struct eap_sm * sm)1723 void eap_sm_request_password(struct eap_sm *sm)
1724 {
1725 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1726 }
1727
1728
1729 /**
1730 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1731 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1732 *
1733 * EAP methods can call this function to request new password information for
1734 * the current network. This is normally called when the EAP method indicates
1735 * that the current password has expired and password change is required. The
1736 * request will be sent to monitor programs through the control interface.
1737 */
eap_sm_request_new_password(struct eap_sm * sm)1738 void eap_sm_request_new_password(struct eap_sm *sm)
1739 {
1740 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1741 }
1742
1743
1744 /**
1745 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1746 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1747 *
1748 * EAP methods can call this function to request SIM or smart card PIN
1749 * information for the current network. This is normally called when the PIN is
1750 * not included in the network configuration. The request will be sent to
1751 * monitor programs through the control interface.
1752 */
eap_sm_request_pin(struct eap_sm * sm)1753 void eap_sm_request_pin(struct eap_sm *sm)
1754 {
1755 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1756 }
1757
1758
1759 /**
1760 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1761 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1762 * @msg: Message to be displayed to the user when asking for OTP
1763 * @msg_len: Length of the user displayable message
1764 *
1765 * EAP methods can call this function to request open time password (OTP) for
1766 * the current network. The request will be sent to monitor programs through
1767 * the control interface.
1768 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)1769 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1770 {
1771 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1772 }
1773
1774
1775 /**
1776 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1777 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1778 *
1779 * EAP methods can call this function to request passphrase for a private key
1780 * for the current network. This is normally called when the passphrase is not
1781 * included in the network configuration. The request will be sent to monitor
1782 * programs through the control interface.
1783 */
eap_sm_request_passphrase(struct eap_sm * sm)1784 void eap_sm_request_passphrase(struct eap_sm *sm)
1785 {
1786 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1787 }
1788
1789
1790 /**
1791 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1792 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1793 *
1794 * Notify EAP state machines that a monitor was attached to the control
1795 * interface to trigger re-sending of pending requests for user input.
1796 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)1797 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1798 {
1799 struct eap_peer_config *config = eap_get_config(sm);
1800
1801 if (config == NULL)
1802 return;
1803
1804 /* Re-send any pending requests for user data since a new control
1805 * interface was added. This handles cases where the EAP authentication
1806 * starts immediately after system startup when the user interface is
1807 * not yet running. */
1808 if (config->pending_req_identity)
1809 eap_sm_request_identity(sm);
1810 if (config->pending_req_password)
1811 eap_sm_request_password(sm);
1812 if (config->pending_req_new_password)
1813 eap_sm_request_new_password(sm);
1814 if (config->pending_req_otp)
1815 eap_sm_request_otp(sm, NULL, 0);
1816 if (config->pending_req_pin)
1817 eap_sm_request_pin(sm);
1818 if (config->pending_req_passphrase)
1819 eap_sm_request_passphrase(sm);
1820 }
1821
1822
eap_allowed_phase2_type(int vendor,int type)1823 static int eap_allowed_phase2_type(int vendor, int type)
1824 {
1825 if (vendor != EAP_VENDOR_IETF)
1826 return 0;
1827 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1828 type != EAP_TYPE_FAST;
1829 }
1830
1831
1832 /**
1833 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1834 * @name: EAP method name, e.g., MD5
1835 * @vendor: Buffer for returning EAP Vendor-Id
1836 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1837 *
1838 * This function maps EAP type names into EAP type numbers that are allowed for
1839 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1840 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1841 */
eap_get_phase2_type(const char * name,int * vendor)1842 u32 eap_get_phase2_type(const char *name, int *vendor)
1843 {
1844 int v;
1845 u8 type = eap_peer_get_type(name, &v);
1846 if (eap_allowed_phase2_type(v, type)) {
1847 *vendor = v;
1848 return type;
1849 }
1850 *vendor = EAP_VENDOR_IETF;
1851 return EAP_TYPE_NONE;
1852 }
1853
1854
1855 /**
1856 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1857 * @config: Pointer to a network configuration
1858 * @count: Pointer to a variable to be filled with number of returned EAP types
1859 * Returns: Pointer to allocated type list or %NULL on failure
1860 *
1861 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1862 * the given network configuration.
1863 */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)1864 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1865 size_t *count)
1866 {
1867 struct eap_method_type *buf;
1868 u32 method;
1869 int vendor;
1870 size_t mcount;
1871 const struct eap_method *methods, *m;
1872
1873 methods = eap_peer_get_methods(&mcount);
1874 if (methods == NULL)
1875 return NULL;
1876 *count = 0;
1877 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1878 if (buf == NULL)
1879 return NULL;
1880
1881 for (m = methods; m; m = m->next) {
1882 vendor = m->vendor;
1883 method = m->method;
1884 if (eap_allowed_phase2_type(vendor, method)) {
1885 if (vendor == EAP_VENDOR_IETF &&
1886 method == EAP_TYPE_TLS && config &&
1887 config->private_key2 == NULL)
1888 continue;
1889 buf[*count].vendor = vendor;
1890 buf[*count].method = method;
1891 (*count)++;
1892 }
1893 }
1894
1895 return buf;
1896 }
1897
1898
1899 /**
1900 * eap_set_fast_reauth - Update fast_reauth setting
1901 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1902 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1903 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)1904 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1905 {
1906 sm->fast_reauth = enabled;
1907 }
1908
1909
1910 /**
1911 * eap_set_workaround - Update EAP workarounds setting
1912 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1913 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1914 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)1915 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1916 {
1917 sm->workaround = workaround;
1918 }
1919
1920
1921 /**
1922 * eap_get_config - Get current network configuration
1923 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1924 * Returns: Pointer to the current network configuration or %NULL if not found
1925 *
1926 * EAP peer methods should avoid using this function if they can use other
1927 * access functions, like eap_get_config_identity() and
1928 * eap_get_config_password(), that do not require direct access to
1929 * struct eap_peer_config.
1930 */
eap_get_config(struct eap_sm * sm)1931 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1932 {
1933 return sm->eapol_cb->get_config(sm->eapol_ctx);
1934 }
1935
1936
1937 /**
1938 * eap_get_config_identity - Get identity from the network configuration
1939 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1940 * @len: Buffer for the length of the identity
1941 * Returns: Pointer to the identity or %NULL if not found
1942 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)1943 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1944 {
1945 struct eap_peer_config *config = eap_get_config(sm);
1946 if (config == NULL)
1947 return NULL;
1948 *len = config->identity_len;
1949 return config->identity;
1950 }
1951
1952
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)1953 static int eap_get_ext_password(struct eap_sm *sm,
1954 struct eap_peer_config *config)
1955 {
1956 char *name;
1957
1958 if (config->password == NULL)
1959 return -1;
1960
1961 name = os_zalloc(config->password_len + 1);
1962 if (name == NULL)
1963 return -1;
1964 os_memcpy(name, config->password, config->password_len);
1965
1966 ext_password_free(sm->ext_pw_buf);
1967 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
1968 os_free(name);
1969
1970 return sm->ext_pw_buf == NULL ? -1 : 0;
1971 }
1972
1973
1974 /**
1975 * eap_get_config_password - Get password from the network configuration
1976 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1977 * @len: Buffer for the length of the password
1978 * Returns: Pointer to the password or %NULL if not found
1979 */
eap_get_config_password(struct eap_sm * sm,size_t * len)1980 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1981 {
1982 struct eap_peer_config *config = eap_get_config(sm);
1983 if (config == NULL)
1984 return NULL;
1985
1986 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1987 if (eap_get_ext_password(sm, config) < 0)
1988 return NULL;
1989 *len = wpabuf_len(sm->ext_pw_buf);
1990 return wpabuf_head(sm->ext_pw_buf);
1991 }
1992
1993 *len = config->password_len;
1994 return config->password;
1995 }
1996
1997
1998 /**
1999 * eap_get_config_password2 - Get password from the network configuration
2000 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2001 * @len: Buffer for the length of the password
2002 * @hash: Buffer for returning whether the password is stored as a
2003 * NtPasswordHash instead of plaintext password; can be %NULL if this
2004 * information is not needed
2005 * Returns: Pointer to the password or %NULL if not found
2006 */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2007 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2008 {
2009 struct eap_peer_config *config = eap_get_config(sm);
2010 if (config == NULL)
2011 return NULL;
2012
2013 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2014 if (eap_get_ext_password(sm, config) < 0)
2015 return NULL;
2016 *len = wpabuf_len(sm->ext_pw_buf);
2017 return wpabuf_head(sm->ext_pw_buf);
2018 }
2019
2020 *len = config->password_len;
2021 if (hash)
2022 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2023 return config->password;
2024 }
2025
2026
2027 /**
2028 * eap_get_config_new_password - Get new password from network configuration
2029 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2030 * @len: Buffer for the length of the new password
2031 * Returns: Pointer to the new password or %NULL if not found
2032 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2033 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2034 {
2035 struct eap_peer_config *config = eap_get_config(sm);
2036 if (config == NULL)
2037 return NULL;
2038 *len = config->new_password_len;
2039 return config->new_password;
2040 }
2041
2042
2043 /**
2044 * eap_get_config_otp - Get one-time password from the network configuration
2045 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2046 * @len: Buffer for the length of the one-time password
2047 * Returns: Pointer to the one-time password or %NULL if not found
2048 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2049 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2050 {
2051 struct eap_peer_config *config = eap_get_config(sm);
2052 if (config == NULL)
2053 return NULL;
2054 *len = config->otp_len;
2055 return config->otp;
2056 }
2057
2058
2059 /**
2060 * eap_clear_config_otp - Clear used one-time password
2061 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2062 *
2063 * This function clears a used one-time password (OTP) from the current network
2064 * configuration. This should be called when the OTP has been used and is not
2065 * needed anymore.
2066 */
eap_clear_config_otp(struct eap_sm * sm)2067 void eap_clear_config_otp(struct eap_sm *sm)
2068 {
2069 struct eap_peer_config *config = eap_get_config(sm);
2070 if (config == NULL)
2071 return;
2072 os_memset(config->otp, 0, config->otp_len);
2073 os_free(config->otp);
2074 config->otp = NULL;
2075 config->otp_len = 0;
2076 }
2077
2078
2079 /**
2080 * eap_get_config_phase1 - Get phase1 data from the network configuration
2081 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2082 * Returns: Pointer to the phase1 data or %NULL if not found
2083 */
eap_get_config_phase1(struct eap_sm * sm)2084 const char * eap_get_config_phase1(struct eap_sm *sm)
2085 {
2086 struct eap_peer_config *config = eap_get_config(sm);
2087 if (config == NULL)
2088 return NULL;
2089 return config->phase1;
2090 }
2091
2092
2093 /**
2094 * eap_get_config_phase2 - Get phase2 data from the network configuration
2095 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2096 * Returns: Pointer to the phase1 data or %NULL if not found
2097 */
eap_get_config_phase2(struct eap_sm * sm)2098 const char * eap_get_config_phase2(struct eap_sm *sm)
2099 {
2100 struct eap_peer_config *config = eap_get_config(sm);
2101 if (config == NULL)
2102 return NULL;
2103 return config->phase2;
2104 }
2105
2106
eap_get_config_fragment_size(struct eap_sm * sm)2107 int eap_get_config_fragment_size(struct eap_sm *sm)
2108 {
2109 struct eap_peer_config *config = eap_get_config(sm);
2110 if (config == NULL)
2111 return -1;
2112 return config->fragment_size;
2113 }
2114
2115
2116 /**
2117 * eap_key_available - Get key availability (eapKeyAvailable variable)
2118 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2119 * Returns: 1 if EAP keying material is available, 0 if not
2120 */
eap_key_available(struct eap_sm * sm)2121 int eap_key_available(struct eap_sm *sm)
2122 {
2123 return sm ? sm->eapKeyAvailable : 0;
2124 }
2125
2126
2127 /**
2128 * eap_notify_success - Notify EAP state machine about external success trigger
2129 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2130 *
2131 * This function is called when external event, e.g., successful completion of
2132 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2133 * success state. This is mainly used with security modes that do not use EAP
2134 * state machine (e.g., WPA-PSK).
2135 */
eap_notify_success(struct eap_sm * sm)2136 void eap_notify_success(struct eap_sm *sm)
2137 {
2138 if (sm) {
2139 sm->decision = DECISION_COND_SUCC;
2140 sm->EAP_state = EAP_SUCCESS;
2141 }
2142 }
2143
2144
2145 /**
2146 * eap_notify_lower_layer_success - Notification of lower layer success
2147 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2148 *
2149 * Notify EAP state machines that a lower layer has detected a successful
2150 * authentication. This is used to recover from dropped EAP-Success messages.
2151 */
eap_notify_lower_layer_success(struct eap_sm * sm)2152 void eap_notify_lower_layer_success(struct eap_sm *sm)
2153 {
2154 if (sm == NULL)
2155 return;
2156
2157 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2158 sm->decision == DECISION_FAIL ||
2159 (sm->methodState != METHOD_MAY_CONT &&
2160 sm->methodState != METHOD_DONE))
2161 return;
2162
2163 if (sm->eapKeyData != NULL)
2164 sm->eapKeyAvailable = TRUE;
2165 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2166 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2167 "EAP authentication completed successfully (based on lower "
2168 "layer success)");
2169 }
2170
2171
2172 /**
2173 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2174 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2175 * @len: Pointer to variable that will be set to number of bytes in the session
2176 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2177 *
2178 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2179 * only after a successful authentication. EAP state machine continues to manage
2180 * the Session-Id and the caller must not change or free the returned data.
2181 */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2182 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2183 {
2184 if (sm == NULL || sm->eapSessionId == NULL) {
2185 *len = 0;
2186 return NULL;
2187 }
2188
2189 *len = sm->eapSessionIdLen;
2190 return sm->eapSessionId;
2191 }
2192
2193
2194 /**
2195 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2196 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2197 * @len: Pointer to variable that will be set to number of bytes in the key
2198 * Returns: Pointer to the EAP keying data or %NULL on failure
2199 *
2200 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2201 * key is available only after a successful authentication. EAP state machine
2202 * continues to manage the key data and the caller must not change or free the
2203 * returned data.
2204 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2205 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2206 {
2207 if (sm == NULL || sm->eapKeyData == NULL) {
2208 *len = 0;
2209 return NULL;
2210 }
2211
2212 *len = sm->eapKeyDataLen;
2213 return sm->eapKeyData;
2214 }
2215
2216
2217 /**
2218 * eap_get_eapKeyData - Get EAP response data
2219 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2220 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2221 *
2222 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2223 * available when EAP state machine has processed an incoming EAP request. The
2224 * EAP state machine does not maintain a reference to the response after this
2225 * function is called and the caller is responsible for freeing the data.
2226 */
eap_get_eapRespData(struct eap_sm * sm)2227 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2228 {
2229 struct wpabuf *resp;
2230
2231 if (sm == NULL || sm->eapRespData == NULL)
2232 return NULL;
2233
2234 resp = sm->eapRespData;
2235 sm->eapRespData = NULL;
2236
2237 return resp;
2238 }
2239
2240
2241 /**
2242 * eap_sm_register_scard_ctx - Notification of smart card context
2243 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2244 * @ctx: Context data for smart card operations
2245 *
2246 * Notify EAP state machines of context data for smart card operations. This
2247 * context data will be used as a parameter for scard_*() functions.
2248 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2249 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2250 {
2251 if (sm)
2252 sm->scard_ctx = ctx;
2253 }
2254
2255
2256 /**
2257 * eap_set_config_blob - Set or add a named configuration blob
2258 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2259 * @blob: New value for the blob
2260 *
2261 * Adds a new configuration blob or replaces the current value of an existing
2262 * blob.
2263 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2264 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2265 {
2266 #ifndef CONFIG_NO_CONFIG_BLOBS
2267 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2268 #endif /* CONFIG_NO_CONFIG_BLOBS */
2269 }
2270
2271
2272 /**
2273 * eap_get_config_blob - Get a named configuration blob
2274 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2275 * @name: Name of the blob
2276 * Returns: Pointer to blob data or %NULL if not found
2277 */
eap_get_config_blob(struct eap_sm * sm,const char * name)2278 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2279 const char *name)
2280 {
2281 #ifndef CONFIG_NO_CONFIG_BLOBS
2282 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2283 #else /* CONFIG_NO_CONFIG_BLOBS */
2284 return NULL;
2285 #endif /* CONFIG_NO_CONFIG_BLOBS */
2286 }
2287
2288
2289 /**
2290 * eap_set_force_disabled - Set force_disabled flag
2291 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2292 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2293 *
2294 * This function is used to force EAP state machine to be disabled when it is
2295 * not in use (e.g., with WPA-PSK or plaintext connections).
2296 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2297 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2298 {
2299 sm->force_disabled = disabled;
2300 }
2301
2302
2303 /**
2304 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2305 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2306 *
2307 * An EAP method can perform a pending operation (e.g., to get a response from
2308 * an external process). Once the response is available, this function can be
2309 * used to request EAPOL state machine to retry delivering the previously
2310 * received (and still unanswered) EAP request to EAP state machine.
2311 */
eap_notify_pending(struct eap_sm * sm)2312 void eap_notify_pending(struct eap_sm *sm)
2313 {
2314 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2315 }
2316
2317
2318 /**
2319 * eap_invalidate_cached_session - Mark cached session data invalid
2320 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2321 */
eap_invalidate_cached_session(struct eap_sm * sm)2322 void eap_invalidate_cached_session(struct eap_sm *sm)
2323 {
2324 if (sm)
2325 eap_deinit_prev_method(sm, "invalidate");
2326 }
2327
2328
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2329 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2330 {
2331 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2332 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2333 return 0; /* Not a WPS Enrollee */
2334
2335 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2336 return 0; /* Not using PBC */
2337
2338 return 1;
2339 }
2340
2341
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2342 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2343 {
2344 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2345 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2346 return 0; /* Not a WPS Enrollee */
2347
2348 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2349 return 0; /* Not using PIN */
2350
2351 return 1;
2352 }
2353
2354
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2355 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2356 {
2357 ext_password_free(sm->ext_pw_buf);
2358 sm->ext_pw_buf = NULL;
2359 sm->ext_pw = ext;
2360 }
2361
2362
2363 /**
2364 * eap_set_anon_id - Set or add anonymous identity
2365 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2366 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2367 * @len: Length of anonymous identity in octets
2368 */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2369 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2370 {
2371 if (sm->eapol_cb->set_anon_id)
2372 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2373 }
2374