• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  *
16  */
17 
18 /*
19  * Hardware Composer stress test
20  *
21  * Performs a pseudo-random (prandom) sequence of operations to the
22  * Hardware Composer (HWC), for a specified number of passes or for
23  * a specified period of time.  By default the period of time is FLT_MAX,
24  * so that the number of passes will take precedence.
25  *
26  * The passes are grouped together, where (pass / passesPerGroup) specifies
27  * which group a particular pass is in.  This causes every passesPerGroup
28  * worth of sequential passes to be within the same group.  Computationally
29  * intensive operations are performed just once at the beginning of a group
30  * of passes and then used by all the passes in that group.  This is done
31  * so as to increase both the average and peak rate of graphic operations,
32  * by moving computationally intensive operations to the beginning of a group.
33  * In particular, at the start of each group of passes a set of
34  * graphic buffers are created, then used by the first and remaining
35  * passes of that group of passes.
36  *
37  * The per-group initialization of the graphic buffers is performed
38  * by a function called initFrames.  This function creates an array
39  * of smart pointers to the graphic buffers, in the form of a vector
40  * of vectors.  The array is accessed in row major order, so each
41  * row is a vector of smart pointers.  All the pointers of a single
42  * row point to graphic buffers which use the same pixel format and
43  * have the same dimension, although it is likely that each one is
44  * filled with a different color.  This is done so that after doing
45  * the first HWC prepare then set call, subsequent set calls can
46  * be made with each of the layer handles changed to a different
47  * graphic buffer within the same row.  Since the graphic buffers
48  * in a particular row have the same pixel format and dimension,
49  * additional HWC set calls can be made, without having to perform
50  * an HWC prepare call.
51  *
52  * This test supports the following command-line options:
53  *
54  *   -v        Verbose
55  *   -s num    Starting pass
56  *   -e num    Ending pass
57  *   -p num    Execute the single pass specified by num
58  *   -n num    Number of set operations to perform after each prepare operation
59  *   -t float  Maximum time in seconds to execute the test
60  *   -d float  Delay in seconds performed after each set operation
61  *   -D float  Delay in seconds performed after the last pass is executed
62  *
63  * Typically the test is executed for a large range of passes.  By default
64  * passes 0 through 99999 (100,000 passes) are executed.  Although this test
65  * does not validate the generated image, at times it is useful to reexecute
66  * a particular pass and leave the displayed image on the screen for an
67  * extended period of time.  This can be done either by setting the -s
68  * and -e options to the desired pass, along with a large value for -D.
69  * This can also be done via the -p option, again with a large value for
70  * the -D options.
71  *
72  * So far this test only contains code to create graphic buffers with
73  * a continuous solid color.  Although this test is unable to validate the
74  * image produced, any image that contains other than rectangles of a solid
75  * color are incorrect.  Note that the rectangles may use a transparent
76  * color and have a blending operation that causes the color in overlapping
77  * rectangles to be mixed.  In such cases the overlapping portions may have
78  * a different color from the rest of the rectangle.
79  */
80 
81 #include <algorithm>
82 #include <assert.h>
83 #include <cerrno>
84 #include <cmath>
85 #include <cstdlib>
86 #include <ctime>
87 #include <libgen.h>
88 #include <sched.h>
89 #include <sstream>
90 #include <stdint.h>
91 #include <string.h>
92 #include <unistd.h>
93 #include <vector>
94 
95 #include <sys/syscall.h>
96 #include <sys/types.h>
97 #include <sys/wait.h>
98 
99 #include <EGL/egl.h>
100 #include <EGL/eglext.h>
101 #include <GLES2/gl2.h>
102 #include <GLES2/gl2ext.h>
103 
104 #include <ui/FramebufferNativeWindow.h>
105 #include <ui/GraphicBuffer.h>
106 
107 #define LOG_TAG "hwcStressTest"
108 #include <utils/Log.h>
109 #include <testUtil.h>
110 
111 #include <hardware/hwcomposer.h>
112 
113 #include <glTestLib.h>
114 #include "hwcTestLib.h"
115 
116 using namespace std;
117 using namespace android;
118 
119 const float maxSizeRatio = 1.3;  // Graphic buffers can be upto this munch
120                                  // larger than the default screen size
121 const unsigned int passesPerGroup = 10; // A group of passes all use the same
122                                         // graphic buffers
123 
124 // Ratios at which rare and frequent conditions should be produced
125 const float rareRatio = 0.1;
126 const float freqRatio = 0.9;
127 
128 // Defaults for command-line options
129 const bool defaultVerbose = false;
130 const unsigned int defaultStartPass = 0;
131 const unsigned int defaultEndPass = 99999;
132 const unsigned int defaultPerPassNumSet = 10;
133 const float defaultPerSetDelay = 0.0; // Default delay after each set
134                                       // operation.  Default delay of
135                                       // zero used so as to perform the
136                                       // the set operations as quickly
137                                       // as possible.
138 const float defaultEndDelay = 2.0; // Default delay between completion of
139                                    // final pass and restart of framework
140 const float defaultDuration = FLT_MAX; // A fairly long time, so that
141                                        // range of passes will have
142                                        // precedence
143 
144 // Command-line option settings
145 static bool verbose = defaultVerbose;
146 static unsigned int startPass = defaultStartPass;
147 static unsigned int endPass = defaultEndPass;
148 static unsigned int numSet = defaultPerPassNumSet;
149 static float perSetDelay = defaultPerSetDelay;
150 static float endDelay = defaultEndDelay;
151 static float duration = defaultDuration;
152 
153 // Command-line mutual exclusion detection flags.
154 // Corresponding flag set true once an option is used.
155 bool eFlag, sFlag, pFlag;
156 
157 #define MAXSTR               100
158 #define MAXCMD               200
159 #define BITSPERBYTE            8 // TODO: Obtain from <values.h>, once
160                                  // it has been added
161 
162 #define CMD_STOP_FRAMEWORK   "stop 2>&1"
163 #define CMD_START_FRAMEWORK  "start 2>&1"
164 
165 #define NUMA(a) (sizeof(a) / sizeof(a [0]))
166 #define MEMCLR(addr, size) do { \
167         memset((addr), 0, (size)); \
168     } while (0)
169 
170 // File scope constants
171 const unsigned int blendingOps[] = {
172     HWC_BLENDING_NONE,
173     HWC_BLENDING_PREMULT,
174     HWC_BLENDING_COVERAGE,
175 };
176 const unsigned int layerFlags[] = {
177     HWC_SKIP_LAYER,
178 };
179 const vector<unsigned int> vecLayerFlags(layerFlags,
180     layerFlags + NUMA(layerFlags));
181 
182 const unsigned int transformFlags[] = {
183     HWC_TRANSFORM_FLIP_H,
184     HWC_TRANSFORM_FLIP_V,
185     HWC_TRANSFORM_ROT_90,
186     // ROT_180 & ROT_270 intentionally not listed, because they
187     // they are formed from combinations of the flags already listed.
188 };
189 const vector<unsigned int> vecTransformFlags(transformFlags,
190     transformFlags + NUMA(transformFlags));
191 
192 // File scope globals
193 static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
194         GraphicBuffer::USAGE_SW_WRITE_RARELY;
195 static hwc_composer_device_1_t *hwcDevice;
196 static EGLDisplay dpy;
197 static EGLSurface surface;
198 static EGLint width, height;
199 static vector <vector <sp<GraphicBuffer> > > frames;
200 
201 // File scope prototypes
202 void init(void);
203 void initFrames(unsigned int seed);
204 template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
205 template <class T> T vectorOr(const vector<T>& vec);
206 
207 /*
208  * Main
209  *
210  * Performs the following high-level sequence of operations:
211  *
212  *   1. Command-line parsing
213  *
214  *   2. Initialization
215  *
216  *   3. For each pass:
217  *
218  *        a. If pass is first pass or in a different group from the
219  *           previous pass, initialize the array of graphic buffers.
220  *
221  *        b. Create a HWC list with room to specify a prandomly
222  *           selected number of layers.
223  *
224  *        c. Select a subset of the rows from the graphic buffer array,
225  *           such that there is a unique row to be used for each
226  *           of the layers in the HWC list.
227  *
228  *        d. Prandomly fill in the HWC list with handles
229  *           selected from any of the columns of the selected row.
230  *
231  *        e. Pass the populated list to the HWC prepare call.
232  *
233  *        f. Pass the populated list to the HWC set call.
234  *
235  *        g. If additional set calls are to be made, then for each
236  *           additional set call, select a new set of handles and
237  *           perform the set call.
238  */
239 int
main(int argc,char * argv[])240 main(int argc, char *argv[])
241 {
242     int rv, opt;
243     char *chptr;
244     unsigned int pass;
245     char cmd[MAXCMD];
246     struct timeval startTime, currentTime, delta;
247 
248     testSetLogCatTag(LOG_TAG);
249 
250     // Parse command line arguments
251     while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
252         switch (opt) {
253           case 'd': // Delay after each set operation
254             perSetDelay = strtod(optarg, &chptr);
255             if ((*chptr != '\0') || (perSetDelay < 0.0)) {
256                 testPrintE("Invalid command-line specified per pass delay of: "
257                            "%s", optarg);
258                 exit(1);
259             }
260             break;
261 
262           case 'D': // End of test delay
263                     // Delay between completion of final pass and restart
264                     // of framework
265             endDelay = strtod(optarg, &chptr);
266             if ((*chptr != '\0') || (endDelay < 0.0)) {
267                 testPrintE("Invalid command-line specified end of test delay "
268                            "of: %s", optarg);
269                 exit(2);
270             }
271             break;
272 
273           case 't': // Duration
274             duration = strtod(optarg, &chptr);
275             if ((*chptr != '\0') || (duration < 0.0)) {
276                 testPrintE("Invalid command-line specified duration of: %s",
277                            optarg);
278                 exit(3);
279             }
280             break;
281 
282           case 'n': // Num set operations per pass
283             numSet = strtoul(optarg, &chptr, 10);
284             if (*chptr != '\0') {
285                 testPrintE("Invalid command-line specified num set per pass "
286                            "of: %s", optarg);
287                 exit(4);
288             }
289             break;
290 
291           case 's': // Starting Pass
292             sFlag = true;
293             if (pFlag) {
294                 testPrintE("Invalid combination of command-line options.");
295                 testPrintE("  The -p option is mutually exclusive from the");
296                 testPrintE("  -s and -e options.");
297                 exit(5);
298             }
299             startPass = strtoul(optarg, &chptr, 10);
300             if (*chptr != '\0') {
301                 testPrintE("Invalid command-line specified starting pass "
302                            "of: %s", optarg);
303                 exit(6);
304             }
305             break;
306 
307           case 'e': // Ending Pass
308             eFlag = true;
309             if (pFlag) {
310                 testPrintE("Invalid combination of command-line options.");
311                 testPrintE("  The -p option is mutually exclusive from the");
312                 testPrintE("  -s and -e options.");
313                 exit(7);
314             }
315             endPass = strtoul(optarg, &chptr, 10);
316             if (*chptr != '\0') {
317                 testPrintE("Invalid command-line specified ending pass "
318                            "of: %s", optarg);
319                 exit(8);
320             }
321             break;
322 
323           case 'p': // Run a single specified pass
324             pFlag = true;
325             if (sFlag || eFlag) {
326                 testPrintE("Invalid combination of command-line options.");
327                 testPrintE("  The -p option is mutually exclusive from the");
328                 testPrintE("  -s and -e options.");
329                 exit(9);
330             }
331             startPass = endPass = strtoul(optarg, &chptr, 10);
332             if (*chptr != '\0') {
333                 testPrintE("Invalid command-line specified pass of: %s",
334                            optarg);
335                 exit(10);
336             }
337             break;
338 
339           case 'v': // Verbose
340             verbose = true;
341             break;
342 
343           case 'h': // Help
344           case '?':
345           default:
346             testPrintE("  %s [options]", basename(argv[0]));
347             testPrintE("    options:");
348             testPrintE("      -p Execute specified pass");
349             testPrintE("      -s Starting pass");
350             testPrintE("      -e Ending pass");
351             testPrintE("      -t Duration");
352             testPrintE("      -d Delay after each set operation");
353             testPrintE("      -D End of test delay");
354             testPrintE("      -n Num set operations per pass");
355             testPrintE("      -v Verbose");
356             exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
357         }
358     }
359     if (endPass < startPass) {
360         testPrintE("Unexpected ending pass before starting pass");
361         testPrintE("  startPass: %u endPass: %u", startPass, endPass);
362         exit(12);
363     }
364     if (argc != optind) {
365         testPrintE("Unexpected command-line postional argument");
366         testPrintE("  %s [-s start_pass] [-e end_pass] [-t duration]",
367             basename(argv[0]));
368         exit(13);
369     }
370     testPrintI("duration: %g", duration);
371     testPrintI("startPass: %u", startPass);
372     testPrintI("endPass: %u", endPass);
373     testPrintI("numSet: %u", numSet);
374 
375     // Stop framework
376     rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
377     if (rv >= (signed) sizeof(cmd) - 1) {
378         testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
379         exit(14);
380     }
381     testExecCmd(cmd);
382     testDelay(1.0); // TODO - need means to query whether asyncronous stop
383                     // framework operation has completed.  For now, just wait
384                     // a long time.
385 
386     init();
387 
388     // For each pass
389     gettimeofday(&startTime, NULL);
390     for (pass = startPass; pass <= endPass; pass++) {
391         // Stop if duration of work has already been performed
392         gettimeofday(&currentTime, NULL);
393         delta = tvDelta(&startTime, &currentTime);
394         if (tv2double(&delta) > duration) { break; }
395 
396         // Regenerate a new set of test frames when this pass is
397         // either the first pass or is in a different group then
398         // the previous pass.  A group of passes are passes that
399         // all have the same quotient when their pass number is
400         // divided by passesPerGroup.
401         if ((pass == startPass)
402             || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
403             initFrames(pass / passesPerGroup);
404         }
405 
406         testPrintI("==== Starting pass: %u", pass);
407 
408         // Cause deterministic sequence of prandom numbers to be
409         // generated for this pass.
410         srand48(pass);
411 
412         hwc_display_contents_1_t *list;
413         list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
414         if (list == NULL) {
415             testPrintE("hwcTestCreateLayerList failed");
416             exit(20);
417         }
418 
419         // Prandomly select a subset of frames to be used by this pass.
420         vector <vector <sp<GraphicBuffer> > > selectedFrames;
421         selectedFrames = vectorRandSelect(frames, list->numHwLayers);
422 
423         // Any transform tends to create a layer that the hardware
424         // composer is unable to support and thus has to leave for
425         // SurfaceFlinger.  Place heavy bias on specifying no transforms.
426         bool noTransform = testRandFract() > rareRatio;
427 
428         for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
429             unsigned int idx = testRandMod(selectedFrames[n1].size());
430             sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
431             hwc_layer_1_t *layer = &list->hwLayers[n1];
432             layer->handle = gBuf->handle;
433 
434             layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
435             layer->flags = (testRandFract() > rareRatio) ? 0
436                 : vectorOr(vectorRandSelect(vecLayerFlags,
437                            testRandMod(vecLayerFlags.size() + 1)));
438             layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
439                 : vectorOr(vectorRandSelect(vecTransformFlags,
440                            testRandMod(vecTransformFlags.size() + 1)));
441             layer->sourceCrop.left = testRandMod(gBuf->getWidth());
442             layer->sourceCrop.top = testRandMod(gBuf->getHeight());
443             layer->sourceCrop.right = layer->sourceCrop.left
444                 + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
445             layer->sourceCrop.bottom = layer->sourceCrop.top
446                 + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
447             layer->displayFrame.left = testRandMod(width);
448             layer->displayFrame.top = testRandMod(height);
449             layer->displayFrame.right = layer->displayFrame.left
450                 + testRandMod(width - layer->displayFrame.left) + 1;
451             layer->displayFrame.bottom = layer->displayFrame.top
452                 + testRandMod(height - layer->displayFrame.top) + 1;
453 
454             // Increase the frequency that a scale factor of 1.0 from
455             // the sourceCrop to displayFrame occurs.  This is the
456             // most common scale factor used by applications and would
457             // be rarely produced by this stress test without this
458             // logic.
459             if (testRandFract() <= freqRatio) {
460                 // Only change to scale factor to 1.0 if both the
461                 // width and height will fit.
462                 int sourceWidth = layer->sourceCrop.right
463                                   - layer->sourceCrop.left;
464                 int sourceHeight = layer->sourceCrop.bottom
465                                    - layer->sourceCrop.top;
466                 if (((layer->displayFrame.left + sourceWidth) <= width)
467                     && ((layer->displayFrame.top + sourceHeight) <= height)) {
468                     layer->displayFrame.right = layer->displayFrame.left
469                                                 + sourceWidth;
470                     layer->displayFrame.bottom = layer->displayFrame.top
471                                                  + sourceHeight;
472                 }
473             }
474 
475             layer->visibleRegionScreen.numRects = 1;
476             layer->visibleRegionScreen.rects = &layer->displayFrame;
477         }
478 
479         // Perform prepare operation
480         if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
481         hwcDevice->prepare(hwcDevice, 1, &list);
482         if (verbose) {
483             testPrintI("Post Prepare:");
484             hwcTestDisplayListPrepareModifiable(list);
485         }
486 
487         // Turn off the geometry changed flag
488         list->flags &= ~HWC_GEOMETRY_CHANGED;
489 
490         // Perform the set operation(s)
491         if (verbose) {testPrintI("Set:"); }
492         for (unsigned int n1 = 0; n1 < numSet; n1++) {
493             if (verbose) { hwcTestDisplayListHandles(list); }
494             list->dpy = dpy;
495             list->sur = surface;
496             hwcDevice->set(hwcDevice, 1, &list);
497 
498             // Prandomly select a new set of handles
499             for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
500                 unsigned int idx = testRandMod(selectedFrames[n1].size());
501                 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
502                 hwc_layer_1_t *layer = &list->hwLayers[n1];
503                 layer->handle = (native_handle_t *) gBuf->handle;
504             }
505 
506             testDelay(perSetDelay);
507         }
508 
509         hwcTestFreeLayerList(list);
510         testPrintI("==== Completed pass: %u", pass);
511     }
512 
513     testDelay(endDelay);
514 
515     // Start framework
516     rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
517     if (rv >= (signed) sizeof(cmd) - 1) {
518         testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
519         exit(21);
520     }
521     testExecCmd(cmd);
522 
523     testPrintI("Successfully completed %u passes", pass - startPass);
524 
525     return 0;
526 }
527 
init(void)528 void init(void)
529 {
530     srand48(0); // Defensively set pseudo random number generator.
531                 // Should not need to set this, because a stress test
532                 // sets the seed on each pass.  Defensively set it here
533                 // so that future code that uses pseudo random numbers
534                 // before the first pass will be deterministic.
535 
536     hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
537 
538     hwcTestOpenHwc(&hwcDevice);
539 }
540 
541 /*
542  * Initialize Frames
543  *
544  * Creates an array of graphic buffers, within the global variable
545  * named frames.  The graphic buffers are contained within a vector of
546  * vectors.  All the graphic buffers in a particular row are of the same
547  * format and dimension.  Each graphic buffer is uniformly filled with a
548  * prandomly selected color.  It is likely that each buffer, even
549  * in the same row, will be filled with a unique color.
550  */
initFrames(unsigned int seed)551 void initFrames(unsigned int seed)
552 {
553     int rv;
554     const size_t maxRows = 5;
555     const size_t minCols = 2;  // Need at least double buffering
556     const size_t maxCols = 4;  // One more than triple buffering
557 
558     if (verbose) { testPrintI("initFrames seed: %u", seed); }
559     srand48(seed);
560     size_t rows = testRandMod(maxRows) + 1;
561 
562     frames.clear();
563     frames.resize(rows);
564 
565     for (unsigned int row = 0; row < rows; row++) {
566         // All frames within a row have to have the same format and
567         // dimensions.  Width and height need to be >= 1.
568         unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
569         const struct hwcTestGraphicFormat *formatPtr
570             = &hwcTestGraphicFormat[formatIdx];
571         int format = formatPtr->format;
572 
573         // Pick width and height, which must be >= 1 and the size
574         // mod the wMod/hMod value must be equal to 0.
575         size_t w = (width * maxSizeRatio) * testRandFract();
576         size_t h = (height * maxSizeRatio) * testRandFract();
577         w = max(1u, w);
578         h = max(1u, h);
579         if ((w % formatPtr->wMod) != 0) {
580             w += formatPtr->wMod - (w % formatPtr->wMod);
581         }
582         if ((h % formatPtr->hMod) != 0) {
583             h += formatPtr->hMod - (h % formatPtr->hMod);
584         }
585         if (verbose) {
586             testPrintI("  frame %u width: %u height: %u format: %u %s",
587                        row, w, h, format, hwcTestGraphicFormat2str(format));
588         }
589 
590         size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
591         frames[row].resize(cols);
592         for (unsigned int col = 0; col < cols; col++) {
593             ColorFract color(testRandFract(), testRandFract(), testRandFract());
594             float alpha = testRandFract();
595 
596             frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
597             if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
598                 testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
599                 testPrintE("  frame %u width: %u height: %u format: %u %s",
600                            row, w, h, format, hwcTestGraphicFormat2str(format));
601                 exit(80);
602             }
603 
604             hwcTestFillColor(frames[row][col].get(), color, alpha);
605             if (verbose) {
606                 testPrintI("    buf: %p handle: %p color: %s alpha: %f",
607                            frames[row][col].get(), frames[row][col]->handle,
608                            string(color).c_str(), alpha);
609             }
610         }
611     }
612 }
613 
614 /*
615  * Vector Random Select
616  *
617  * Prandomly selects and returns num elements from vec.
618  */
619 template <class T>
vectorRandSelect(const vector<T> & vec,size_t num)620 vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
621 {
622     vector<T> rv = vec;
623 
624     while (rv.size() > num) {
625         rv.erase(rv.begin() + testRandMod(rv.size()));
626     }
627 
628     return rv;
629 }
630 
631 /*
632  * Vector Or
633  *
634  * Or's togethen the values of each element of vec and returns the result.
635  */
636 template <class T>
vectorOr(const vector<T> & vec)637 T vectorOr(const vector<T>& vec)
638 {
639     T rv = 0;
640 
641     for (size_t n1 = 0; n1 < vec.size(); n1++) {
642         rv |= vec[n1];
643     }
644 
645     return rv;
646 }
647