1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 /*
19 * Hardware Composer stress test
20 *
21 * Performs a pseudo-random (prandom) sequence of operations to the
22 * Hardware Composer (HWC), for a specified number of passes or for
23 * a specified period of time. By default the period of time is FLT_MAX,
24 * so that the number of passes will take precedence.
25 *
26 * The passes are grouped together, where (pass / passesPerGroup) specifies
27 * which group a particular pass is in. This causes every passesPerGroup
28 * worth of sequential passes to be within the same group. Computationally
29 * intensive operations are performed just once at the beginning of a group
30 * of passes and then used by all the passes in that group. This is done
31 * so as to increase both the average and peak rate of graphic operations,
32 * by moving computationally intensive operations to the beginning of a group.
33 * In particular, at the start of each group of passes a set of
34 * graphic buffers are created, then used by the first and remaining
35 * passes of that group of passes.
36 *
37 * The per-group initialization of the graphic buffers is performed
38 * by a function called initFrames. This function creates an array
39 * of smart pointers to the graphic buffers, in the form of a vector
40 * of vectors. The array is accessed in row major order, so each
41 * row is a vector of smart pointers. All the pointers of a single
42 * row point to graphic buffers which use the same pixel format and
43 * have the same dimension, although it is likely that each one is
44 * filled with a different color. This is done so that after doing
45 * the first HWC prepare then set call, subsequent set calls can
46 * be made with each of the layer handles changed to a different
47 * graphic buffer within the same row. Since the graphic buffers
48 * in a particular row have the same pixel format and dimension,
49 * additional HWC set calls can be made, without having to perform
50 * an HWC prepare call.
51 *
52 * This test supports the following command-line options:
53 *
54 * -v Verbose
55 * -s num Starting pass
56 * -e num Ending pass
57 * -p num Execute the single pass specified by num
58 * -n num Number of set operations to perform after each prepare operation
59 * -t float Maximum time in seconds to execute the test
60 * -d float Delay in seconds performed after each set operation
61 * -D float Delay in seconds performed after the last pass is executed
62 *
63 * Typically the test is executed for a large range of passes. By default
64 * passes 0 through 99999 (100,000 passes) are executed. Although this test
65 * does not validate the generated image, at times it is useful to reexecute
66 * a particular pass and leave the displayed image on the screen for an
67 * extended period of time. This can be done either by setting the -s
68 * and -e options to the desired pass, along with a large value for -D.
69 * This can also be done via the -p option, again with a large value for
70 * the -D options.
71 *
72 * So far this test only contains code to create graphic buffers with
73 * a continuous solid color. Although this test is unable to validate the
74 * image produced, any image that contains other than rectangles of a solid
75 * color are incorrect. Note that the rectangles may use a transparent
76 * color and have a blending operation that causes the color in overlapping
77 * rectangles to be mixed. In such cases the overlapping portions may have
78 * a different color from the rest of the rectangle.
79 */
80
81 #include <algorithm>
82 #include <assert.h>
83 #include <cerrno>
84 #include <cmath>
85 #include <cstdlib>
86 #include <ctime>
87 #include <libgen.h>
88 #include <sched.h>
89 #include <sstream>
90 #include <stdint.h>
91 #include <string.h>
92 #include <unistd.h>
93 #include <vector>
94
95 #include <sys/syscall.h>
96 #include <sys/types.h>
97 #include <sys/wait.h>
98
99 #include <EGL/egl.h>
100 #include <EGL/eglext.h>
101 #include <GLES2/gl2.h>
102 #include <GLES2/gl2ext.h>
103
104 #include <ui/FramebufferNativeWindow.h>
105 #include <ui/GraphicBuffer.h>
106
107 #define LOG_TAG "hwcStressTest"
108 #include <utils/Log.h>
109 #include <testUtil.h>
110
111 #include <hardware/hwcomposer.h>
112
113 #include <glTestLib.h>
114 #include "hwcTestLib.h"
115
116 using namespace std;
117 using namespace android;
118
119 const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch
120 // larger than the default screen size
121 const unsigned int passesPerGroup = 10; // A group of passes all use the same
122 // graphic buffers
123
124 // Ratios at which rare and frequent conditions should be produced
125 const float rareRatio = 0.1;
126 const float freqRatio = 0.9;
127
128 // Defaults for command-line options
129 const bool defaultVerbose = false;
130 const unsigned int defaultStartPass = 0;
131 const unsigned int defaultEndPass = 99999;
132 const unsigned int defaultPerPassNumSet = 10;
133 const float defaultPerSetDelay = 0.0; // Default delay after each set
134 // operation. Default delay of
135 // zero used so as to perform the
136 // the set operations as quickly
137 // as possible.
138 const float defaultEndDelay = 2.0; // Default delay between completion of
139 // final pass and restart of framework
140 const float defaultDuration = FLT_MAX; // A fairly long time, so that
141 // range of passes will have
142 // precedence
143
144 // Command-line option settings
145 static bool verbose = defaultVerbose;
146 static unsigned int startPass = defaultStartPass;
147 static unsigned int endPass = defaultEndPass;
148 static unsigned int numSet = defaultPerPassNumSet;
149 static float perSetDelay = defaultPerSetDelay;
150 static float endDelay = defaultEndDelay;
151 static float duration = defaultDuration;
152
153 // Command-line mutual exclusion detection flags.
154 // Corresponding flag set true once an option is used.
155 bool eFlag, sFlag, pFlag;
156
157 #define MAXSTR 100
158 #define MAXCMD 200
159 #define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
160 // it has been added
161
162 #define CMD_STOP_FRAMEWORK "stop 2>&1"
163 #define CMD_START_FRAMEWORK "start 2>&1"
164
165 #define NUMA(a) (sizeof(a) / sizeof(a [0]))
166 #define MEMCLR(addr, size) do { \
167 memset((addr), 0, (size)); \
168 } while (0)
169
170 // File scope constants
171 const unsigned int blendingOps[] = {
172 HWC_BLENDING_NONE,
173 HWC_BLENDING_PREMULT,
174 HWC_BLENDING_COVERAGE,
175 };
176 const unsigned int layerFlags[] = {
177 HWC_SKIP_LAYER,
178 };
179 const vector<unsigned int> vecLayerFlags(layerFlags,
180 layerFlags + NUMA(layerFlags));
181
182 const unsigned int transformFlags[] = {
183 HWC_TRANSFORM_FLIP_H,
184 HWC_TRANSFORM_FLIP_V,
185 HWC_TRANSFORM_ROT_90,
186 // ROT_180 & ROT_270 intentionally not listed, because they
187 // they are formed from combinations of the flags already listed.
188 };
189 const vector<unsigned int> vecTransformFlags(transformFlags,
190 transformFlags + NUMA(transformFlags));
191
192 // File scope globals
193 static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
194 GraphicBuffer::USAGE_SW_WRITE_RARELY;
195 static hwc_composer_device_1_t *hwcDevice;
196 static EGLDisplay dpy;
197 static EGLSurface surface;
198 static EGLint width, height;
199 static vector <vector <sp<GraphicBuffer> > > frames;
200
201 // File scope prototypes
202 void init(void);
203 void initFrames(unsigned int seed);
204 template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
205 template <class T> T vectorOr(const vector<T>& vec);
206
207 /*
208 * Main
209 *
210 * Performs the following high-level sequence of operations:
211 *
212 * 1. Command-line parsing
213 *
214 * 2. Initialization
215 *
216 * 3. For each pass:
217 *
218 * a. If pass is first pass or in a different group from the
219 * previous pass, initialize the array of graphic buffers.
220 *
221 * b. Create a HWC list with room to specify a prandomly
222 * selected number of layers.
223 *
224 * c. Select a subset of the rows from the graphic buffer array,
225 * such that there is a unique row to be used for each
226 * of the layers in the HWC list.
227 *
228 * d. Prandomly fill in the HWC list with handles
229 * selected from any of the columns of the selected row.
230 *
231 * e. Pass the populated list to the HWC prepare call.
232 *
233 * f. Pass the populated list to the HWC set call.
234 *
235 * g. If additional set calls are to be made, then for each
236 * additional set call, select a new set of handles and
237 * perform the set call.
238 */
239 int
main(int argc,char * argv[])240 main(int argc, char *argv[])
241 {
242 int rv, opt;
243 char *chptr;
244 unsigned int pass;
245 char cmd[MAXCMD];
246 struct timeval startTime, currentTime, delta;
247
248 testSetLogCatTag(LOG_TAG);
249
250 // Parse command line arguments
251 while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
252 switch (opt) {
253 case 'd': // Delay after each set operation
254 perSetDelay = strtod(optarg, &chptr);
255 if ((*chptr != '\0') || (perSetDelay < 0.0)) {
256 testPrintE("Invalid command-line specified per pass delay of: "
257 "%s", optarg);
258 exit(1);
259 }
260 break;
261
262 case 'D': // End of test delay
263 // Delay between completion of final pass and restart
264 // of framework
265 endDelay = strtod(optarg, &chptr);
266 if ((*chptr != '\0') || (endDelay < 0.0)) {
267 testPrintE("Invalid command-line specified end of test delay "
268 "of: %s", optarg);
269 exit(2);
270 }
271 break;
272
273 case 't': // Duration
274 duration = strtod(optarg, &chptr);
275 if ((*chptr != '\0') || (duration < 0.0)) {
276 testPrintE("Invalid command-line specified duration of: %s",
277 optarg);
278 exit(3);
279 }
280 break;
281
282 case 'n': // Num set operations per pass
283 numSet = strtoul(optarg, &chptr, 10);
284 if (*chptr != '\0') {
285 testPrintE("Invalid command-line specified num set per pass "
286 "of: %s", optarg);
287 exit(4);
288 }
289 break;
290
291 case 's': // Starting Pass
292 sFlag = true;
293 if (pFlag) {
294 testPrintE("Invalid combination of command-line options.");
295 testPrintE(" The -p option is mutually exclusive from the");
296 testPrintE(" -s and -e options.");
297 exit(5);
298 }
299 startPass = strtoul(optarg, &chptr, 10);
300 if (*chptr != '\0') {
301 testPrintE("Invalid command-line specified starting pass "
302 "of: %s", optarg);
303 exit(6);
304 }
305 break;
306
307 case 'e': // Ending Pass
308 eFlag = true;
309 if (pFlag) {
310 testPrintE("Invalid combination of command-line options.");
311 testPrintE(" The -p option is mutually exclusive from the");
312 testPrintE(" -s and -e options.");
313 exit(7);
314 }
315 endPass = strtoul(optarg, &chptr, 10);
316 if (*chptr != '\0') {
317 testPrintE("Invalid command-line specified ending pass "
318 "of: %s", optarg);
319 exit(8);
320 }
321 break;
322
323 case 'p': // Run a single specified pass
324 pFlag = true;
325 if (sFlag || eFlag) {
326 testPrintE("Invalid combination of command-line options.");
327 testPrintE(" The -p option is mutually exclusive from the");
328 testPrintE(" -s and -e options.");
329 exit(9);
330 }
331 startPass = endPass = strtoul(optarg, &chptr, 10);
332 if (*chptr != '\0') {
333 testPrintE("Invalid command-line specified pass of: %s",
334 optarg);
335 exit(10);
336 }
337 break;
338
339 case 'v': // Verbose
340 verbose = true;
341 break;
342
343 case 'h': // Help
344 case '?':
345 default:
346 testPrintE(" %s [options]", basename(argv[0]));
347 testPrintE(" options:");
348 testPrintE(" -p Execute specified pass");
349 testPrintE(" -s Starting pass");
350 testPrintE(" -e Ending pass");
351 testPrintE(" -t Duration");
352 testPrintE(" -d Delay after each set operation");
353 testPrintE(" -D End of test delay");
354 testPrintE(" -n Num set operations per pass");
355 testPrintE(" -v Verbose");
356 exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
357 }
358 }
359 if (endPass < startPass) {
360 testPrintE("Unexpected ending pass before starting pass");
361 testPrintE(" startPass: %u endPass: %u", startPass, endPass);
362 exit(12);
363 }
364 if (argc != optind) {
365 testPrintE("Unexpected command-line postional argument");
366 testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]",
367 basename(argv[0]));
368 exit(13);
369 }
370 testPrintI("duration: %g", duration);
371 testPrintI("startPass: %u", startPass);
372 testPrintI("endPass: %u", endPass);
373 testPrintI("numSet: %u", numSet);
374
375 // Stop framework
376 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
377 if (rv >= (signed) sizeof(cmd) - 1) {
378 testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
379 exit(14);
380 }
381 testExecCmd(cmd);
382 testDelay(1.0); // TODO - need means to query whether asyncronous stop
383 // framework operation has completed. For now, just wait
384 // a long time.
385
386 init();
387
388 // For each pass
389 gettimeofday(&startTime, NULL);
390 for (pass = startPass; pass <= endPass; pass++) {
391 // Stop if duration of work has already been performed
392 gettimeofday(¤tTime, NULL);
393 delta = tvDelta(&startTime, ¤tTime);
394 if (tv2double(&delta) > duration) { break; }
395
396 // Regenerate a new set of test frames when this pass is
397 // either the first pass or is in a different group then
398 // the previous pass. A group of passes are passes that
399 // all have the same quotient when their pass number is
400 // divided by passesPerGroup.
401 if ((pass == startPass)
402 || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
403 initFrames(pass / passesPerGroup);
404 }
405
406 testPrintI("==== Starting pass: %u", pass);
407
408 // Cause deterministic sequence of prandom numbers to be
409 // generated for this pass.
410 srand48(pass);
411
412 hwc_display_contents_1_t *list;
413 list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
414 if (list == NULL) {
415 testPrintE("hwcTestCreateLayerList failed");
416 exit(20);
417 }
418
419 // Prandomly select a subset of frames to be used by this pass.
420 vector <vector <sp<GraphicBuffer> > > selectedFrames;
421 selectedFrames = vectorRandSelect(frames, list->numHwLayers);
422
423 // Any transform tends to create a layer that the hardware
424 // composer is unable to support and thus has to leave for
425 // SurfaceFlinger. Place heavy bias on specifying no transforms.
426 bool noTransform = testRandFract() > rareRatio;
427
428 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
429 unsigned int idx = testRandMod(selectedFrames[n1].size());
430 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
431 hwc_layer_1_t *layer = &list->hwLayers[n1];
432 layer->handle = gBuf->handle;
433
434 layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
435 layer->flags = (testRandFract() > rareRatio) ? 0
436 : vectorOr(vectorRandSelect(vecLayerFlags,
437 testRandMod(vecLayerFlags.size() + 1)));
438 layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
439 : vectorOr(vectorRandSelect(vecTransformFlags,
440 testRandMod(vecTransformFlags.size() + 1)));
441 layer->sourceCrop.left = testRandMod(gBuf->getWidth());
442 layer->sourceCrop.top = testRandMod(gBuf->getHeight());
443 layer->sourceCrop.right = layer->sourceCrop.left
444 + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
445 layer->sourceCrop.bottom = layer->sourceCrop.top
446 + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
447 layer->displayFrame.left = testRandMod(width);
448 layer->displayFrame.top = testRandMod(height);
449 layer->displayFrame.right = layer->displayFrame.left
450 + testRandMod(width - layer->displayFrame.left) + 1;
451 layer->displayFrame.bottom = layer->displayFrame.top
452 + testRandMod(height - layer->displayFrame.top) + 1;
453
454 // Increase the frequency that a scale factor of 1.0 from
455 // the sourceCrop to displayFrame occurs. This is the
456 // most common scale factor used by applications and would
457 // be rarely produced by this stress test without this
458 // logic.
459 if (testRandFract() <= freqRatio) {
460 // Only change to scale factor to 1.0 if both the
461 // width and height will fit.
462 int sourceWidth = layer->sourceCrop.right
463 - layer->sourceCrop.left;
464 int sourceHeight = layer->sourceCrop.bottom
465 - layer->sourceCrop.top;
466 if (((layer->displayFrame.left + sourceWidth) <= width)
467 && ((layer->displayFrame.top + sourceHeight) <= height)) {
468 layer->displayFrame.right = layer->displayFrame.left
469 + sourceWidth;
470 layer->displayFrame.bottom = layer->displayFrame.top
471 + sourceHeight;
472 }
473 }
474
475 layer->visibleRegionScreen.numRects = 1;
476 layer->visibleRegionScreen.rects = &layer->displayFrame;
477 }
478
479 // Perform prepare operation
480 if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
481 hwcDevice->prepare(hwcDevice, 1, &list);
482 if (verbose) {
483 testPrintI("Post Prepare:");
484 hwcTestDisplayListPrepareModifiable(list);
485 }
486
487 // Turn off the geometry changed flag
488 list->flags &= ~HWC_GEOMETRY_CHANGED;
489
490 // Perform the set operation(s)
491 if (verbose) {testPrintI("Set:"); }
492 for (unsigned int n1 = 0; n1 < numSet; n1++) {
493 if (verbose) { hwcTestDisplayListHandles(list); }
494 list->dpy = dpy;
495 list->sur = surface;
496 hwcDevice->set(hwcDevice, 1, &list);
497
498 // Prandomly select a new set of handles
499 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
500 unsigned int idx = testRandMod(selectedFrames[n1].size());
501 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
502 hwc_layer_1_t *layer = &list->hwLayers[n1];
503 layer->handle = (native_handle_t *) gBuf->handle;
504 }
505
506 testDelay(perSetDelay);
507 }
508
509 hwcTestFreeLayerList(list);
510 testPrintI("==== Completed pass: %u", pass);
511 }
512
513 testDelay(endDelay);
514
515 // Start framework
516 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
517 if (rv >= (signed) sizeof(cmd) - 1) {
518 testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
519 exit(21);
520 }
521 testExecCmd(cmd);
522
523 testPrintI("Successfully completed %u passes", pass - startPass);
524
525 return 0;
526 }
527
init(void)528 void init(void)
529 {
530 srand48(0); // Defensively set pseudo random number generator.
531 // Should not need to set this, because a stress test
532 // sets the seed on each pass. Defensively set it here
533 // so that future code that uses pseudo random numbers
534 // before the first pass will be deterministic.
535
536 hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
537
538 hwcTestOpenHwc(&hwcDevice);
539 }
540
541 /*
542 * Initialize Frames
543 *
544 * Creates an array of graphic buffers, within the global variable
545 * named frames. The graphic buffers are contained within a vector of
546 * vectors. All the graphic buffers in a particular row are of the same
547 * format and dimension. Each graphic buffer is uniformly filled with a
548 * prandomly selected color. It is likely that each buffer, even
549 * in the same row, will be filled with a unique color.
550 */
initFrames(unsigned int seed)551 void initFrames(unsigned int seed)
552 {
553 int rv;
554 const size_t maxRows = 5;
555 const size_t minCols = 2; // Need at least double buffering
556 const size_t maxCols = 4; // One more than triple buffering
557
558 if (verbose) { testPrintI("initFrames seed: %u", seed); }
559 srand48(seed);
560 size_t rows = testRandMod(maxRows) + 1;
561
562 frames.clear();
563 frames.resize(rows);
564
565 for (unsigned int row = 0; row < rows; row++) {
566 // All frames within a row have to have the same format and
567 // dimensions. Width and height need to be >= 1.
568 unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
569 const struct hwcTestGraphicFormat *formatPtr
570 = &hwcTestGraphicFormat[formatIdx];
571 int format = formatPtr->format;
572
573 // Pick width and height, which must be >= 1 and the size
574 // mod the wMod/hMod value must be equal to 0.
575 size_t w = (width * maxSizeRatio) * testRandFract();
576 size_t h = (height * maxSizeRatio) * testRandFract();
577 w = max(1u, w);
578 h = max(1u, h);
579 if ((w % formatPtr->wMod) != 0) {
580 w += formatPtr->wMod - (w % formatPtr->wMod);
581 }
582 if ((h % formatPtr->hMod) != 0) {
583 h += formatPtr->hMod - (h % formatPtr->hMod);
584 }
585 if (verbose) {
586 testPrintI(" frame %u width: %u height: %u format: %u %s",
587 row, w, h, format, hwcTestGraphicFormat2str(format));
588 }
589
590 size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
591 frames[row].resize(cols);
592 for (unsigned int col = 0; col < cols; col++) {
593 ColorFract color(testRandFract(), testRandFract(), testRandFract());
594 float alpha = testRandFract();
595
596 frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
597 if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
598 testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
599 testPrintE(" frame %u width: %u height: %u format: %u %s",
600 row, w, h, format, hwcTestGraphicFormat2str(format));
601 exit(80);
602 }
603
604 hwcTestFillColor(frames[row][col].get(), color, alpha);
605 if (verbose) {
606 testPrintI(" buf: %p handle: %p color: %s alpha: %f",
607 frames[row][col].get(), frames[row][col]->handle,
608 string(color).c_str(), alpha);
609 }
610 }
611 }
612 }
613
614 /*
615 * Vector Random Select
616 *
617 * Prandomly selects and returns num elements from vec.
618 */
619 template <class T>
vectorRandSelect(const vector<T> & vec,size_t num)620 vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
621 {
622 vector<T> rv = vec;
623
624 while (rv.size() > num) {
625 rv.erase(rv.begin() + testRandMod(rv.size()));
626 }
627
628 return rv;
629 }
630
631 /*
632 * Vector Or
633 *
634 * Or's togethen the values of each element of vec and returns the result.
635 */
636 template <class T>
vectorOr(const vector<T> & vec)637 T vectorOr(const vector<T>& vec)
638 {
639 T rv = 0;
640
641 for (size_t n1 = 0; n1 < vec.size(); n1++) {
642 rv |= vec[n1];
643 }
644
645 return rv;
646 }
647