1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <string.h>
18 #include <sys/types.h>
19 #include <sys/socket.h>
20 #include <poll.h>
21 #include <sys/wait.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <errno.h>
26 #include <fcntl.h>
27 #include <libgen.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30
31 #include <logwrap/logwrap.h>
32 #include "private/android_filesystem_config.h"
33 #include "cutils/log.h"
34 #include <cutils/klog.h>
35
36 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x)))
37 #define MIN(a,b) (((a)<(b))?(a):(b))
38
39 static pthread_mutex_t fd_mutex = PTHREAD_MUTEX_INITIALIZER;
40
41 #define ERROR(fmt, args...) \
42 do { \
43 fprintf(stderr, fmt, ## args); \
44 ALOG(LOG_ERROR, "logwrapper", fmt, ## args); \
45 } while(0)
46
47 #define FATAL_CHILD(fmt, args...) \
48 do { \
49 ERROR(fmt, ## args); \
50 _exit(-1); \
51 } while(0)
52
53 #define MAX_KLOG_TAG 16
54
55 /* This is a simple buffer that holds up to the first beginning_buf->buf_size
56 * bytes of output from a command.
57 */
58 #define BEGINNING_BUF_SIZE 0x1000
59 struct beginning_buf {
60 char *buf;
61 size_t alloc_len;
62 /* buf_size is the usable space, which is one less than the allocated size */
63 size_t buf_size;
64 size_t used_len;
65 };
66
67 /* This is a circular buf that holds up to the last ending_buf->buf_size bytes
68 * of output from a command after the first beginning_buf->buf_size bytes
69 * (which are held in beginning_buf above).
70 */
71 #define ENDING_BUF_SIZE 0x1000
72 struct ending_buf {
73 char *buf;
74 ssize_t alloc_len;
75 /* buf_size is the usable space, which is one less than the allocated size */
76 ssize_t buf_size;
77 ssize_t used_len;
78 /* read and write offsets into the circular buffer */
79 int read;
80 int write;
81 };
82
83 /* A structure to hold all the abbreviated buf data */
84 struct abbr_buf {
85 struct beginning_buf b_buf;
86 struct ending_buf e_buf;
87 int beginning_buf_full;
88 };
89
90 /* Collect all the various bits of info needed for logging in one place. */
91 struct log_info {
92 int log_target;
93 char klog_fmt[MAX_KLOG_TAG * 2];
94 char *btag;
95 bool abbreviated;
96 struct abbr_buf a_buf;
97 };
98
99 /* Forware declaration */
100 static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen);
101
102 /* Return 0 on success, and 1 when full */
add_line_to_linear_buf(struct beginning_buf * b_buf,char * line,ssize_t line_len)103 static int add_line_to_linear_buf(struct beginning_buf *b_buf,
104 char *line, ssize_t line_len)
105 {
106 size_t new_len;
107 char *new_buf;
108 int full = 0;
109
110 if ((line_len + b_buf->used_len) > b_buf->buf_size) {
111 full = 1;
112 } else {
113 /* Add to the end of the buf */
114 memcpy(b_buf->buf + b_buf->used_len, line, line_len);
115 b_buf->used_len += line_len;
116 }
117
118 return full;
119 }
120
add_line_to_circular_buf(struct ending_buf * e_buf,char * line,ssize_t line_len)121 static void add_line_to_circular_buf(struct ending_buf *e_buf,
122 char *line, ssize_t line_len)
123 {
124 ssize_t free_len;
125 ssize_t needed_space;
126 char *new_buf;
127 int cnt;
128
129 if (e_buf->buf == NULL) {
130 return;
131 }
132
133 if (line_len > e_buf->buf_size) {
134 return;
135 }
136
137 free_len = e_buf->buf_size - e_buf->used_len;
138
139 if (line_len > free_len) {
140 /* remove oldest entries at read, and move read to make
141 * room for the new string */
142 needed_space = line_len - free_len;
143 e_buf->read = (e_buf->read + needed_space) % e_buf->buf_size;
144 e_buf->used_len -= needed_space;
145 }
146
147 /* Copy the line into the circular buffer, dealing with possible
148 * wraparound.
149 */
150 cnt = MIN(line_len, e_buf->buf_size - e_buf->write);
151 memcpy(e_buf->buf + e_buf->write, line, cnt);
152 if (cnt < line_len) {
153 memcpy(e_buf->buf, line + cnt, line_len - cnt);
154 }
155 e_buf->used_len += line_len;
156 e_buf->write = (e_buf->write + line_len) % e_buf->buf_size;
157 }
158
159 /* Log directly to the specified log */
do_log_line(struct log_info * log_info,char * line)160 static void do_log_line(struct log_info *log_info, char *line) {
161 if (log_info->log_target == LOG_KLOG) {
162 klog_write(6, log_info->klog_fmt, line);
163 } else if (log_info->log_target == LOG_ALOG) {
164 ALOG(LOG_INFO, log_info->btag, "%s", line);
165 }
166 }
167
168 /* Log to either the abbreviated buf, or directly to the specified log
169 * via do_log_line() above.
170 */
log_line(struct log_info * log_info,char * line,int len)171 static void log_line(struct log_info *log_info, char *line, int len) {
172 if (log_info->abbreviated) {
173 add_line_to_abbr_buf(&log_info->a_buf, line, len);
174 } else {
175 do_log_line(log_info, line);
176 }
177 }
178
179 /*
180 * The kernel will take a maximum of 1024 bytes in any single write to
181 * the kernel logging device file, so find and print each line one at
182 * a time. The allocated size for buf should be at least 1 byte larger
183 * than buf_size (the usable size of the buffer) to make sure there is
184 * room to temporarily stuff a null byte to terminate a line for logging.
185 */
print_buf_lines(struct log_info * log_info,char * buf,int buf_size)186 static void print_buf_lines(struct log_info *log_info, char *buf, int buf_size)
187 {
188 char *line_start;
189 char c;
190 int line_len;
191 int i;
192
193 line_start = buf;
194 for (i = 0; i < buf_size; i++) {
195 if (*(buf + i) == '\n') {
196 /* Found a line ending, print the line and compute new line_start */
197 /* Save the next char and replace with \0 */
198 c = *(buf + i + 1);
199 *(buf + i + 1) = '\0';
200 do_log_line(log_info, line_start);
201 /* Restore the saved char */
202 *(buf + i + 1) = c;
203 line_start = buf + i + 1;
204 } else if (*(buf + i) == '\0') {
205 /* The end of the buffer, print the last bit */
206 do_log_line(log_info, line_start);
207 break;
208 }
209 }
210 /* If the buffer was completely full, and didn't end with a newline, just
211 * ignore the partial last line.
212 */
213 }
214
init_abbr_buf(struct abbr_buf * a_buf)215 static void init_abbr_buf(struct abbr_buf *a_buf) {
216 char *new_buf;
217
218 memset(a_buf, 0, sizeof(struct abbr_buf));
219 new_buf = malloc(BEGINNING_BUF_SIZE);
220 if (new_buf) {
221 a_buf->b_buf.buf = new_buf;
222 a_buf->b_buf.alloc_len = BEGINNING_BUF_SIZE;
223 a_buf->b_buf.buf_size = BEGINNING_BUF_SIZE - 1;
224 }
225 new_buf = malloc(ENDING_BUF_SIZE);
226 if (new_buf) {
227 a_buf->e_buf.buf = new_buf;
228 a_buf->e_buf.alloc_len = ENDING_BUF_SIZE;
229 a_buf->e_buf.buf_size = ENDING_BUF_SIZE - 1;
230 }
231 }
232
free_abbr_buf(struct abbr_buf * a_buf)233 static void free_abbr_buf(struct abbr_buf *a_buf) {
234 free(a_buf->b_buf.buf);
235 free(a_buf->e_buf.buf);
236 }
237
add_line_to_abbr_buf(struct abbr_buf * a_buf,char * linebuf,int linelen)238 static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen) {
239 if (!a_buf->beginning_buf_full) {
240 a_buf->beginning_buf_full =
241 add_line_to_linear_buf(&a_buf->b_buf, linebuf, linelen);
242 }
243 if (a_buf->beginning_buf_full) {
244 add_line_to_circular_buf(&a_buf->e_buf, linebuf, linelen);
245 }
246 }
247
print_abbr_buf(struct log_info * log_info)248 static void print_abbr_buf(struct log_info *log_info) {
249 struct abbr_buf *a_buf = &log_info->a_buf;
250
251 /* Add the abbreviated output to the kernel log */
252 if (a_buf->b_buf.alloc_len) {
253 print_buf_lines(log_info, a_buf->b_buf.buf, a_buf->b_buf.used_len);
254 }
255
256 /* Print an ellipsis to indicate that the buffer has wrapped or
257 * is full, and some data was not logged.
258 */
259 if (a_buf->e_buf.used_len == a_buf->e_buf.buf_size) {
260 do_log_line(log_info, "...\n");
261 }
262
263 if (a_buf->e_buf.used_len == 0) {
264 return;
265 }
266
267 /* Simplest way to print the circular buffer is allocate a second buf
268 * of the same size, and memcpy it so it's a simple linear buffer,
269 * and then cal print_buf_lines on it */
270 if (a_buf->e_buf.read < a_buf->e_buf.write) {
271 /* no wrap around, just print it */
272 print_buf_lines(log_info, a_buf->e_buf.buf + a_buf->e_buf.read,
273 a_buf->e_buf.used_len);
274 } else {
275 /* The circular buffer will always have at least 1 byte unused,
276 * so by allocating alloc_len here we will have at least
277 * 1 byte of space available as required by print_buf_lines().
278 */
279 char * nbuf = malloc(a_buf->e_buf.alloc_len);
280 if (!nbuf) {
281 return;
282 }
283 int first_chunk_len = a_buf->e_buf.buf_size - a_buf->e_buf.read;
284 memcpy(nbuf, a_buf->e_buf.buf + a_buf->e_buf.read, first_chunk_len);
285 /* copy second chunk */
286 memcpy(nbuf + first_chunk_len, a_buf->e_buf.buf, a_buf->e_buf.write);
287 print_buf_lines(log_info, nbuf, first_chunk_len + a_buf->e_buf.write);
288 free(nbuf);
289 }
290 }
291
parent(const char * tag,int parent_read,pid_t pid,int * chld_sts,int log_target,bool abbreviated)292 static int parent(const char *tag, int parent_read, pid_t pid,
293 int *chld_sts, int log_target, bool abbreviated) {
294 int status = 0;
295 char buffer[4096];
296 struct pollfd poll_fds[] = {
297 [0] = {
298 .fd = parent_read,
299 .events = POLLIN,
300 },
301 };
302 int rc = 0;
303
304 struct log_info log_info;
305
306 int a = 0; // start index of unprocessed data
307 int b = 0; // end index of unprocessed data
308 int sz;
309 bool found_child = false;
310 char tmpbuf[256];
311
312 log_info.log_target = log_target;
313 log_info.abbreviated = abbreviated;
314 log_info.btag = basename(tag);
315 if (!log_info.btag) {
316 log_info.btag = (char*) tag;
317 }
318
319 if (abbreviated && (log_target == LOG_NONE)) {
320 abbreviated = 0;
321 }
322 if (abbreviated) {
323 init_abbr_buf(&log_info.a_buf);
324 }
325
326 if (log_target == LOG_KLOG) {
327 snprintf(log_info.klog_fmt, sizeof(log_info.klog_fmt),
328 "<6>%.*s: %%s", MAX_KLOG_TAG, log_info.btag);
329 }
330
331 while (!found_child) {
332 if (TEMP_FAILURE_RETRY(poll(poll_fds, ARRAY_SIZE(poll_fds), -1)) < 0) {
333 ERROR("poll failed\n");
334 rc = -1;
335 goto err_poll;
336 }
337
338 if (poll_fds[0].revents & POLLIN) {
339 sz = read(parent_read, &buffer[b], sizeof(buffer) - 1 - b);
340
341 sz += b;
342 // Log one line at a time
343 for (b = 0; b < sz; b++) {
344 if (buffer[b] == '\r') {
345 if (abbreviated) {
346 /* The abbreviated logging code uses newline as
347 * the line separator. Lucikly, the pty layer
348 * helpfully cooks the output of the command
349 * being run and inserts a CR before NL. So
350 * I just change it to NL here when doing
351 * abbreviated logging.
352 */
353 buffer[b] = '\n';
354 } else {
355 buffer[b] = '\0';
356 }
357 } else if (buffer[b] == '\n') {
358 buffer[b] = '\0';
359 log_line(&log_info, &buffer[a], b - a);
360 a = b + 1;
361 }
362 }
363
364 if (a == 0 && b == sizeof(buffer) - 1) {
365 // buffer is full, flush
366 buffer[b] = '\0';
367 log_line(&log_info, &buffer[a], b - a);
368 b = 0;
369 } else if (a != b) {
370 // Keep left-overs
371 b -= a;
372 memmove(buffer, &buffer[a], b);
373 a = 0;
374 } else {
375 a = 0;
376 b = 0;
377 }
378 }
379
380 if (poll_fds[0].revents & POLLHUP) {
381 int ret;
382
383 ret = waitpid(pid, &status, WNOHANG);
384 if (ret < 0) {
385 rc = errno;
386 ALOG(LOG_ERROR, "logwrap", "waitpid failed with %s\n", strerror(errno));
387 goto err_waitpid;
388 }
389 if (ret > 0) {
390 found_child = true;
391 }
392 }
393 }
394
395 if (chld_sts != NULL) {
396 *chld_sts = status;
397 } else {
398 if (WIFEXITED(status))
399 rc = WEXITSTATUS(status);
400 else
401 rc = -ECHILD;
402 }
403
404 // Flush remaining data
405 if (a != b) {
406 buffer[b] = '\0';
407 log_line(&log_info, &buffer[a], b - a);
408 }
409
410 /* All the output has been processed, time to dump the abbreviated output */
411 if (abbreviated) {
412 print_abbr_buf(&log_info);
413 }
414
415 if (WIFEXITED(status)) {
416 if (WEXITSTATUS(status)) {
417 snprintf(tmpbuf, sizeof(tmpbuf),
418 "%s terminated by exit(%d)\n", log_info.btag, WEXITSTATUS(status));
419 do_log_line(&log_info, tmpbuf);
420 }
421 } else {
422 if (WIFSIGNALED(status)) {
423 snprintf(tmpbuf, sizeof(tmpbuf),
424 "%s terminated by signal %d\n", log_info.btag, WTERMSIG(status));
425 do_log_line(&log_info, tmpbuf);
426 } else if (WIFSTOPPED(status)) {
427 snprintf(tmpbuf, sizeof(tmpbuf),
428 "%s stopped by signal %d\n", log_info.btag, WSTOPSIG(status));
429 do_log_line(&log_info, tmpbuf);
430 }
431 }
432
433 err_waitpid:
434 err_poll:
435 if (abbreviated) {
436 free_abbr_buf(&log_info.a_buf);
437 }
438 return rc;
439 }
440
child(int argc,char * argv[])441 static void child(int argc, char* argv[]) {
442 // create null terminated argv_child array
443 char* argv_child[argc + 1];
444 memcpy(argv_child, argv, argc * sizeof(char *));
445 argv_child[argc] = NULL;
446
447 if (execvp(argv_child[0], argv_child)) {
448 FATAL_CHILD("executing %s failed: %s\n", argv_child[0],
449 strerror(errno));
450 }
451 }
452
android_fork_execvp_ext(int argc,char * argv[],int * status,bool ignore_int_quit,int log_target,bool abbreviated)453 int android_fork_execvp_ext(int argc, char* argv[], int *status, bool ignore_int_quit,
454 int log_target, bool abbreviated) {
455 pid_t pid;
456 int parent_ptty;
457 int child_ptty;
458 char *child_devname = NULL;
459 struct sigaction intact;
460 struct sigaction quitact;
461 sigset_t blockset;
462 sigset_t oldset;
463 int rc = 0;
464
465 rc = pthread_mutex_lock(&fd_mutex);
466 if (rc) {
467 ERROR("failed to lock signal_fd mutex\n");
468 goto err_lock;
469 }
470
471 /* Use ptty instead of socketpair so that STDOUT is not buffered */
472 parent_ptty = open("/dev/ptmx", O_RDWR);
473 if (parent_ptty < 0) {
474 ERROR("Cannot create parent ptty\n");
475 rc = -1;
476 goto err_open;
477 }
478
479 if (grantpt(parent_ptty) || unlockpt(parent_ptty) ||
480 ((child_devname = (char*)ptsname(parent_ptty)) == 0)) {
481 ERROR("Problem with /dev/ptmx\n");
482 rc = -1;
483 goto err_ptty;
484 }
485
486 child_ptty = open(child_devname, O_RDWR);
487 if (child_ptty < 0) {
488 ERROR("Cannot open child_ptty\n");
489 rc = -1;
490 goto err_child_ptty;
491 }
492
493 sigemptyset(&blockset);
494 sigaddset(&blockset, SIGINT);
495 sigaddset(&blockset, SIGQUIT);
496 pthread_sigmask(SIG_BLOCK, &blockset, &oldset);
497
498 pid = fork();
499 if (pid < 0) {
500 close(child_ptty);
501 ERROR("Failed to fork\n");
502 rc = -1;
503 goto err_fork;
504 } else if (pid == 0) {
505 pthread_mutex_unlock(&fd_mutex);
506 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
507 close(parent_ptty);
508
509 // redirect stdout and stderr
510 dup2(child_ptty, 1);
511 dup2(child_ptty, 2);
512 close(child_ptty);
513
514 child(argc, argv);
515 } else {
516 close(child_ptty);
517 if (ignore_int_quit) {
518 struct sigaction ignact;
519
520 memset(&ignact, 0, sizeof(ignact));
521 ignact.sa_handler = SIG_IGN;
522 sigaction(SIGINT, &ignact, &intact);
523 sigaction(SIGQUIT, &ignact, &quitact);
524 }
525
526 rc = parent(argv[0], parent_ptty, pid, status, log_target, abbreviated);
527 }
528
529 if (ignore_int_quit) {
530 sigaction(SIGINT, &intact, NULL);
531 sigaction(SIGQUIT, &quitact, NULL);
532 }
533 err_fork:
534 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
535 err_child_ptty:
536 err_ptty:
537 close(parent_ptty);
538 err_open:
539 pthread_mutex_unlock(&fd_mutex);
540 err_lock:
541 return rc;
542 }
543