1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "monitor.h"
18
19 #include <vector>
20
21 #include "base/mutex.h"
22 #include "base/stl_util.h"
23 #include "class_linker.h"
24 #include "dex_file-inl.h"
25 #include "dex_instruction.h"
26 #include "mirror/art_method-inl.h"
27 #include "mirror/class-inl.h"
28 #include "mirror/object-inl.h"
29 #include "mirror/object_array-inl.h"
30 #include "object_utils.h"
31 #include "scoped_thread_state_change.h"
32 #include "thread.h"
33 #include "thread_list.h"
34 #include "verifier/method_verifier.h"
35 #include "well_known_classes.h"
36
37 namespace art {
38
39 /*
40 * Every Object has a monitor associated with it, but not every Object is
41 * actually locked. Even the ones that are locked do not need a
42 * full-fledged monitor until a) there is actual contention or b) wait()
43 * is called on the Object.
44 *
45 * For Android, we have implemented a scheme similar to the one described
46 * in Bacon et al.'s "Thin locks: featherweight synchronization for Java"
47 * (ACM 1998). Things are even easier for us, though, because we have
48 * a full 32 bits to work with.
49 *
50 * The two states of an Object's lock are referred to as "thin" and
51 * "fat". A lock may transition from the "thin" state to the "fat"
52 * state and this transition is referred to as inflation. Once a lock
53 * has been inflated it remains in the "fat" state indefinitely.
54 *
55 * The lock value itself is stored in Object.lock. The LSB of the
56 * lock encodes its state. When cleared, the lock is in the "thin"
57 * state and its bits are formatted as follows:
58 *
59 * [31 ---- 19] [18 ---- 3] [2 ---- 1] [0]
60 * lock count thread id hash state 0
61 *
62 * When set, the lock is in the "fat" state and its bits are formatted
63 * as follows:
64 *
65 * [31 ---- 3] [2 ---- 1] [0]
66 * pointer hash state 1
67 *
68 * For an in-depth description of the mechanics of thin-vs-fat locking,
69 * read the paper referred to above.
70 *
71 * Monitors provide:
72 * - mutually exclusive access to resources
73 * - a way for multiple threads to wait for notification
74 *
75 * In effect, they fill the role of both mutexes and condition variables.
76 *
77 * Only one thread can own the monitor at any time. There may be several
78 * threads waiting on it (the wait call unlocks it). One or more waiting
79 * threads may be getting interrupted or notified at any given time.
80 *
81 * TODO: the various members of monitor are not SMP-safe.
82 */
83
84 // The shape is the bottom bit; either LW_SHAPE_THIN or LW_SHAPE_FAT.
85 #define LW_SHAPE_MASK 0x1
86 #define LW_SHAPE(x) static_cast<int>((x) & LW_SHAPE_MASK)
87
88 /*
89 * Monitor accessor. Extracts a monitor structure pointer from a fat
90 * lock. Performs no error checking.
91 */
92 #define LW_MONITOR(x) \
93 (reinterpret_cast<Monitor*>((x) & ~((LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT) | LW_SHAPE_MASK)))
94
95 /*
96 * Lock recursion count field. Contains a count of the number of times
97 * a lock has been recursively acquired.
98 */
99 #define LW_LOCK_COUNT_MASK 0x1fff
100 #define LW_LOCK_COUNT_SHIFT 19
101 #define LW_LOCK_COUNT(x) (((x) >> LW_LOCK_COUNT_SHIFT) & LW_LOCK_COUNT_MASK)
102
103 bool (*Monitor::is_sensitive_thread_hook_)() = NULL;
104 uint32_t Monitor::lock_profiling_threshold_ = 0;
105
IsSensitiveThread()106 bool Monitor::IsSensitiveThread() {
107 if (is_sensitive_thread_hook_ != NULL) {
108 return (*is_sensitive_thread_hook_)();
109 }
110 return false;
111 }
112
Init(uint32_t lock_profiling_threshold,bool (* is_sensitive_thread_hook)())113 void Monitor::Init(uint32_t lock_profiling_threshold, bool (*is_sensitive_thread_hook)()) {
114 lock_profiling_threshold_ = lock_profiling_threshold;
115 is_sensitive_thread_hook_ = is_sensitive_thread_hook;
116 }
117
Monitor(Thread * owner,mirror::Object * obj)118 Monitor::Monitor(Thread* owner, mirror::Object* obj)
119 : monitor_lock_("a monitor lock", kMonitorLock),
120 owner_(owner),
121 lock_count_(0),
122 obj_(obj),
123 wait_set_(NULL),
124 locking_method_(NULL),
125 locking_dex_pc_(0) {
126 monitor_lock_.Lock(owner);
127 // Propagate the lock state.
128 uint32_t thin = *obj->GetRawLockWordAddress();
129 lock_count_ = LW_LOCK_COUNT(thin);
130 thin &= LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT;
131 thin |= reinterpret_cast<uint32_t>(this) | LW_SHAPE_FAT;
132 // Publish the updated lock word.
133 android_atomic_release_store(thin, obj->GetRawLockWordAddress());
134 // Lock profiling.
135 if (lock_profiling_threshold_ != 0) {
136 locking_method_ = owner->GetCurrentMethod(&locking_dex_pc_);
137 }
138 }
139
~Monitor()140 Monitor::~Monitor() {
141 DCHECK(obj_ != NULL);
142 DCHECK_EQ(LW_SHAPE(*obj_->GetRawLockWordAddress()), LW_SHAPE_FAT);
143 }
144
145 /*
146 * Links a thread into a monitor's wait set. The monitor lock must be
147 * held by the caller of this routine.
148 */
AppendToWaitSet(Thread * thread)149 void Monitor::AppendToWaitSet(Thread* thread) {
150 DCHECK(owner_ == Thread::Current());
151 DCHECK(thread != NULL);
152 DCHECK(thread->wait_next_ == NULL) << thread->wait_next_;
153 if (wait_set_ == NULL) {
154 wait_set_ = thread;
155 return;
156 }
157
158 // push_back.
159 Thread* t = wait_set_;
160 while (t->wait_next_ != NULL) {
161 t = t->wait_next_;
162 }
163 t->wait_next_ = thread;
164 }
165
166 /*
167 * Unlinks a thread from a monitor's wait set. The monitor lock must
168 * be held by the caller of this routine.
169 */
RemoveFromWaitSet(Thread * thread)170 void Monitor::RemoveFromWaitSet(Thread *thread) {
171 DCHECK(owner_ == Thread::Current());
172 DCHECK(thread != NULL);
173 if (wait_set_ == NULL) {
174 return;
175 }
176 if (wait_set_ == thread) {
177 wait_set_ = thread->wait_next_;
178 thread->wait_next_ = NULL;
179 return;
180 }
181
182 Thread* t = wait_set_;
183 while (t->wait_next_ != NULL) {
184 if (t->wait_next_ == thread) {
185 t->wait_next_ = thread->wait_next_;
186 thread->wait_next_ = NULL;
187 return;
188 }
189 t = t->wait_next_;
190 }
191 }
192
GetObject()193 mirror::Object* Monitor::GetObject() {
194 return obj_;
195 }
196
Lock(Thread * self)197 void Monitor::Lock(Thread* self) {
198 if (owner_ == self) {
199 lock_count_++;
200 return;
201 }
202
203 if (!monitor_lock_.TryLock(self)) {
204 uint64_t waitStart = 0;
205 uint64_t waitEnd = 0;
206 uint32_t wait_threshold = lock_profiling_threshold_;
207 const mirror::ArtMethod* current_locking_method = NULL;
208 uint32_t current_locking_dex_pc = 0;
209 {
210 ScopedThreadStateChange tsc(self, kBlocked);
211 if (wait_threshold != 0) {
212 waitStart = NanoTime() / 1000;
213 }
214 current_locking_method = locking_method_;
215 current_locking_dex_pc = locking_dex_pc_;
216
217 monitor_lock_.Lock(self);
218 if (wait_threshold != 0) {
219 waitEnd = NanoTime() / 1000;
220 }
221 }
222
223 if (wait_threshold != 0) {
224 uint64_t wait_ms = (waitEnd - waitStart) / 1000;
225 uint32_t sample_percent;
226 if (wait_ms >= wait_threshold) {
227 sample_percent = 100;
228 } else {
229 sample_percent = 100 * wait_ms / wait_threshold;
230 }
231 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
232 const char* current_locking_filename;
233 uint32_t current_locking_line_number;
234 TranslateLocation(current_locking_method, current_locking_dex_pc,
235 current_locking_filename, current_locking_line_number);
236 LogContentionEvent(self, wait_ms, sample_percent, current_locking_filename, current_locking_line_number);
237 }
238 }
239 }
240 owner_ = self;
241 DCHECK_EQ(lock_count_, 0);
242
243 // When debugging, save the current monitor holder for future
244 // acquisition failures to use in sampled logging.
245 if (lock_profiling_threshold_ != 0) {
246 locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
247 }
248 }
249
250 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
251 __attribute__((format(printf, 1, 2)));
252
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)253 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
254 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
255 va_list args;
256 va_start(args, fmt);
257 Thread* self = Thread::Current();
258 ThrowLocation throw_location = self->GetCurrentLocationForThrow();
259 self->ThrowNewExceptionV(throw_location, "Ljava/lang/IllegalMonitorStateException;", fmt, args);
260 if (!Runtime::Current()->IsStarted()) {
261 std::ostringstream ss;
262 self->Dump(ss);
263 std::string str(ss.str());
264 LOG(ERROR) << "IllegalMonitorStateException: " << str;
265 }
266 va_end(args);
267 }
268
ThreadToString(Thread * thread)269 static std::string ThreadToString(Thread* thread) {
270 if (thread == NULL) {
271 return "NULL";
272 }
273 std::ostringstream oss;
274 // TODO: alternatively, we could just return the thread's name.
275 oss << *thread;
276 return oss.str();
277 }
278
FailedUnlock(mirror::Object * o,Thread * expected_owner,Thread * found_owner,Monitor * monitor)279 void Monitor::FailedUnlock(mirror::Object* o, Thread* expected_owner, Thread* found_owner,
280 Monitor* monitor) {
281 Thread* current_owner = NULL;
282 std::string current_owner_string;
283 std::string expected_owner_string;
284 std::string found_owner_string;
285 {
286 // TODO: isn't this too late to prevent threads from disappearing?
287 // Acquire thread list lock so threads won't disappear from under us.
288 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
289 // Re-read owner now that we hold lock.
290 current_owner = (monitor != NULL) ? monitor->owner_ : NULL;
291 // Get short descriptions of the threads involved.
292 current_owner_string = ThreadToString(current_owner);
293 expected_owner_string = ThreadToString(expected_owner);
294 found_owner_string = ThreadToString(found_owner);
295 }
296 if (current_owner == NULL) {
297 if (found_owner == NULL) {
298 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
299 " on thread '%s'",
300 PrettyTypeOf(o).c_str(),
301 expected_owner_string.c_str());
302 } else {
303 // Race: the original read found an owner but now there is none
304 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
305 " (where now the monitor appears unowned) on thread '%s'",
306 found_owner_string.c_str(),
307 PrettyTypeOf(o).c_str(),
308 expected_owner_string.c_str());
309 }
310 } else {
311 if (found_owner == NULL) {
312 // Race: originally there was no owner, there is now
313 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
314 " (originally believed to be unowned) on thread '%s'",
315 current_owner_string.c_str(),
316 PrettyTypeOf(o).c_str(),
317 expected_owner_string.c_str());
318 } else {
319 if (found_owner != current_owner) {
320 // Race: originally found and current owner have changed
321 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
322 " owned by '%s') on object of type '%s' on thread '%s'",
323 found_owner_string.c_str(),
324 current_owner_string.c_str(),
325 PrettyTypeOf(o).c_str(),
326 expected_owner_string.c_str());
327 } else {
328 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
329 " on thread '%s",
330 current_owner_string.c_str(),
331 PrettyTypeOf(o).c_str(),
332 expected_owner_string.c_str());
333 }
334 }
335 }
336 }
337
Unlock(Thread * self,bool for_wait)338 bool Monitor::Unlock(Thread* self, bool for_wait) {
339 DCHECK(self != NULL);
340 Thread* owner = owner_;
341 if (owner == self) {
342 // We own the monitor, so nobody else can be in here.
343 if (lock_count_ == 0) {
344 owner_ = NULL;
345 locking_method_ = NULL;
346 locking_dex_pc_ = 0;
347 monitor_lock_.Unlock(self);
348 } else {
349 --lock_count_;
350 }
351 } else if (for_wait) {
352 // Wait should have already cleared the fields.
353 DCHECK_EQ(lock_count_, 0);
354 DCHECK(owner == NULL);
355 DCHECK(locking_method_ == NULL);
356 DCHECK_EQ(locking_dex_pc_, 0u);
357 monitor_lock_.Unlock(self);
358 } else {
359 // We don't own this, so we're not allowed to unlock it.
360 // The JNI spec says that we should throw IllegalMonitorStateException
361 // in this case.
362 FailedUnlock(obj_, self, owner, this);
363 return false;
364 }
365 return true;
366 }
367
368 /*
369 * Wait on a monitor until timeout, interrupt, or notification. Used for
370 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
371 *
372 * If another thread calls Thread.interrupt(), we throw InterruptedException
373 * and return immediately if one of the following are true:
374 * - blocked in wait(), wait(long), or wait(long, int) methods of Object
375 * - blocked in join(), join(long), or join(long, int) methods of Thread
376 * - blocked in sleep(long), or sleep(long, int) methods of Thread
377 * Otherwise, we set the "interrupted" flag.
378 *
379 * Checks to make sure that "ns" is in the range 0-999999
380 * (i.e. fractions of a millisecond) and throws the appropriate
381 * exception if it isn't.
382 *
383 * The spec allows "spurious wakeups", and recommends that all code using
384 * Object.wait() do so in a loop. This appears to derive from concerns
385 * about pthread_cond_wait() on multiprocessor systems. Some commentary
386 * on the web casts doubt on whether these can/should occur.
387 *
388 * Since we're allowed to wake up "early", we clamp extremely long durations
389 * to return at the end of the 32-bit time epoch.
390 */
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)391 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
392 bool interruptShouldThrow, ThreadState why) {
393 DCHECK(self != NULL);
394 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
395
396 // Make sure that we hold the lock.
397 if (owner_ != self) {
398 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
399 return;
400 }
401 monitor_lock_.AssertHeld(self);
402
403 // We need to turn a zero-length timed wait into a regular wait because
404 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
405 if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
406 why = kWaiting;
407 }
408
409 WaitWithLock(self, ms, ns, interruptShouldThrow, why);
410 }
411
WaitWithLock(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)412 void Monitor::WaitWithLock(Thread* self, int64_t ms, int32_t ns,
413 bool interruptShouldThrow, ThreadState why) {
414 // Enforce the timeout range.
415 if (ms < 0 || ns < 0 || ns > 999999) {
416 ThrowLocation throw_location = self->GetCurrentLocationForThrow();
417 self->ThrowNewExceptionF(throw_location, "Ljava/lang/IllegalArgumentException;",
418 "timeout arguments out of range: ms=%lld ns=%d", ms, ns);
419 return;
420 }
421
422 /*
423 * Add ourselves to the set of threads waiting on this monitor, and
424 * release our hold. We need to let it go even if we're a few levels
425 * deep in a recursive lock, and we need to restore that later.
426 *
427 * We append to the wait set ahead of clearing the count and owner
428 * fields so the subroutine can check that the calling thread owns
429 * the monitor. Aside from that, the order of member updates is
430 * not order sensitive as we hold the pthread mutex.
431 */
432 AppendToWaitSet(self);
433 int prev_lock_count = lock_count_;
434 lock_count_ = 0;
435 owner_ = NULL;
436 const mirror::ArtMethod* saved_method = locking_method_;
437 locking_method_ = NULL;
438 uintptr_t saved_dex_pc = locking_dex_pc_;
439 locking_dex_pc_ = 0;
440
441 /*
442 * Update thread state. If the GC wakes up, it'll ignore us, knowing
443 * that we won't touch any references in this state, and we'll check
444 * our suspend mode before we transition out.
445 */
446 self->TransitionFromRunnableToSuspended(why);
447
448 bool was_interrupted = false;
449 {
450 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
451 MutexLock mu(self, *self->wait_mutex_);
452
453 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
454 // non-NULL a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
455 // up.
456 DCHECK(self->wait_monitor_ == NULL);
457 self->wait_monitor_ = this;
458
459 // Release the monitor lock.
460 Unlock(self, true);
461
462 // Handle the case where the thread was interrupted before we called wait().
463 if (self->interrupted_) {
464 was_interrupted = true;
465 } else {
466 // Wait for a notification or a timeout to occur.
467 if (why == kWaiting) {
468 self->wait_cond_->Wait(self);
469 } else {
470 DCHECK(why == kTimedWaiting || why == kSleeping) << why;
471 self->wait_cond_->TimedWait(self, ms, ns);
472 }
473 if (self->interrupted_) {
474 was_interrupted = true;
475 }
476 self->interrupted_ = false;
477 }
478 }
479
480 // Set self->status back to kRunnable, and self-suspend if needed.
481 self->TransitionFromSuspendedToRunnable();
482
483 {
484 // We reset the thread's wait_monitor_ field after transitioning back to runnable so
485 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
486 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
487 // are waiting on "null".)
488 MutexLock mu(self, *self->wait_mutex_);
489 DCHECK(self->wait_monitor_ != NULL);
490 self->wait_monitor_ = NULL;
491 }
492
493 // Re-acquire the monitor lock.
494 Lock(self);
495
496 self->wait_mutex_->AssertNotHeld(self);
497
498 /*
499 * We remove our thread from wait set after restoring the count
500 * and owner fields so the subroutine can check that the calling
501 * thread owns the monitor. Aside from that, the order of member
502 * updates is not order sensitive as we hold the pthread mutex.
503 */
504 owner_ = self;
505 lock_count_ = prev_lock_count;
506 locking_method_ = saved_method;
507 locking_dex_pc_ = saved_dex_pc;
508 RemoveFromWaitSet(self);
509
510 if (was_interrupted) {
511 /*
512 * We were interrupted while waiting, or somebody interrupted an
513 * un-interruptible thread earlier and we're bailing out immediately.
514 *
515 * The doc sayeth: "The interrupted status of the current thread is
516 * cleared when this exception is thrown."
517 */
518 {
519 MutexLock mu(self, *self->wait_mutex_);
520 self->interrupted_ = false;
521 }
522 if (interruptShouldThrow) {
523 ThrowLocation throw_location = self->GetCurrentLocationForThrow();
524 self->ThrowNewException(throw_location, "Ljava/lang/InterruptedException;", NULL);
525 }
526 }
527 }
528
Notify(Thread * self)529 void Monitor::Notify(Thread* self) {
530 DCHECK(self != NULL);
531 // Make sure that we hold the lock.
532 if (owner_ != self) {
533 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
534 return;
535 }
536 monitor_lock_.AssertHeld(self);
537 NotifyWithLock(self);
538 }
539
NotifyWithLock(Thread * self)540 void Monitor::NotifyWithLock(Thread* self) {
541 // Signal the first waiting thread in the wait set.
542 while (wait_set_ != NULL) {
543 Thread* thread = wait_set_;
544 wait_set_ = thread->wait_next_;
545 thread->wait_next_ = NULL;
546
547 // Check to see if the thread is still waiting.
548 MutexLock mu(self, *thread->wait_mutex_);
549 if (thread->wait_monitor_ != NULL) {
550 thread->wait_cond_->Signal(self);
551 return;
552 }
553 }
554 }
555
NotifyAll(Thread * self)556 void Monitor::NotifyAll(Thread* self) {
557 DCHECK(self != NULL);
558 // Make sure that we hold the lock.
559 if (owner_ != self) {
560 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
561 return;
562 }
563 monitor_lock_.AssertHeld(self);
564 NotifyAllWithLock();
565 }
566
NotifyAllWithLock()567 void Monitor::NotifyAllWithLock() {
568 // Signal all threads in the wait set.
569 while (wait_set_ != NULL) {
570 Thread* thread = wait_set_;
571 wait_set_ = thread->wait_next_;
572 thread->wait_next_ = NULL;
573 thread->Notify();
574 }
575 }
576
577 /*
578 * Changes the shape of a monitor from thin to fat, preserving the
579 * internal lock state. The calling thread must own the lock.
580 */
Inflate(Thread * self,mirror::Object * obj)581 void Monitor::Inflate(Thread* self, mirror::Object* obj) {
582 DCHECK(self != NULL);
583 DCHECK(obj != NULL);
584 DCHECK_EQ(LW_SHAPE(*obj->GetRawLockWordAddress()), LW_SHAPE_THIN);
585 DCHECK_EQ(LW_LOCK_OWNER(*obj->GetRawLockWordAddress()), static_cast<int32_t>(self->GetThinLockId()));
586
587 // Allocate and acquire a new monitor.
588 Monitor* m = new Monitor(self, obj);
589 VLOG(monitor) << "monitor: thread " << self->GetThinLockId()
590 << " created monitor " << m << " for object " << obj;
591 Runtime::Current()->GetMonitorList()->Add(m);
592 }
593
MonitorEnter(Thread * self,mirror::Object * obj)594 void Monitor::MonitorEnter(Thread* self, mirror::Object* obj) {
595 volatile int32_t* thinp = obj->GetRawLockWordAddress();
596 uint32_t sleepDelayNs;
597 uint32_t minSleepDelayNs = 1000000; /* 1 millisecond */
598 uint32_t maxSleepDelayNs = 1000000000; /* 1 second */
599 uint32_t thin, newThin;
600
601 DCHECK(self != NULL);
602 DCHECK(obj != NULL);
603 uint32_t threadId = self->GetThinLockId();
604 retry:
605 thin = *thinp;
606 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
607 /*
608 * The lock is a thin lock. The owner field is used to
609 * determine the acquire method, ordered by cost.
610 */
611 if (LW_LOCK_OWNER(thin) == threadId) {
612 /*
613 * The calling thread owns the lock. Increment the
614 * value of the recursion count field.
615 */
616 *thinp += 1 << LW_LOCK_COUNT_SHIFT;
617 if (LW_LOCK_COUNT(*thinp) == LW_LOCK_COUNT_MASK) {
618 /*
619 * The reacquisition limit has been reached. Inflate
620 * the lock so the next acquire will not overflow the
621 * recursion count field.
622 */
623 Inflate(self, obj);
624 }
625 } else if (LW_LOCK_OWNER(thin) == 0) {
626 // The lock is unowned. Install the thread id of the calling thread into the owner field.
627 // This is the common case: compiled code will have tried this before calling back into
628 // the runtime.
629 newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
630 if (android_atomic_acquire_cas(thin, newThin, thinp) != 0) {
631 // The acquire failed. Try again.
632 goto retry;
633 }
634 } else {
635 VLOG(monitor) << StringPrintf("monitor: thread %d spin on lock %p (a %s) owned by %d",
636 threadId, thinp, PrettyTypeOf(obj).c_str(), LW_LOCK_OWNER(thin));
637 // The lock is owned by another thread. Notify the runtime that we are about to wait.
638 self->monitor_enter_object_ = obj;
639 self->TransitionFromRunnableToSuspended(kBlocked);
640 // Spin until the thin lock is released or inflated.
641 sleepDelayNs = 0;
642 for (;;) {
643 thin = *thinp;
644 // Check the shape of the lock word. Another thread
645 // may have inflated the lock while we were waiting.
646 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
647 if (LW_LOCK_OWNER(thin) == 0) {
648 // The lock has been released. Install the thread id of the
649 // calling thread into the owner field.
650 newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
651 if (android_atomic_acquire_cas(thin, newThin, thinp) == 0) {
652 // The acquire succeed. Break out of the loop and proceed to inflate the lock.
653 break;
654 }
655 } else {
656 // The lock has not been released. Yield so the owning thread can run.
657 if (sleepDelayNs == 0) {
658 sched_yield();
659 sleepDelayNs = minSleepDelayNs;
660 } else {
661 NanoSleep(sleepDelayNs);
662 // Prepare the next delay value. Wrap to avoid once a second polls for eternity.
663 if (sleepDelayNs < maxSleepDelayNs / 2) {
664 sleepDelayNs *= 2;
665 } else {
666 sleepDelayNs = minSleepDelayNs;
667 }
668 }
669 }
670 } else {
671 // The thin lock was inflated by another thread. Let the runtime know we are no longer
672 // waiting and try again.
673 VLOG(monitor) << StringPrintf("monitor: thread %d found lock %p surprise-fattened by another thread", threadId, thinp);
674 self->monitor_enter_object_ = NULL;
675 self->TransitionFromSuspendedToRunnable();
676 goto retry;
677 }
678 }
679 VLOG(monitor) << StringPrintf("monitor: thread %d spin on lock %p done", threadId, thinp);
680 // We have acquired the thin lock. Let the runtime know that we are no longer waiting.
681 self->monitor_enter_object_ = NULL;
682 self->TransitionFromSuspendedToRunnable();
683 // Fatten the lock.
684 Inflate(self, obj);
685 VLOG(monitor) << StringPrintf("monitor: thread %d fattened lock %p", threadId, thinp);
686 }
687 } else {
688 // The lock is a fat lock.
689 VLOG(monitor) << StringPrintf("monitor: thread %d locking fat lock %p (%p) %p on a %s",
690 threadId, thinp, LW_MONITOR(*thinp),
691 reinterpret_cast<void*>(*thinp), PrettyTypeOf(obj).c_str());
692 DCHECK(LW_MONITOR(*thinp) != NULL);
693 LW_MONITOR(*thinp)->Lock(self);
694 }
695 }
696
MonitorExit(Thread * self,mirror::Object * obj)697 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
698 volatile int32_t* thinp = obj->GetRawLockWordAddress();
699
700 DCHECK(self != NULL);
701 // DCHECK_EQ(self->GetState(), kRunnable);
702 DCHECK(obj != NULL);
703
704 /*
705 * Cache the lock word as its value can change while we are
706 * examining its state.
707 */
708 uint32_t thin = *thinp;
709 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
710 /*
711 * The lock is thin. We must ensure that the lock is owned
712 * by the given thread before unlocking it.
713 */
714 if (LW_LOCK_OWNER(thin) == self->GetThinLockId()) {
715 /*
716 * We are the lock owner. It is safe to update the lock
717 * without CAS as lock ownership guards the lock itself.
718 */
719 if (LW_LOCK_COUNT(thin) == 0) {
720 /*
721 * The lock was not recursively acquired, the common
722 * case. Unlock by clearing all bits except for the
723 * hash state.
724 */
725 thin &= (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT);
726 android_atomic_release_store(thin, thinp);
727 } else {
728 /*
729 * The object was recursively acquired. Decrement the
730 * lock recursion count field.
731 */
732 *thinp -= 1 << LW_LOCK_COUNT_SHIFT;
733 }
734 } else {
735 /*
736 * We do not own the lock. The JVM spec requires that we
737 * throw an exception in this case.
738 */
739 FailedUnlock(obj, self, NULL, NULL);
740 return false;
741 }
742 } else {
743 /*
744 * The lock is fat. We must check to see if Unlock has
745 * raised any exceptions before continuing.
746 */
747 DCHECK(LW_MONITOR(*thinp) != NULL);
748 if (!LW_MONITOR(*thinp)->Unlock(self, false)) {
749 // An exception has been raised. Do not fall through.
750 return false;
751 }
752 }
753 return true;
754 }
755
756 /*
757 * Object.wait(). Also called for class init.
758 */
Wait(Thread * self,mirror::Object * obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)759 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
760 bool interruptShouldThrow, ThreadState why) {
761 volatile int32_t* thinp = obj->GetRawLockWordAddress();
762
763 // If the lock is still thin, we need to fatten it.
764 uint32_t thin = *thinp;
765 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
766 // Make sure that 'self' holds the lock.
767 if (LW_LOCK_OWNER(thin) != self->GetThinLockId()) {
768 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
769 return;
770 }
771
772 /* This thread holds the lock. We need to fatten the lock
773 * so 'self' can block on it. Don't update the object lock
774 * field yet, because 'self' needs to acquire the lock before
775 * any other thread gets a chance.
776 */
777 Inflate(self, obj);
778 VLOG(monitor) << StringPrintf("monitor: thread %d fattened lock %p by wait()", self->GetThinLockId(), thinp);
779 }
780 LW_MONITOR(*thinp)->Wait(self, ms, ns, interruptShouldThrow, why);
781 }
782
Notify(Thread * self,mirror::Object * obj)783 void Monitor::Notify(Thread* self, mirror::Object *obj) {
784 uint32_t thin = *obj->GetRawLockWordAddress();
785
786 // If the lock is still thin, there aren't any waiters;
787 // waiting on an object forces lock fattening.
788 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
789 // Make sure that 'self' holds the lock.
790 if (LW_LOCK_OWNER(thin) != self->GetThinLockId()) {
791 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
792 return;
793 }
794 // no-op; there are no waiters to notify.
795 // We inflate here in case the Notify is in a tight loop. Without inflation here the waiter
796 // will struggle to get in. Bug 6961405.
797 Inflate(self, obj);
798 } else {
799 // It's a fat lock.
800 LW_MONITOR(thin)->Notify(self);
801 }
802 }
803
NotifyAll(Thread * self,mirror::Object * obj)804 void Monitor::NotifyAll(Thread* self, mirror::Object *obj) {
805 uint32_t thin = *obj->GetRawLockWordAddress();
806
807 // If the lock is still thin, there aren't any waiters;
808 // waiting on an object forces lock fattening.
809 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
810 // Make sure that 'self' holds the lock.
811 if (LW_LOCK_OWNER(thin) != self->GetThinLockId()) {
812 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
813 return;
814 }
815 // no-op; there are no waiters to notify.
816 // We inflate here in case the NotifyAll is in a tight loop. Without inflation here the waiter
817 // will struggle to get in. Bug 6961405.
818 Inflate(self, obj);
819 } else {
820 // It's a fat lock.
821 LW_MONITOR(thin)->NotifyAll(self);
822 }
823 }
824
GetThinLockId(uint32_t raw_lock_word)825 uint32_t Monitor::GetThinLockId(uint32_t raw_lock_word) {
826 if (LW_SHAPE(raw_lock_word) == LW_SHAPE_THIN) {
827 return LW_LOCK_OWNER(raw_lock_word);
828 } else {
829 Thread* owner = LW_MONITOR(raw_lock_word)->owner_;
830 return owner ? owner->GetThinLockId() : 0;
831 }
832 }
833
DescribeWait(std::ostream & os,const Thread * thread)834 void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
835 ThreadState state = thread->GetState();
836
837 mirror::Object* object = NULL;
838 uint32_t lock_owner = ThreadList::kInvalidId;
839 if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
840 if (state == kSleeping) {
841 os << " - sleeping on ";
842 } else {
843 os << " - waiting on ";
844 }
845 {
846 Thread* self = Thread::Current();
847 MutexLock mu(self, *thread->wait_mutex_);
848 Monitor* monitor = thread->wait_monitor_;
849 if (monitor != NULL) {
850 object = monitor->obj_;
851 }
852 }
853 } else if (state == kBlocked) {
854 os << " - waiting to lock ";
855 object = thread->monitor_enter_object_;
856 if (object != NULL) {
857 lock_owner = object->GetThinLockId();
858 }
859 } else {
860 // We're not waiting on anything.
861 return;
862 }
863
864 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
865 os << "<" << object << "> (a " << PrettyTypeOf(object) << ")";
866
867 // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
868 if (lock_owner != ThreadList::kInvalidId) {
869 os << " held by thread " << lock_owner;
870 }
871
872 os << "\n";
873 }
874
GetContendedMonitor(Thread * thread)875 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
876 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
877 // definition of contended that includes a monitor a thread is trying to enter...
878 mirror::Object* result = thread->monitor_enter_object_;
879 if (result != NULL) {
880 return result;
881 }
882 // ...but also a monitor that the thread is waiting on.
883 {
884 MutexLock mu(Thread::Current(), *thread->wait_mutex_);
885 Monitor* monitor = thread->wait_monitor_;
886 if (monitor != NULL) {
887 return monitor->obj_;
888 }
889 }
890 return NULL;
891 }
892
VisitLocks(StackVisitor * stack_visitor,void (* callback)(mirror::Object *,void *),void * callback_context)893 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
894 void* callback_context) {
895 mirror::ArtMethod* m = stack_visitor->GetMethod();
896 CHECK(m != NULL);
897
898 // Native methods are an easy special case.
899 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
900 if (m->IsNative()) {
901 if (m->IsSynchronized()) {
902 mirror::Object* jni_this = stack_visitor->GetCurrentSirt()->GetReference(0);
903 callback(jni_this, callback_context);
904 }
905 return;
906 }
907
908 // Proxy methods should not be synchronized.
909 if (m->IsProxyMethod()) {
910 CHECK(!m->IsSynchronized());
911 return;
912 }
913
914 // <clinit> is another special case. The runtime holds the class lock while calling <clinit>.
915 MethodHelper mh(m);
916 if (mh.IsClassInitializer()) {
917 callback(m->GetDeclaringClass(), callback_context);
918 // Fall through because there might be synchronization in the user code too.
919 }
920
921 // Is there any reason to believe there's any synchronization in this method?
922 const DexFile::CodeItem* code_item = mh.GetCodeItem();
923 CHECK(code_item != NULL) << PrettyMethod(m);
924 if (code_item->tries_size_ == 0) {
925 return; // No "tries" implies no synchronization, so no held locks to report.
926 }
927
928 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
929 // the locks held in this stack frame.
930 std::vector<uint32_t> monitor_enter_dex_pcs;
931 verifier::MethodVerifier::FindLocksAtDexPc(m, stack_visitor->GetDexPc(), monitor_enter_dex_pcs);
932 if (monitor_enter_dex_pcs.empty()) {
933 return;
934 }
935
936 for (size_t i = 0; i < monitor_enter_dex_pcs.size(); ++i) {
937 // The verifier works in terms of the dex pcs of the monitor-enter instructions.
938 // We want the registers used by those instructions (so we can read the values out of them).
939 uint32_t dex_pc = monitor_enter_dex_pcs[i];
940 uint16_t monitor_enter_instruction = code_item->insns_[dex_pc];
941
942 // Quick sanity check.
943 if ((monitor_enter_instruction & 0xff) != Instruction::MONITOR_ENTER) {
944 LOG(FATAL) << "expected monitor-enter @" << dex_pc << "; was "
945 << reinterpret_cast<void*>(monitor_enter_instruction);
946 }
947
948 uint16_t monitor_register = ((monitor_enter_instruction >> 8) & 0xff);
949 mirror::Object* o = reinterpret_cast<mirror::Object*>(stack_visitor->GetVReg(m, monitor_register,
950 kReferenceVReg));
951 callback(o, callback_context);
952 }
953 }
954
IsValidLockWord(int32_t lock_word)955 bool Monitor::IsValidLockWord(int32_t lock_word) {
956 if (lock_word == 0) {
957 return true;
958 } else if (LW_SHAPE(lock_word) == LW_SHAPE_FAT) {
959 Monitor* mon = LW_MONITOR(lock_word);
960 MonitorList* list = Runtime::Current()->GetMonitorList();
961 MutexLock mu(Thread::Current(), list->monitor_list_lock_);
962 bool found = false;
963 for (Monitor* list_mon : list->list_) {
964 if (mon == list_mon) {
965 found = true;
966 break;
967 }
968 }
969 return found;
970 } else {
971 // TODO: thin lock validity checking.
972 return LW_SHAPE(lock_word) == LW_SHAPE_THIN;
973 }
974 }
975
TranslateLocation(const mirror::ArtMethod * method,uint32_t dex_pc,const char * & source_file,uint32_t & line_number) const976 void Monitor::TranslateLocation(const mirror::ArtMethod* method, uint32_t dex_pc,
977 const char*& source_file, uint32_t& line_number) const {
978 // If method is null, location is unknown
979 if (method == NULL) {
980 source_file = "";
981 line_number = 0;
982 return;
983 }
984 MethodHelper mh(method);
985 source_file = mh.GetDeclaringClassSourceFile();
986 if (source_file == NULL) {
987 source_file = "";
988 }
989 line_number = mh.GetLineNumFromDexPC(dex_pc);
990 }
991
MonitorList()992 MonitorList::MonitorList()
993 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock"),
994 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
995 }
996
~MonitorList()997 MonitorList::~MonitorList() {
998 MutexLock mu(Thread::Current(), monitor_list_lock_);
999 STLDeleteElements(&list_);
1000 }
1001
DisallowNewMonitors()1002 void MonitorList::DisallowNewMonitors() {
1003 MutexLock mu(Thread::Current(), monitor_list_lock_);
1004 allow_new_monitors_ = false;
1005 }
1006
AllowNewMonitors()1007 void MonitorList::AllowNewMonitors() {
1008 Thread* self = Thread::Current();
1009 MutexLock mu(self, monitor_list_lock_);
1010 allow_new_monitors_ = true;
1011 monitor_add_condition_.Broadcast(self);
1012 }
1013
Add(Monitor * m)1014 void MonitorList::Add(Monitor* m) {
1015 Thread* self = Thread::Current();
1016 MutexLock mu(self, monitor_list_lock_);
1017 while (UNLIKELY(!allow_new_monitors_)) {
1018 monitor_add_condition_.WaitHoldingLocks(self);
1019 }
1020 list_.push_front(m);
1021 }
1022
SweepMonitorList(IsMarkedTester is_marked,void * arg)1023 void MonitorList::SweepMonitorList(IsMarkedTester is_marked, void* arg) {
1024 MutexLock mu(Thread::Current(), monitor_list_lock_);
1025 for (auto it = list_.begin(); it != list_.end(); ) {
1026 Monitor* m = *it;
1027 if (!is_marked(m->GetObject(), arg)) {
1028 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object " << m->GetObject();
1029 delete m;
1030 it = list_.erase(it);
1031 } else {
1032 ++it;
1033 }
1034 }
1035 }
1036
MonitorInfo(mirror::Object * o)1037 MonitorInfo::MonitorInfo(mirror::Object* o) : owner(NULL), entry_count(0) {
1038 uint32_t lock_word = *o->GetRawLockWordAddress();
1039 if (LW_SHAPE(lock_word) == LW_SHAPE_THIN) {
1040 uint32_t owner_thin_lock_id = LW_LOCK_OWNER(lock_word);
1041 if (owner_thin_lock_id != 0) {
1042 owner = Runtime::Current()->GetThreadList()->FindThreadByThinLockId(owner_thin_lock_id);
1043 entry_count = 1 + LW_LOCK_COUNT(lock_word);
1044 }
1045 // Thin locks have no waiters.
1046 } else {
1047 CHECK_EQ(LW_SHAPE(lock_word), LW_SHAPE_FAT);
1048 Monitor* monitor = LW_MONITOR(lock_word);
1049 owner = monitor->owner_;
1050 entry_count = 1 + monitor->lock_count_;
1051 for (Thread* waiter = monitor->wait_set_; waiter != NULL; waiter = waiter->wait_next_) {
1052 waiters.push_back(waiter);
1053 }
1054 }
1055 }
1056
1057 } // namespace art
1058