• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_pool.h"
18 
19 #include "base/casts.h"
20 #include "base/stl_util.h"
21 #include "runtime.h"
22 #include "thread.h"
23 
24 namespace art {
25 
26 static constexpr bool kMeasureWaitTime = false;
27 
ThreadPoolWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)28 ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
29                                    size_t stack_size)
30     : thread_pool_(thread_pool),
31       name_(name),
32       stack_size_(stack_size) {
33   const char* reason = "new thread pool worker thread";
34   pthread_attr_t attr;
35   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
36   CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), reason);
37   CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
38   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
39 }
40 
~ThreadPoolWorker()41 ThreadPoolWorker::~ThreadPoolWorker() {
42   CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "thread pool worker shutdown");
43 }
44 
Run()45 void ThreadPoolWorker::Run() {
46   Thread* self = Thread::Current();
47   Task* task = NULL;
48   thread_pool_->creation_barier_.Wait(self);
49   while ((task = thread_pool_->GetTask(self)) != NULL) {
50     task->Run(self);
51     task->Finalize();
52   }
53 }
54 
Callback(void * arg)55 void* ThreadPoolWorker::Callback(void* arg) {
56   ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
57   Runtime* runtime = Runtime::Current();
58   CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, NULL, false));
59   // Do work until its time to shut down.
60   worker->Run();
61   runtime->DetachCurrentThread();
62   return NULL;
63 }
64 
AddTask(Thread * self,Task * task)65 void ThreadPool::AddTask(Thread* self, Task* task) {
66   MutexLock mu(self, task_queue_lock_);
67   tasks_.push_back(task);
68   // If we have any waiters, signal one.
69   if (started_ && waiting_count_ != 0) {
70     task_queue_condition_.Signal(self);
71   }
72 }
73 
ThreadPool(size_t num_threads)74 ThreadPool::ThreadPool(size_t num_threads)
75   : task_queue_lock_("task queue lock"),
76     task_queue_condition_("task queue condition", task_queue_lock_),
77     completion_condition_("task completion condition", task_queue_lock_),
78     started_(false),
79     shutting_down_(false),
80     waiting_count_(0),
81     start_time_(0),
82     total_wait_time_(0),
83     // Add one since the caller of constructor waits on the barrier too.
84     creation_barier_(num_threads + 1),
85     max_active_workers_(num_threads) {
86   Thread* self = Thread::Current();
87   while (GetThreadCount() < num_threads) {
88     const std::string name = StringPrintf("Thread pool worker %zu", GetThreadCount());
89     threads_.push_back(new ThreadPoolWorker(this, name, ThreadPoolWorker::kDefaultStackSize));
90   }
91   // Wait for all of the threads to attach.
92   creation_barier_.Wait(self);
93 }
94 
SetMaxActiveWorkers(size_t threads)95 void ThreadPool::SetMaxActiveWorkers(size_t threads) {
96   MutexLock mu(Thread::Current(), task_queue_lock_);
97   CHECK_LE(threads, GetThreadCount());
98   max_active_workers_ = threads;
99 }
100 
~ThreadPool()101 ThreadPool::~ThreadPool() {
102   {
103     Thread* self = Thread::Current();
104     MutexLock mu(self, task_queue_lock_);
105     // Tell any remaining workers to shut down.
106     shutting_down_ = true;
107     // Broadcast to everyone waiting.
108     task_queue_condition_.Broadcast(self);
109     completion_condition_.Broadcast(self);
110   }
111   // Wait for the threads to finish.
112   STLDeleteElements(&threads_);
113 }
114 
StartWorkers(Thread * self)115 void ThreadPool::StartWorkers(Thread* self) {
116   MutexLock mu(self, task_queue_lock_);
117   started_ = true;
118   task_queue_condition_.Broadcast(self);
119   start_time_ = NanoTime();
120   total_wait_time_ = 0;
121 }
122 
StopWorkers(Thread * self)123 void ThreadPool::StopWorkers(Thread* self) {
124   MutexLock mu(self, task_queue_lock_);
125   started_ = false;
126 }
127 
GetTask(Thread * self)128 Task* ThreadPool::GetTask(Thread* self) {
129   MutexLock mu(self, task_queue_lock_);
130   while (!IsShuttingDown()) {
131     const size_t thread_count = GetThreadCount();
132     // Ensure that we don't use more threads than the maximum active workers.
133     const size_t active_threads = thread_count - waiting_count_;
134     // <= since self is considered an active worker.
135     if (active_threads <= max_active_workers_) {
136       Task* task = TryGetTaskLocked(self);
137       if (task != NULL) {
138         return task;
139       }
140     }
141 
142     ++waiting_count_;
143     if (waiting_count_ == GetThreadCount() && tasks_.empty()) {
144       // We may be done, lets broadcast to the completion condition.
145       completion_condition_.Broadcast(self);
146     }
147     const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
148     task_queue_condition_.Wait(self);
149     if (kMeasureWaitTime) {
150       const uint64_t wait_end = NanoTime();
151       total_wait_time_ += wait_end - std::max(wait_start, start_time_);
152     }
153     --waiting_count_;
154   }
155 
156   // We are shutting down, return NULL to tell the worker thread to stop looping.
157   return NULL;
158 }
159 
TryGetTask(Thread * self)160 Task* ThreadPool::TryGetTask(Thread* self) {
161   MutexLock mu(self, task_queue_lock_);
162   return TryGetTaskLocked(self);
163 }
164 
TryGetTaskLocked(Thread * self)165 Task* ThreadPool::TryGetTaskLocked(Thread* self) {
166   if (started_ && !tasks_.empty()) {
167     Task* task = tasks_.front();
168     tasks_.pop_front();
169     return task;
170   }
171   return NULL;
172 }
173 
Wait(Thread * self,bool do_work,bool may_hold_locks)174 void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
175   if (do_work) {
176     Task* task = NULL;
177     while ((task = TryGetTask(self)) != NULL) {
178       task->Run(self);
179       task->Finalize();
180     }
181   }
182   // Wait until each thread is waiting and the task list is empty.
183   MutexLock mu(self, task_queue_lock_);
184   while (!shutting_down_ && (waiting_count_ != GetThreadCount() || !tasks_.empty())) {
185     if (!may_hold_locks) {
186       completion_condition_.Wait(self);
187     } else {
188       completion_condition_.WaitHoldingLocks(self);
189     }
190   }
191 }
192 
GetTaskCount(Thread * self)193 size_t ThreadPool::GetTaskCount(Thread* self) {
194   MutexLock mu(self, task_queue_lock_);
195   return tasks_.size();
196 }
197 
WorkStealingWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)198 WorkStealingWorker::WorkStealingWorker(ThreadPool* thread_pool, const std::string& name,
199                                        size_t stack_size)
200     : ThreadPoolWorker(thread_pool, name, stack_size), task_(NULL) {}
201 
Run()202 void WorkStealingWorker::Run() {
203   Thread* self = Thread::Current();
204   Task* task = NULL;
205   WorkStealingThreadPool* thread_pool = down_cast<WorkStealingThreadPool*>(thread_pool_);
206   while ((task = thread_pool_->GetTask(self)) != NULL) {
207     WorkStealingTask* stealing_task = down_cast<WorkStealingTask*>(task);
208 
209     {
210       CHECK(task_ == NULL);
211       MutexLock mu(self, thread_pool->work_steal_lock_);
212       // Register that we are running the task
213       ++stealing_task->ref_count_;
214       task_ = stealing_task;
215     }
216     stealing_task->Run(self);
217     // Mark ourselves as not running a task so that nobody tries to steal from us.
218     // There is a race condition that someone starts stealing from us at this point. This is okay
219     // due to the reference counting.
220     task_ = NULL;
221 
222     bool finalize;
223 
224     // Steal work from tasks until there is none left to steal. Note: There is a race, but
225     // all that happens when the race occurs is that we steal some work instead of processing a
226     // task from the queue.
227     while (thread_pool->GetTaskCount(self) == 0) {
228       WorkStealingTask* steal_from_task  = NULL;
229 
230       {
231         MutexLock mu(self, thread_pool->work_steal_lock_);
232         // Try finding a task to steal from.
233         steal_from_task = thread_pool->FindTaskToStealFrom(self);
234         if (steal_from_task != NULL) {
235           CHECK_NE(stealing_task, steal_from_task)
236               << "Attempting to steal from completed self task";
237           steal_from_task->ref_count_++;
238         } else {
239           break;
240         }
241       }
242 
243       if (steal_from_task != NULL) {
244         // Task which completed earlier is going to steal some work.
245         stealing_task->StealFrom(self, steal_from_task);
246 
247         {
248           // We are done stealing from the task, lets decrement its reference count.
249           MutexLock mu(self, thread_pool->work_steal_lock_);
250           finalize = !--steal_from_task->ref_count_;
251         }
252 
253         if (finalize) {
254           steal_from_task->Finalize();
255         }
256       }
257     }
258 
259     {
260       MutexLock mu(self, thread_pool->work_steal_lock_);
261       // If nobody is still referencing task_ we can finalize it.
262       finalize = !--stealing_task->ref_count_;
263     }
264 
265     if (finalize) {
266       stealing_task->Finalize();
267     }
268   }
269 }
270 
~WorkStealingWorker()271 WorkStealingWorker::~WorkStealingWorker() {}
272 
WorkStealingThreadPool(size_t num_threads)273 WorkStealingThreadPool::WorkStealingThreadPool(size_t num_threads)
274     : ThreadPool(0),
275       work_steal_lock_("work stealing lock"),
276       steal_index_(0) {
277   while (GetThreadCount() < num_threads) {
278     const std::string name = StringPrintf("Work stealing worker %zu", GetThreadCount());
279     threads_.push_back(new WorkStealingWorker(this, name, ThreadPoolWorker::kDefaultStackSize));
280   }
281 }
282 
FindTaskToStealFrom(Thread * self)283 WorkStealingTask* WorkStealingThreadPool::FindTaskToStealFrom(Thread* self) {
284   const size_t thread_count = GetThreadCount();
285   for (size_t i = 0; i < thread_count; ++i) {
286     // TODO: Use CAS instead of lock.
287     ++steal_index_;
288     if (steal_index_ >= thread_count) {
289       steal_index_-= thread_count;
290     }
291 
292     WorkStealingWorker* worker = down_cast<WorkStealingWorker*>(threads_[steal_index_]);
293     WorkStealingTask* task = worker->task_;
294     if (task) {
295       // Not null, we can probably steal from this worker.
296       return task;
297     }
298   }
299   // Couldn't find something to steal.
300   return NULL;
301 }
302 
~WorkStealingThreadPool()303 WorkStealingThreadPool::~WorkStealingThreadPool() {}
304 
305 }  // namespace art
306