• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: mierle@gmail.com (Keir Mierle)
30 //         sameeragarwal@google.com (Sameer Agarwal)
31 //         thadh@gmail.com (Thad Hughes)
32 //
33 // This autodiff implementation differs from the one found in
34 // autodiff_cost_function.h by supporting autodiff on cost functions with
35 // variable numbers of parameters with variable sizes. With the other
36 // implementation, all the sizes (both the number of parameter blocks and the
37 // size of each block) must be fixed at compile time.
38 //
39 // The functor API differs slightly from the API for fixed size autodiff; the
40 // expected interface for the cost functors is:
41 //
42 //   struct MyCostFunctor {
43 //     template<typename T>
44 //     bool operator()(T const* const* parameters, T* residuals) const {
45 //       // Use parameters[i] to access the i'th parameter block.
46 //     }
47 //   }
48 //
49 // Since the sizing of the parameters is done at runtime, you must also specify
50 // the sizes after creating the dynamic autodiff cost function. For example:
51 //
52 //   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
53 //       new MyCostFunctor());
54 //   cost_function.AddParameterBlock(5);
55 //   cost_function.AddParameterBlock(10);
56 //   cost_function.SetNumResiduals(21);
57 //
58 // Under the hood, the implementation evaluates the cost function multiple
59 // times, computing a small set of the derivatives (four by default, controlled
60 // by the Stride template parameter) with each pass. There is a tradeoff with
61 // the size of the passes; you may want to experiment with the stride.
62 
63 #ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
64 #define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
65 
66 #include <cmath>
67 #include <numeric>
68 #include <vector>
69 
70 #include "ceres/cost_function.h"
71 #include "ceres/internal/scoped_ptr.h"
72 #include "ceres/jet.h"
73 #include "glog/logging.h"
74 
75 namespace ceres {
76 
77 template <typename CostFunctor, int Stride = 4>
78 class DynamicAutoDiffCostFunction : public CostFunction {
79  public:
DynamicAutoDiffCostFunction(CostFunctor * functor)80   explicit DynamicAutoDiffCostFunction(CostFunctor* functor)
81     : functor_(functor) {}
82 
~DynamicAutoDiffCostFunction()83   virtual ~DynamicAutoDiffCostFunction() {}
84 
AddParameterBlock(int size)85   void AddParameterBlock(int size) {
86     mutable_parameter_block_sizes()->push_back(size);
87   }
88 
SetNumResiduals(int num_residuals)89   void SetNumResiduals(int num_residuals) {
90     set_num_residuals(num_residuals);
91   }
92 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians)93   virtual bool Evaluate(double const* const* parameters,
94                         double* residuals,
95                         double** jacobians) const {
96     CHECK_GT(num_residuals(), 0)
97         << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
98         << "before DynamicAutoDiffCostFunction::Evaluate().";
99 
100     if (jacobians == NULL) {
101       return (*functor_)(parameters, residuals);
102     }
103 
104     // The difficulty with Jets, as implemented in Ceres, is that they were
105     // originally designed for strictly compile-sized use. At this point, there
106     // is a large body of code that assumes inside a cost functor it is
107     // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
108     //
109     // Unfortunately, it is impossible to communicate the expected size of a
110     // dynamically sized jet to the static instantiations that existing code
111     // depends on.
112     //
113     // To work around this issue, the solution here is to evaluate the
114     // jacobians in a series of passes, each one computing Stripe *
115     // num_residuals() derivatives. This is done with small, fixed-size jets.
116     const int num_parameter_blocks = parameter_block_sizes().size();
117     const int num_parameters = std::accumulate(parameter_block_sizes().begin(),
118                                                parameter_block_sizes().end(),
119                                                0);
120 
121     // Allocate scratch space for the strided evaluation.
122     vector<Jet<double, Stride> > input_jets(num_parameters);
123     vector<Jet<double, Stride> > output_jets(num_residuals());
124 
125     // Make the parameter pack that is sent to the functor (reused).
126     vector<Jet<double, Stride>* > jet_parameters(num_parameter_blocks,
127         static_cast<Jet<double, Stride>* >(NULL));
128     int num_active_parameters = 0;
129 
130     // To handle constant parameters between non-constant parameter blocks, the
131     // start position --- a raw parameter index --- of each contiguous block of
132     // non-constant parameters is recorded in start_derivative_section.
133     vector<int> start_derivative_section;
134     bool in_derivative_section = false;
135     int parameter_cursor = 0;
136 
137     // Discover the derivative sections and set the parameter values.
138     for (int i = 0; i < num_parameter_blocks; ++i) {
139       jet_parameters[i] = &input_jets[parameter_cursor];
140 
141       const int parameter_block_size = parameter_block_sizes()[i];
142       if (jacobians[i] != NULL) {
143         if (!in_derivative_section) {
144           start_derivative_section.push_back(parameter_cursor);
145           in_derivative_section = true;
146         }
147 
148         num_active_parameters += parameter_block_size;
149       } else {
150         in_derivative_section = false;
151       }
152 
153       for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
154         input_jets[parameter_cursor].a = parameters[i][j];
155       }
156     }
157 
158     // When `num_active_parameters % Stride != 0` then it can be the case
159     // that `active_parameter_count < Stride` while parameter_cursor is less
160     // than the total number of parameters and with no remaining non-constant
161     // parameter blocks. Pushing parameter_cursor (the total number of
162     // parameters) as a final entry to start_derivative_section is required
163     // because if a constant parameter block is encountered after the
164     // last non-constant block then current_derivative_section is incremented
165     // and would otherwise index an invalid position in
166     // start_derivative_section. Setting the final element to the total number
167     // of parameters means that this can only happen at most once in the loop
168     // below.
169     start_derivative_section.push_back(parameter_cursor);
170 
171     // Evaluate all of the strides. Each stride is a chunk of the derivative to
172     // evaluate, typically some size proportional to the size of the SIMD
173     // registers of the CPU.
174     int num_strides = static_cast<int>(ceil(num_active_parameters /
175                                             static_cast<float>(Stride)));
176 
177     int current_derivative_section = 0;
178     int current_derivative_section_cursor = 0;
179 
180     for (int pass = 0; pass < num_strides; ++pass) {
181       // Set most of the jet components to zero, except for
182       // non-constant #Stride parameters.
183       const int initial_derivative_section = current_derivative_section;
184       const int initial_derivative_section_cursor =
185         current_derivative_section_cursor;
186 
187       int active_parameter_count = 0;
188       parameter_cursor = 0;
189 
190       for (int i = 0; i < num_parameter_blocks; ++i) {
191         for (int j = 0; j < parameter_block_sizes()[i];
192              ++j, parameter_cursor++) {
193           input_jets[parameter_cursor].v.setZero();
194           if (active_parameter_count < Stride &&
195               parameter_cursor >= (
196                 start_derivative_section[current_derivative_section] +
197                 current_derivative_section_cursor)) {
198             if (jacobians[i] != NULL) {
199               input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
200               ++active_parameter_count;
201               ++current_derivative_section_cursor;
202             } else {
203               ++current_derivative_section;
204               current_derivative_section_cursor = 0;
205             }
206           }
207         }
208       }
209 
210       if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
211         return false;
212       }
213 
214       // Copy the pieces of the jacobians into their final place.
215       active_parameter_count = 0;
216 
217       current_derivative_section = initial_derivative_section;
218       current_derivative_section_cursor = initial_derivative_section_cursor;
219 
220       for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
221         for (int j = 0; j < parameter_block_sizes()[i];
222              ++j, parameter_cursor++) {
223           if (active_parameter_count < Stride &&
224               parameter_cursor >= (
225                 start_derivative_section[current_derivative_section] +
226                 current_derivative_section_cursor)) {
227             if (jacobians[i] != NULL) {
228               for (int k = 0; k < num_residuals(); ++k) {
229                 jacobians[i][k * parameter_block_sizes()[i] + j] =
230                     output_jets[k].v[active_parameter_count];
231               }
232               ++active_parameter_count;
233               ++current_derivative_section_cursor;
234             } else {
235               ++current_derivative_section;
236               current_derivative_section_cursor = 0;
237             }
238           }
239         }
240       }
241 
242       // Only copy the residuals over once (even though we compute them on
243       // every loop).
244       if (pass == num_strides - 1) {
245         for (int k = 0; k < num_residuals(); ++k) {
246           residuals[k] = output_jets[k].a;
247         }
248       }
249     }
250     return true;
251   }
252 
253  private:
254   internal::scoped_ptr<CostFunctor> functor_;
255 };
256 
257 }  // namespace ceres
258 
259 #endif  // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
260