1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // A simple implementation of N-dimensional dual numbers, for automatically
32 // computing exact derivatives of functions.
33 //
34 // While a complete treatment of the mechanics of automatic differentation is
35 // beyond the scope of this header (see
36 // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
37 // basic idea is to extend normal arithmetic with an extra element, "e," often
38 // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
39 // numbers are extensions of the real numbers analogous to complex numbers:
40 // whereas complex numbers augment the reals by introducing an imaginary unit i
41 // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
42 // that e^2 = 0. Dual numbers have two components: the "real" component and the
43 // "infinitesimal" component, generally written as x + y*e. Surprisingly, this
44 // leads to a convenient method for computing exact derivatives without needing
45 // to manipulate complicated symbolic expressions.
46 //
47 // For example, consider the function
48 //
49 // f(x) = x^2 ,
50 //
51 // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
52 // Next, augument 10 with an infinitesimal to get:
53 //
54 // f(10 + e) = (10 + e)^2
55 // = 100 + 2 * 10 * e + e^2
56 // = 100 + 20 * e -+-
57 // -- |
58 // | +--- This is zero, since e^2 = 0
59 // |
60 // +----------------- This is df/dx!
61 //
62 // Note that the derivative of f with respect to x is simply the infinitesimal
63 // component of the value of f(x + e). So, in order to take the derivative of
64 // any function, it is only necessary to replace the numeric "object" used in
65 // the function with one extended with infinitesimals. The class Jet, defined in
66 // this header, is one such example of this, where substitution is done with
67 // templates.
68 //
69 // To handle derivatives of functions taking multiple arguments, different
70 // infinitesimals are used, one for each variable to take the derivative of. For
71 // example, consider a scalar function of two scalar parameters x and y:
72 //
73 // f(x, y) = x^2 + x * y
74 //
75 // Following the technique above, to compute the derivatives df/dx and df/dy for
76 // f(1, 3) involves doing two evaluations of f, the first time replacing x with
77 // x + e, the second time replacing y with y + e.
78 //
79 // For df/dx:
80 //
81 // f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
82 // = 1 + 2 * e + 3 + 3 * e
83 // = 4 + 5 * e
84 //
85 // --> df/dx = 5
86 //
87 // For df/dy:
88 //
89 // f(1, 3 + e) = 1^2 + 1 * (3 + e)
90 // = 1 + 3 + e
91 // = 4 + e
92 //
93 // --> df/dy = 1
94 //
95 // To take the gradient of f with the implementation of dual numbers ("jets") in
96 // this file, it is necessary to create a single jet type which has components
97 // for the derivative in x and y, and passing them to a templated version of f:
98 //
99 // template<typename T>
100 // T f(const T &x, const T &y) {
101 // return x * x + x * y;
102 // }
103 //
104 // // The "2" means there should be 2 dual number components.
105 // Jet<double, 2> x(0); // Pick the 0th dual number for x.
106 // Jet<double, 2> y(1); // Pick the 1st dual number for y.
107 // Jet<double, 2> z = f(x, y);
108 //
109 // LG << "df/dx = " << z.a[0]
110 // << "df/dy = " << z.a[1];
111 //
112 // Most users should not use Jet objects directly; a wrapper around Jet objects,
113 // which makes computing the derivative, gradient, or jacobian of templated
114 // functors simple, is in autodiff.h. Even autodiff.h should not be used
115 // directly; instead autodiff_cost_function.h is typically the file of interest.
116 //
117 // For the more mathematically inclined, this file implements first-order
118 // "jets". A 1st order jet is an element of the ring
119 //
120 // T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
121 //
122 // which essentially means that each jet consists of a "scalar" value 'a' from T
123 // and a 1st order perturbation vector 'v' of length N:
124 //
125 // x = a + \sum_i v[i] t_i
126 //
127 // A shorthand is to write an element as x = a + u, where u is the pertubation.
128 // Then, the main point about the arithmetic of jets is that the product of
129 // perturbations is zero:
130 //
131 // (a + u) * (b + v) = ab + av + bu + uv
132 // = ab + (av + bu) + 0
133 //
134 // which is what operator* implements below. Addition is simpler:
135 //
136 // (a + u) + (b + v) = (a + b) + (u + v).
137 //
138 // The only remaining question is how to evaluate the function of a jet, for
139 // which we use the chain rule:
140 //
141 // f(a + u) = f(a) + f'(a) u
142 //
143 // where f'(a) is the (scalar) derivative of f at a.
144 //
145 // By pushing these things through sufficiently and suitably templated
146 // functions, we can do automatic differentiation. Just be sure to turn on
147 // function inlining and common-subexpression elimination, or it will be very
148 // slow!
149 //
150 // WARNING: Most Ceres users should not directly include this file or know the
151 // details of how jets work. Instead the suggested method for automatic
152 // derivatives is to use autodiff_cost_function.h, which is a wrapper around
153 // both jets.h and autodiff.h to make taking derivatives of cost functions for
154 // use in Ceres easier.
155
156 #ifndef CERES_PUBLIC_JET_H_
157 #define CERES_PUBLIC_JET_H_
158
159 #include <cmath>
160 #include <iosfwd>
161 #include <iostream> // NOLINT
162 #include <string>
163
164 #include "Eigen/Core"
165 #include "ceres/fpclassify.h"
166
167 namespace ceres {
168
169 template <typename T, int N>
170 struct Jet {
171 enum { DIMENSION = N };
172
173 // Default-construct "a" because otherwise this can lead to false errors about
174 // uninitialized uses when other classes relying on default constructed T
175 // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
176 // the C++ standard mandates that e.g. default constructed doubles are
177 // initialized to 0.0; see sections 8.5 of the C++03 standard.
JetJet178 Jet() : a() {
179 v.setZero();
180 }
181
182 // Constructor from scalar: a + 0.
JetJet183 explicit Jet(const T& value) {
184 a = value;
185 v.setZero();
186 }
187
188 // Constructor from scalar plus variable: a + t_i.
JetJet189 Jet(const T& value, int k) {
190 a = value;
191 v.setZero();
192 v[k] = T(1.0);
193 }
194
195 // Compound operators
196 Jet<T, N>& operator+=(const Jet<T, N> &y) {
197 *this = *this + y;
198 return *this;
199 }
200
201 Jet<T, N>& operator-=(const Jet<T, N> &y) {
202 *this = *this - y;
203 return *this;
204 }
205
206 Jet<T, N>& operator*=(const Jet<T, N> &y) {
207 *this = *this * y;
208 return *this;
209 }
210
211 Jet<T, N>& operator/=(const Jet<T, N> &y) {
212 *this = *this / y;
213 return *this;
214 }
215
216 // The scalar part.
217 T a;
218
219 // The infinitesimal part.
220 //
221 // Note the Eigen::DontAlign bit is needed here because this object
222 // gets allocated on the stack and as part of other arrays and
223 // structs. Forcing the right alignment there is the source of much
224 // pain and suffering. Even if that works, passing Jets around to
225 // functions by value has problems because the C++ ABI does not
226 // guarantee alignment for function arguments.
227 //
228 // Setting the DontAlign bit prevents Eigen from using SSE for the
229 // various operations on Jets. This is a small performance penalty
230 // since the AutoDiff code will still expose much of the code as
231 // statically sized loops to the compiler. But given the subtle
232 // issues that arise due to alignment, especially when dealing with
233 // multiple platforms, it seems to be a trade off worth making.
234 Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
235 };
236
237 // Unary +
238 template<typename T, int N> inline
239 Jet<T, N> const& operator+(const Jet<T, N>& f) {
240 return f;
241 }
242
243 // TODO(keir): Try adding __attribute__((always_inline)) to these functions to
244 // see if it causes a performance increase.
245
246 // Unary -
247 template<typename T, int N> inline
248 Jet<T, N> operator-(const Jet<T, N>&f) {
249 Jet<T, N> g;
250 g.a = -f.a;
251 g.v = -f.v;
252 return g;
253 }
254
255 // Binary +
256 template<typename T, int N> inline
257 Jet<T, N> operator+(const Jet<T, N>& f,
258 const Jet<T, N>& g) {
259 Jet<T, N> h;
260 h.a = f.a + g.a;
261 h.v = f.v + g.v;
262 return h;
263 }
264
265 // Binary + with a scalar: x + s
266 template<typename T, int N> inline
267 Jet<T, N> operator+(const Jet<T, N>& f, T s) {
268 Jet<T, N> h;
269 h.a = f.a + s;
270 h.v = f.v;
271 return h;
272 }
273
274 // Binary + with a scalar: s + x
275 template<typename T, int N> inline
276 Jet<T, N> operator+(T s, const Jet<T, N>& f) {
277 Jet<T, N> h;
278 h.a = f.a + s;
279 h.v = f.v;
280 return h;
281 }
282
283 // Binary -
284 template<typename T, int N> inline
285 Jet<T, N> operator-(const Jet<T, N>& f,
286 const Jet<T, N>& g) {
287 Jet<T, N> h;
288 h.a = f.a - g.a;
289 h.v = f.v - g.v;
290 return h;
291 }
292
293 // Binary - with a scalar: x - s
294 template<typename T, int N> inline
295 Jet<T, N> operator-(const Jet<T, N>& f, T s) {
296 Jet<T, N> h;
297 h.a = f.a - s;
298 h.v = f.v;
299 return h;
300 }
301
302 // Binary - with a scalar: s - x
303 template<typename T, int N> inline
304 Jet<T, N> operator-(T s, const Jet<T, N>& f) {
305 Jet<T, N> h;
306 h.a = s - f.a;
307 h.v = -f.v;
308 return h;
309 }
310
311 // Binary *
312 template<typename T, int N> inline
313 Jet<T, N> operator*(const Jet<T, N>& f,
314 const Jet<T, N>& g) {
315 Jet<T, N> h;
316 h.a = f.a * g.a;
317 h.v = f.a * g.v + f.v * g.a;
318 return h;
319 }
320
321 // Binary * with a scalar: x * s
322 template<typename T, int N> inline
323 Jet<T, N> operator*(const Jet<T, N>& f, T s) {
324 Jet<T, N> h;
325 h.a = f.a * s;
326 h.v = f.v * s;
327 return h;
328 }
329
330 // Binary * with a scalar: s * x
331 template<typename T, int N> inline
332 Jet<T, N> operator*(T s, const Jet<T, N>& f) {
333 Jet<T, N> h;
334 h.a = f.a * s;
335 h.v = f.v * s;
336 return h;
337 }
338
339 // Binary /
340 template<typename T, int N> inline
341 Jet<T, N> operator/(const Jet<T, N>& f,
342 const Jet<T, N>& g) {
343 Jet<T, N> h;
344 // This uses:
345 //
346 // a + u (a + u)(b - v) (a + u)(b - v)
347 // ----- = -------------- = --------------
348 // b + v (b + v)(b - v) b^2
349 //
350 // which holds because v*v = 0.
351 const T g_a_inverse = T(1.0) / g.a;
352 h.a = f.a * g_a_inverse;
353 const T f_a_by_g_a = f.a * g_a_inverse;
354 for (int i = 0; i < N; ++i) {
355 h.v[i] = (f.v[i] - f_a_by_g_a * g.v[i]) * g_a_inverse;
356 }
357 return h;
358 }
359
360 // Binary / with a scalar: s / x
361 template<typename T, int N> inline
362 Jet<T, N> operator/(T s, const Jet<T, N>& g) {
363 Jet<T, N> h;
364 h.a = s / g.a;
365 const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
366 h.v = g.v * minus_s_g_a_inverse2;
367 return h;
368 }
369
370 // Binary / with a scalar: x / s
371 template<typename T, int N> inline
372 Jet<T, N> operator/(const Jet<T, N>& f, T s) {
373 Jet<T, N> h;
374 const T s_inverse = 1.0 / s;
375 h.a = f.a * s_inverse;
376 h.v = f.v * s_inverse;
377 return h;
378 }
379
380 // Binary comparison operators for both scalars and jets.
381 #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
382 template<typename T, int N> inline \
383 bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
384 return f.a op g.a; \
385 } \
386 template<typename T, int N> inline \
387 bool operator op(const T& s, const Jet<T, N>& g) { \
388 return s op g.a; \
389 } \
390 template<typename T, int N> inline \
391 bool operator op(const Jet<T, N>& f, const T& s) { \
392 return f.a op s; \
393 }
394 CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
395 CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
396 CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
397 CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
398 CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
399 CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
400 #undef CERES_DEFINE_JET_COMPARISON_OPERATOR
401
402 // Pull some functions from namespace std.
403 //
404 // This is necessary because we want to use the same name (e.g. 'sqrt') for
405 // double-valued and Jet-valued functions, but we are not allowed to put
406 // Jet-valued functions inside namespace std.
407 //
408 // TODO(keir): Switch to "using".
abs(double x)409 inline double abs (double x) { return std::abs(x); }
log(double x)410 inline double log (double x) { return std::log(x); }
exp(double x)411 inline double exp (double x) { return std::exp(x); }
sqrt(double x)412 inline double sqrt (double x) { return std::sqrt(x); }
cos(double x)413 inline double cos (double x) { return std::cos(x); }
acos(double x)414 inline double acos (double x) { return std::acos(x); }
sin(double x)415 inline double sin (double x) { return std::sin(x); }
asin(double x)416 inline double asin (double x) { return std::asin(x); }
tan(double x)417 inline double tan (double x) { return std::tan(x); }
atan(double x)418 inline double atan (double x) { return std::atan(x); }
sinh(double x)419 inline double sinh (double x) { return std::sinh(x); }
cosh(double x)420 inline double cosh (double x) { return std::cosh(x); }
tanh(double x)421 inline double tanh (double x) { return std::tanh(x); }
pow(double x,double y)422 inline double pow (double x, double y) { return std::pow(x, y); }
atan2(double y,double x)423 inline double atan2(double y, double x) { return std::atan2(y, x); }
424
425 // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
426
427 // abs(x + h) ~= x + h or -(x + h)
428 template <typename T, int N> inline
abs(const Jet<T,N> & f)429 Jet<T, N> abs(const Jet<T, N>& f) {
430 return f.a < T(0.0) ? -f : f;
431 }
432
433 // log(a + h) ~= log(a) + h / a
434 template <typename T, int N> inline
log(const Jet<T,N> & f)435 Jet<T, N> log(const Jet<T, N>& f) {
436 Jet<T, N> g;
437 g.a = log(f.a);
438 const T a_inverse = T(1.0) / f.a;
439 g.v = f.v * a_inverse;
440 return g;
441 }
442
443 // exp(a + h) ~= exp(a) + exp(a) h
444 template <typename T, int N> inline
exp(const Jet<T,N> & f)445 Jet<T, N> exp(const Jet<T, N>& f) {
446 Jet<T, N> g;
447 g.a = exp(f.a);
448 g.v = g.a * f.v;
449 return g;
450 }
451
452 // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
453 template <typename T, int N> inline
sqrt(const Jet<T,N> & f)454 Jet<T, N> sqrt(const Jet<T, N>& f) {
455 Jet<T, N> g;
456 g.a = sqrt(f.a);
457 const T two_a_inverse = T(1.0) / (T(2.0) * g.a);
458 g.v = f.v * two_a_inverse;
459 return g;
460 }
461
462 // cos(a + h) ~= cos(a) - sin(a) h
463 template <typename T, int N> inline
cos(const Jet<T,N> & f)464 Jet<T, N> cos(const Jet<T, N>& f) {
465 Jet<T, N> g;
466 g.a = cos(f.a);
467 const T sin_a = sin(f.a);
468 g.v = - sin_a * f.v;
469 return g;
470 }
471
472 // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
473 template <typename T, int N> inline
acos(const Jet<T,N> & f)474 Jet<T, N> acos(const Jet<T, N>& f) {
475 Jet<T, N> g;
476 g.a = acos(f.a);
477 const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
478 g.v = tmp * f.v;
479 return g;
480 }
481
482 // sin(a + h) ~= sin(a) + cos(a) h
483 template <typename T, int N> inline
sin(const Jet<T,N> & f)484 Jet<T, N> sin(const Jet<T, N>& f) {
485 Jet<T, N> g;
486 g.a = sin(f.a);
487 const T cos_a = cos(f.a);
488 g.v = cos_a * f.v;
489 return g;
490 }
491
492 // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
493 template <typename T, int N> inline
asin(const Jet<T,N> & f)494 Jet<T, N> asin(const Jet<T, N>& f) {
495 Jet<T, N> g;
496 g.a = asin(f.a);
497 const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
498 g.v = tmp * f.v;
499 return g;
500 }
501
502 // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
503 template <typename T, int N> inline
tan(const Jet<T,N> & f)504 Jet<T, N> tan(const Jet<T, N>& f) {
505 Jet<T, N> g;
506 g.a = tan(f.a);
507 double tan_a = tan(f.a);
508 const T tmp = T(1.0) + tan_a * tan_a;
509 g.v = tmp * f.v;
510 return g;
511 }
512
513 // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
514 template <typename T, int N> inline
atan(const Jet<T,N> & f)515 Jet<T, N> atan(const Jet<T, N>& f) {
516 Jet<T, N> g;
517 g.a = atan(f.a);
518 const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
519 g.v = tmp * f.v;
520 return g;
521 }
522
523 // sinh(a + h) ~= sinh(a) + cosh(a) h
524 template <typename T, int N> inline
sinh(const Jet<T,N> & f)525 Jet<T, N> sinh(const Jet<T, N>& f) {
526 Jet<T, N> g;
527 g.a = sinh(f.a);
528 const T cosh_a = cosh(f.a);
529 g.v = cosh_a * f.v;
530 return g;
531 }
532
533 // cosh(a + h) ~= cosh(a) + sinh(a) h
534 template <typename T, int N> inline
cosh(const Jet<T,N> & f)535 Jet<T, N> cosh(const Jet<T, N>& f) {
536 Jet<T, N> g;
537 g.a = cosh(f.a);
538 const T sinh_a = sinh(f.a);
539 g.v = sinh_a * f.v;
540 return g;
541 }
542
543 // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
544 template <typename T, int N> inline
tanh(const Jet<T,N> & f)545 Jet<T, N> tanh(const Jet<T, N>& f) {
546 Jet<T, N> g;
547 g.a = tanh(f.a);
548 double tanh_a = tanh(f.a);
549 const T tmp = T(1.0) - tanh_a * tanh_a;
550 g.v = tmp * f.v;
551 return g;
552 }
553
554 // Jet Classification. It is not clear what the appropriate semantics are for
555 // these classifications. This picks that IsFinite and isnormal are "all"
556 // operations, i.e. all elements of the jet must be finite for the jet itself
557 // to be finite (or normal). For IsNaN and IsInfinite, the answer is less
558 // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
559 // part of a jet is nan or inf, then the entire jet is nan or inf. This leads
560 // to strange situations like a jet can be both IsInfinite and IsNaN, but in
561 // practice the "any" semantics are the most useful for e.g. checking that
562 // derivatives are sane.
563
564 // The jet is finite if all parts of the jet are finite.
565 template <typename T, int N> inline
IsFinite(const Jet<T,N> & f)566 bool IsFinite(const Jet<T, N>& f) {
567 if (!IsFinite(f.a)) {
568 return false;
569 }
570 for (int i = 0; i < N; ++i) {
571 if (!IsFinite(f.v[i])) {
572 return false;
573 }
574 }
575 return true;
576 }
577
578 // The jet is infinite if any part of the jet is infinite.
579 template <typename T, int N> inline
IsInfinite(const Jet<T,N> & f)580 bool IsInfinite(const Jet<T, N>& f) {
581 if (IsInfinite(f.a)) {
582 return true;
583 }
584 for (int i = 0; i < N; i++) {
585 if (IsInfinite(f.v[i])) {
586 return true;
587 }
588 }
589 return false;
590 }
591
592 // The jet is NaN if any part of the jet is NaN.
593 template <typename T, int N> inline
IsNaN(const Jet<T,N> & f)594 bool IsNaN(const Jet<T, N>& f) {
595 if (IsNaN(f.a)) {
596 return true;
597 }
598 for (int i = 0; i < N; ++i) {
599 if (IsNaN(f.v[i])) {
600 return true;
601 }
602 }
603 return false;
604 }
605
606 // The jet is normal if all parts of the jet are normal.
607 template <typename T, int N> inline
IsNormal(const Jet<T,N> & f)608 bool IsNormal(const Jet<T, N>& f) {
609 if (!IsNormal(f.a)) {
610 return false;
611 }
612 for (int i = 0; i < N; ++i) {
613 if (!IsNormal(f.v[i])) {
614 return false;
615 }
616 }
617 return true;
618 }
619
620 // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
621 //
622 // In words: the rate of change of theta is 1/r times the rate of
623 // change of (x, y) in the positive angular direction.
624 template <typename T, int N> inline
atan2(const Jet<T,N> & g,const Jet<T,N> & f)625 Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
626 // Note order of arguments:
627 //
628 // f = a + da
629 // g = b + db
630
631 Jet<T, N> out;
632
633 out.a = atan2(g.a, f.a);
634
635 T const temp = T(1.0) / (f.a * f.a + g.a * g.a);
636 out.v = temp * (- g.a * f.v + f.a * g.v);
637 return out;
638 }
639
640
641 // pow -- base is a differentiatble function, exponent is a constant.
642 // (a+da)^p ~= a^p + p*a^(p-1) da
643 template <typename T, int N> inline
pow(const Jet<T,N> & f,double g)644 Jet<T, N> pow(const Jet<T, N>& f, double g) {
645 Jet<T, N> out;
646 out.a = pow(f.a, g);
647 T const temp = g * pow(f.a, g - T(1.0));
648 out.v = temp * f.v;
649 return out;
650 }
651
652 // pow -- base is a constant, exponent is a differentiable function.
653 // (a)^(p+dp) ~= a^p + a^p log(a) dp
654 template <typename T, int N> inline
pow(double f,const Jet<T,N> & g)655 Jet<T, N> pow(double f, const Jet<T, N>& g) {
656 Jet<T, N> out;
657 out.a = pow(f, g.a);
658 T const temp = log(f) * out.a;
659 out.v = temp * g.v;
660 return out;
661 }
662
663
664 // pow -- both base and exponent are differentiable functions.
665 // (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
666 template <typename T, int N> inline
pow(const Jet<T,N> & f,const Jet<T,N> & g)667 Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
668 Jet<T, N> out;
669
670 T const temp1 = pow(f.a, g.a);
671 T const temp2 = g.a * pow(f.a, g.a - T(1.0));
672 T const temp3 = temp1 * log(f.a);
673
674 out.a = temp1;
675 out.v = temp2 * f.v + temp3 * g.v;
676 return out;
677 }
678
679 // Define the helper functions Eigen needs to embed Jet types.
680 //
681 // NOTE(keir): machine_epsilon() and precision() are missing, because they don't
682 // work with nested template types (e.g. where the scalar is itself templated).
683 // Among other things, this means that decompositions of Jet's does not work,
684 // for example
685 //
686 // Matrix<Jet<T, N> ... > A, x, b;
687 // ...
688 // A.solve(b, &x)
689 //
690 // does not work and will fail with a strange compiler error.
691 //
692 // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
693 // switch to 3.0, also add the rest of the specialization functionality.
ei_conj(const Jet<T,N> & x)694 template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT
ei_real(const Jet<T,N> & x)695 template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT
ei_imag(const Jet<T,N> &)696 template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT
ei_abs(const Jet<T,N> & x)697 template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT
ei_abs2(const Jet<T,N> & x)698 template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT
ei_sqrt(const Jet<T,N> & x)699 template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT
ei_exp(const Jet<T,N> & x)700 template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT
ei_log(const Jet<T,N> & x)701 template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT
ei_sin(const Jet<T,N> & x)702 template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT
ei_cos(const Jet<T,N> & x)703 template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT
ei_tan(const Jet<T,N> & x)704 template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT
ei_atan(const Jet<T,N> & x)705 template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT
ei_sinh(const Jet<T,N> & x)706 template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT
ei_cosh(const Jet<T,N> & x)707 template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT
ei_tanh(const Jet<T,N> & x)708 template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT
ei_pow(const Jet<T,N> & x,Jet<T,N> y)709 template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT
710
711 // Note: This has to be in the ceres namespace for argument dependent lookup to
712 // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
713 // strange compile errors.
714 template <typename T, int N>
715 inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
716 return s << "[" << z.a << " ; " << z.v.transpose() << "]";
717 }
718
719 } // namespace ceres
720
721 namespace Eigen {
722
723 // Creating a specialization of NumTraits enables placing Jet objects inside
724 // Eigen arrays, getting all the goodness of Eigen combined with autodiff.
725 template<typename T, int N>
726 struct NumTraits<ceres::Jet<T, N> > {
727 typedef ceres::Jet<T, N> Real;
728 typedef ceres::Jet<T, N> NonInteger;
729 typedef ceres::Jet<T, N> Nested;
730
731 static typename ceres::Jet<T, N> dummy_precision() {
732 return ceres::Jet<T, N>(1e-12);
733 }
734
735 enum {
736 IsComplex = 0,
737 IsInteger = 0,
738 IsSigned,
739 ReadCost = 1,
740 AddCost = 1,
741 // For Jet types, multiplication is more expensive than addition.
742 MulCost = 3,
743 HasFloatingPoint = 1
744 };
745 };
746
747 } // namespace Eigen
748
749 #endif // CERES_PUBLIC_JET_H_
750