• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: David Gallup (dgallup@google.com)
30 //         Sameer Agarwal (sameeragarwal@google.com)
31 
32 #ifndef CERES_NO_SUITESPARSE
33 
34 #include "ceres/canonical_views_clustering.h"
35 
36 #include "ceres/collections_port.h"
37 #include "ceres/graph.h"
38 #include "ceres/internal/macros.h"
39 #include "ceres/map_util.h"
40 #include "glog/logging.h"
41 
42 namespace ceres {
43 namespace internal {
44 
45 typedef HashMap<int, int> IntMap;
46 typedef HashSet<int> IntSet;
47 
48 class CanonicalViewsClustering {
49  public:
CanonicalViewsClustering()50   CanonicalViewsClustering() {}
51 
52   // Compute the canonical views clustering of the vertices of the
53   // graph. centers will contain the vertices that are the identified
54   // as the canonical views/cluster centers, and membership is a map
55   // from vertices to cluster_ids. The i^th cluster center corresponds
56   // to the i^th cluster. It is possible depending on the
57   // configuration of the clustering algorithm that some of the
58   // vertices may not be assigned to any cluster. In this case they
59   // are assigned to a cluster with id = kInvalidClusterId.
60   void ComputeClustering(const Graph<int>& graph,
61                          const CanonicalViewsClusteringOptions& options,
62                          vector<int>* centers,
63                          IntMap* membership);
64 
65  private:
66   void FindValidViews(IntSet* valid_views) const;
67   double ComputeClusteringQualityDifference(const int candidate,
68                                             const vector<int>& centers) const;
69   void UpdateCanonicalViewAssignments(const int canonical_view);
70   void ComputeClusterMembership(const vector<int>& centers,
71                                 IntMap* membership) const;
72 
73   CanonicalViewsClusteringOptions options_;
74   const Graph<int>* graph_;
75   // Maps a view to its representative canonical view (its cluster
76   // center).
77   IntMap view_to_canonical_view_;
78   // Maps a view to its similarity to its current cluster center.
79   HashMap<int, double> view_to_canonical_view_similarity_;
80   CERES_DISALLOW_COPY_AND_ASSIGN(CanonicalViewsClustering);
81 };
82 
ComputeCanonicalViewsClustering(const Graph<int> & graph,const CanonicalViewsClusteringOptions & options,vector<int> * centers,IntMap * membership)83 void ComputeCanonicalViewsClustering(
84     const Graph<int>& graph,
85     const CanonicalViewsClusteringOptions& options,
86     vector<int>* centers,
87     IntMap* membership) {
88   time_t start_time = time(NULL);
89   CanonicalViewsClustering cv;
90   cv.ComputeClustering(graph, options, centers, membership);
91   VLOG(2) << "Canonical views clustering time (secs): "
92           << time(NULL) - start_time;
93 }
94 
95 // Implementation of CanonicalViewsClustering
ComputeClustering(const Graph<int> & graph,const CanonicalViewsClusteringOptions & options,vector<int> * centers,IntMap * membership)96 void CanonicalViewsClustering::ComputeClustering(
97     const Graph<int>& graph,
98     const CanonicalViewsClusteringOptions& options,
99     vector<int>* centers,
100     IntMap* membership) {
101   options_ = options;
102   CHECK_NOTNULL(centers)->clear();
103   CHECK_NOTNULL(membership)->clear();
104   graph_ = &graph;
105 
106   IntSet valid_views;
107   FindValidViews(&valid_views);
108   while (valid_views.size() > 0) {
109     // Find the next best canonical view.
110     double best_difference = -std::numeric_limits<double>::max();
111     int best_view = 0;
112 
113     // TODO(sameeragarwal): Make this loop multi-threaded.
114     for (IntSet::const_iterator view = valid_views.begin();
115          view != valid_views.end();
116          ++view) {
117       const double difference =
118           ComputeClusteringQualityDifference(*view, *centers);
119       if (difference > best_difference) {
120         best_difference = difference;
121         best_view = *view;
122       }
123     }
124 
125     CHECK_GT(best_difference, -std::numeric_limits<double>::max());
126 
127     // Add canonical view if quality improves, or if minimum is not
128     // yet met, otherwise break.
129     if ((best_difference <= 0) &&
130         (centers->size() >= options_.min_views)) {
131       break;
132     }
133 
134     centers->push_back(best_view);
135     valid_views.erase(best_view);
136     UpdateCanonicalViewAssignments(best_view);
137   }
138 
139   ComputeClusterMembership(*centers, membership);
140 }
141 
142 // Return the set of vertices of the graph which have valid vertex
143 // weights.
FindValidViews(IntSet * valid_views) const144 void CanonicalViewsClustering::FindValidViews(
145     IntSet* valid_views) const {
146   const IntSet& views = graph_->vertices();
147   for (IntSet::const_iterator view = views.begin();
148        view != views.end();
149        ++view) {
150     if (graph_->VertexWeight(*view) != Graph<int>::InvalidWeight()) {
151       valid_views->insert(*view);
152     }
153   }
154 }
155 
156 // Computes the difference in the quality score if 'candidate' were
157 // added to the set of canonical views.
ComputeClusteringQualityDifference(const int candidate,const vector<int> & centers) const158 double CanonicalViewsClustering::ComputeClusteringQualityDifference(
159     const int candidate,
160     const vector<int>& centers) const {
161   // View score.
162   double difference =
163       options_.view_score_weight * graph_->VertexWeight(candidate);
164 
165   // Compute how much the quality score changes if the candidate view
166   // was added to the list of canonical views and its nearest
167   // neighbors became members of its cluster.
168   const IntSet& neighbors = graph_->Neighbors(candidate);
169   for (IntSet::const_iterator neighbor = neighbors.begin();
170        neighbor != neighbors.end();
171        ++neighbor) {
172     const double old_similarity =
173         FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
174     const double new_similarity = graph_->EdgeWeight(*neighbor, candidate);
175     if (new_similarity > old_similarity) {
176       difference += new_similarity - old_similarity;
177     }
178   }
179 
180   // Number of views penalty.
181   difference -= options_.size_penalty_weight;
182 
183   // Orthogonality.
184   for (int i = 0; i < centers.size(); ++i) {
185     difference -= options_.similarity_penalty_weight *
186         graph_->EdgeWeight(centers[i], candidate);
187   }
188 
189   return difference;
190 }
191 
192 // Reassign views if they're more similar to the new canonical view.
UpdateCanonicalViewAssignments(const int canonical_view)193 void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
194     const int canonical_view) {
195   const IntSet& neighbors = graph_->Neighbors(canonical_view);
196   for (IntSet::const_iterator neighbor = neighbors.begin();
197        neighbor != neighbors.end();
198        ++neighbor) {
199     const double old_similarity =
200         FindWithDefault(view_to_canonical_view_similarity_, *neighbor, 0.0);
201     const double new_similarity =
202         graph_->EdgeWeight(*neighbor, canonical_view);
203     if (new_similarity > old_similarity) {
204       view_to_canonical_view_[*neighbor] = canonical_view;
205       view_to_canonical_view_similarity_[*neighbor] = new_similarity;
206     }
207   }
208 }
209 
210 // Assign a cluster id to each view.
ComputeClusterMembership(const vector<int> & centers,IntMap * membership) const211 void CanonicalViewsClustering::ComputeClusterMembership(
212     const vector<int>& centers,
213     IntMap* membership) const {
214   CHECK_NOTNULL(membership)->clear();
215 
216   // The i^th cluster has cluster id i.
217   IntMap center_to_cluster_id;
218   for (int i = 0; i < centers.size(); ++i) {
219     center_to_cluster_id[centers[i]] = i;
220   }
221 
222   static const int kInvalidClusterId = -1;
223 
224   const IntSet& views = graph_->vertices();
225   for (IntSet::const_iterator view = views.begin();
226        view != views.end();
227        ++view) {
228     IntMap::const_iterator it =
229         view_to_canonical_view_.find(*view);
230     int cluster_id = kInvalidClusterId;
231     if (it != view_to_canonical_view_.end()) {
232       cluster_id = FindOrDie(center_to_cluster_id, it->second);
233     }
234 
235     InsertOrDie(membership, *view, cluster_id);
236   }
237 }
238 
239 }  // namespace internal
240 }  // namespace ceres
241 
242 #endif  // CERES_NO_SUITESPARSE
243