1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal@google.com (Sameer Agarwal) 30 // keir@google.com (Keir Mierle) 31 32 #ifndef CERES_INTERNAL_EVALUATOR_H_ 33 #define CERES_INTERNAL_EVALUATOR_H_ 34 35 #include <map> 36 #include <string> 37 #include <vector> 38 39 #include "ceres/execution_summary.h" 40 #include "ceres/internal/port.h" 41 #include "ceres/types.h" 42 43 namespace ceres { 44 45 struct CRSMatrix; 46 47 namespace internal { 48 49 class Program; 50 class SparseMatrix; 51 52 // The Evaluator interface offers a way to interact with a least squares cost 53 // function that is useful for an optimizer that wants to minimize the least 54 // squares objective. This insulates the optimizer from issues like Jacobian 55 // storage, parameterization, etc. 56 class Evaluator { 57 public: 58 virtual ~Evaluator(); 59 60 struct Options { OptionsOptions61 Options() 62 : num_threads(1), 63 num_eliminate_blocks(-1), 64 linear_solver_type(DENSE_QR) {} 65 66 int num_threads; 67 int num_eliminate_blocks; 68 LinearSolverType linear_solver_type; 69 }; 70 71 static Evaluator* Create(const Options& options, 72 Program* program, 73 string* error); 74 75 // This is used for computing the cost, residual and Jacobian for 76 // returning to the user. For actually solving the optimization 77 // problem, the optimization algorithm uses the ProgramEvaluator 78 // objects directly. 79 // 80 // The residual, gradients and jacobian pointers can be NULL, in 81 // which case they will not be evaluated. cost cannot be NULL. 82 // 83 // The parallelism of the evaluator is controlled by num_threads; it 84 // should be at least 1. 85 // 86 // Note: That this function does not take a parameter vector as 87 // input. The parameter blocks are evaluated on the values contained 88 // in the arrays pointed to by their user_state pointers. 89 // 90 // Also worth noting is that this function mutates program by 91 // calling Program::SetParameterOffsetsAndIndex() on it so that an 92 // evaluator object can be constructed. 93 static bool Evaluate(Program* program, 94 int num_threads, 95 double* cost, 96 vector<double>* residuals, 97 vector<double>* gradient, 98 CRSMatrix* jacobian); 99 100 // Build and return a sparse matrix for storing and working with the Jacobian 101 // of the objective function. The jacobian has dimensions 102 // NumEffectiveParameters() by NumParameters(), and is typically extremely 103 // sparse. Since the sparsity pattern of the Jacobian remains constant over 104 // the lifetime of the optimization problem, this method is used to 105 // instantiate a SparseMatrix object with the appropriate sparsity structure 106 // (which can be an expensive operation) and then reused by the optimization 107 // algorithm and the various linear solvers. 108 // 109 // It is expected that the classes implementing this interface will be aware 110 // of their client's requirements for the kind of sparse matrix storage and 111 // layout that is needed for an efficient implementation. For example 112 // CompressedRowOptimizationProblem creates a compressed row representation of 113 // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem 114 // creates a BlockSparseMatrix representation of the jacobian for use in the 115 // Schur complement based methods. 116 virtual SparseMatrix* CreateJacobian() const = 0; 117 118 119 // Options struct to control Evaluator::Evaluate; 120 struct EvaluateOptions { EvaluateOptionsEvaluateOptions121 EvaluateOptions() 122 : apply_loss_function(true) { 123 } 124 125 // If false, the loss function correction is not applied to the 126 // residual blocks. 127 bool apply_loss_function; 128 }; 129 130 // Evaluate the cost function for the given state. Returns the cost, 131 // residuals, and jacobian in the corresponding arguments. Both residuals and 132 // jacobian are optional; to avoid computing them, pass NULL. 133 // 134 // If non-NULL, the Jacobian must have a suitable sparsity pattern; only the 135 // values array of the jacobian is modified. 136 // 137 // state is an array of size NumParameters(), cost is a pointer to a single 138 // double, and residuals is an array of doubles of size NumResiduals(). 139 virtual bool Evaluate(const EvaluateOptions& evaluate_options, 140 const double* state, 141 double* cost, 142 double* residuals, 143 double* gradient, 144 SparseMatrix* jacobian) = 0; 145 146 // Variant of Evaluator::Evaluate where the user wishes to use the 147 // default EvaluateOptions struct. This is mostly here as a 148 // convenience method. Evaluate(const double * state,double * cost,double * residuals,double * gradient,SparseMatrix * jacobian)149 bool Evaluate(const double* state, 150 double* cost, 151 double* residuals, 152 double* gradient, 153 SparseMatrix* jacobian) { 154 return Evaluate(EvaluateOptions(), 155 state, 156 cost, 157 residuals, 158 gradient, 159 jacobian); 160 } 161 162 // Make a change delta (of size NumEffectiveParameters()) to state (of size 163 // NumParameters()) and store the result in state_plus_delta. 164 // 165 // In the case that there are no parameterizations used, this is equivalent to 166 // 167 // state_plus_delta[i] = state[i] + delta[i] ; 168 // 169 // however, the mapping is more complicated in the case of parameterizations 170 // like quaternions. This is the same as the "Plus()" operation in 171 // local_parameterization.h, but operating over the entire state vector for a 172 // problem. 173 virtual bool Plus(const double* state, 174 const double* delta, 175 double* state_plus_delta) const = 0; 176 177 // The number of parameters in the optimization problem. 178 virtual int NumParameters() const = 0; 179 180 // This is the effective number of parameters that the optimizer may adjust. 181 // This applies when there are parameterizations on some of the parameters. 182 virtual int NumEffectiveParameters() const = 0; 183 184 // The number of residuals in the optimization problem. 185 virtual int NumResiduals() const = 0; 186 187 // The following two methods return copies instead of references so 188 // that the base class implementation does not have to worry about 189 // life time issues. Further, these calls are not expected to be 190 // frequent or performance sensitive. CallStatistics()191 virtual map<string, int> CallStatistics() const { 192 return map<string, int>(); 193 } 194 TimeStatistics()195 virtual map<string, double> TimeStatistics() const { 196 return map<string, double>(); 197 } 198 }; 199 200 } // namespace internal 201 } // namespace ceres 202 203 #endif // CERES_INTERNAL_EVALUATOR_H_ 204