• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: wjr@google.com (William Rucklidge)
30 //
31 // This file contains tests for the GradientChecker class.
32 
33 #include "ceres/gradient_checker.h"
34 
35 #include <cmath>
36 #include <cstdlib>
37 #include <vector>
38 
39 #include "ceres/cost_function.h"
40 #include "ceres/random.h"
41 #include "glog/logging.h"
42 #include "gtest/gtest.h"
43 
44 namespace ceres {
45 namespace internal {
46 
47 // We pick a (non-quadratic) function whose derivative are easy:
48 //
49 //    f = exp(- a' x).
50 //   df = - f a.
51 //
52 // where 'a' is a vector of the same size as 'x'. In the block
53 // version, they are both block vectors, of course.
54 class GoodTestTerm : public CostFunction {
55  public:
GoodTestTerm(int arity,int const * dim)56   GoodTestTerm(int arity, int const *dim) : arity_(arity) {
57     // Make 'arity' random vectors.
58     a_.resize(arity_);
59     for (int j = 0; j < arity_; ++j) {
60       a_[j].resize(dim[j]);
61       for (int u = 0; u < dim[j]; ++u) {
62         a_[j][u] = 2.0 * RandDouble() - 1.0;
63       }
64     }
65 
66     for (int i = 0; i < arity_; i++) {
67       mutable_parameter_block_sizes()->push_back(dim[i]);
68     }
69     set_num_residuals(1);
70   }
71 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const72   bool Evaluate(double const* const* parameters,
73                 double* residuals,
74                 double** jacobians) const {
75     // Compute a . x.
76     double ax = 0;
77     for (int j = 0; j < arity_; ++j) {
78       for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
79         ax += a_[j][u] * parameters[j][u];
80       }
81     }
82 
83     // This is the cost, but also appears as a factor
84     // in the derivatives.
85     double f = *residuals = exp(-ax);
86 
87     // Accumulate 1st order derivatives.
88     if (jacobians) {
89       for (int j = 0; j < arity_; ++j) {
90         if (jacobians[j]) {
91           for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
92             // See comments before class.
93             jacobians[j][u] = - f * a_[j][u];
94           }
95         }
96       }
97     }
98 
99     return true;
100   }
101 
102  private:
103   int arity_;
104   vector<vector<double> > a_;  // our vectors.
105 };
106 
107 class BadTestTerm : public CostFunction {
108  public:
BadTestTerm(int arity,int const * dim)109   BadTestTerm(int arity, int const *dim) : arity_(arity) {
110     // Make 'arity' random vectors.
111     a_.resize(arity_);
112     for (int j = 0; j < arity_; ++j) {
113       a_[j].resize(dim[j]);
114       for (int u = 0; u < dim[j]; ++u) {
115         a_[j][u] = 2.0 * RandDouble() - 1.0;
116       }
117     }
118 
119     for (int i = 0; i < arity_; i++) {
120       mutable_parameter_block_sizes()->push_back(dim[i]);
121     }
122     set_num_residuals(1);
123   }
124 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const125   bool Evaluate(double const* const* parameters,
126                 double* residuals,
127                 double** jacobians) const {
128     // Compute a . x.
129     double ax = 0;
130     for (int j = 0; j < arity_; ++j) {
131       for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
132         ax += a_[j][u] * parameters[j][u];
133       }
134     }
135 
136     // This is the cost, but also appears as a factor
137     // in the derivatives.
138     double f = *residuals = exp(-ax);
139 
140     // Accumulate 1st order derivatives.
141     if (jacobians) {
142       for (int j = 0; j < arity_; ++j) {
143         if (jacobians[j]) {
144           for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
145             // See comments before class.
146             jacobians[j][u] = - f * a_[j][u] + 0.001;
147           }
148         }
149       }
150     }
151 
152     return true;
153   }
154 
155  private:
156   int arity_;
157   vector<vector<double> > a_;  // our vectors.
158 };
159 
TEST(GradientChecker,SmokeTest)160 TEST(GradientChecker, SmokeTest) {
161   srand(5);
162 
163   // Test with 3 blocks of size 2, 3 and 4.
164   int const arity = 3;
165   int const dim[arity] = { 2, 3, 4 };
166 
167   // Make a random set of blocks.
168   FixedArray<double*> parameters(arity);
169   for (int j = 0; j < arity; ++j) {
170     parameters[j] = new double[dim[j]];
171     for (int u = 0; u < dim[j]; ++u) {
172       parameters[j][u] = 2.0 * RandDouble() - 1.0;
173     }
174   }
175 
176   // Make a term and probe it.
177   GoodTestTerm good_term(arity, dim);
178   typedef GradientChecker<GoodTestTerm, 1, 2, 3, 4> GoodTermGradientChecker;
179   EXPECT_TRUE(GoodTermGradientChecker::Probe(
180       parameters.get(), 1e-6, &good_term, NULL));
181 
182   BadTestTerm bad_term(arity, dim);
183   typedef GradientChecker<BadTestTerm, 1, 2, 3, 4> BadTermGradientChecker;
184   EXPECT_FALSE(BadTermGradientChecker::Probe(
185       parameters.get(), 1e-6, &bad_term, NULL));
186 
187   for (int j = 0; j < arity; j++) {
188     delete[] parameters[j];
189   }
190 }
191 
192 }  // namespace internal
193 }  // namespace ceres
194