• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Limited memory positive definite approximation to the inverse
32 // Hessian, using the LBFGS algorithm
33 
34 #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
35 #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
36 
37 #include "ceres/internal/eigen.h"
38 #include "ceres/linear_operator.h"
39 
40 namespace ceres {
41 namespace internal {
42 
43 // LowRankInverseHessian is a positive definite approximation to the
44 // Hessian using the limited memory variant of the
45 // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for
46 // approximating the Hessian.
47 //
48 // Other update rules like the Davidon-Fletcher-Powell (DFP) are
49 // possible, but the BFGS rule is considered the best performing one.
50 //
51 // The limited memory variant was developed by Nocedal and further
52 // enhanced with scaling rule by Byrd, Nocedal and Schanbel.
53 //
54 // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
55 // Storage". Mathematics of Computation 35 (151): 773–782.
56 //
57 // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
58 // "Representations of Quasi-Newton Matrices and their use in
59 // Limited Memory Methods". Mathematical Programming 63 (4):
60 class LowRankInverseHessian : public LinearOperator {
61  public:
62   // num_parameters is the row/column size of the Hessian.
63   // max_num_corrections is the rank of the Hessian approximation.
64   // use_approximate_eigenvalue_scaling controls whether the initial
65   // inverse Hessian used during Right/LeftMultiply() is scaled by
66   // the approximate eigenvalue of the true inverse Hessian at the
67   // current operating point.
68   // The approximation uses:
69   // 2 * max_num_corrections * num_parameters + max_num_corrections
70   // doubles.
71   LowRankInverseHessian(int num_parameters,
72                         int max_num_corrections,
73                         bool use_approximate_eigenvalue_scaling);
~LowRankInverseHessian()74   virtual ~LowRankInverseHessian() {}
75 
76   // Update the low rank approximation. delta_x is the change in the
77   // domain of Hessian, and delta_gradient is the change in the
78   // gradient.  The update copies the delta_x and delta_gradient
79   // vectors, and gets rid of the oldest delta_x and delta_gradient
80   // vectors if the number of corrections is already equal to
81   // max_num_corrections.
82   bool Update(const Vector& delta_x, const Vector& delta_gradient);
83 
84   // LinearOperator interface
85   virtual void RightMultiply(const double* x, double* y) const;
LeftMultiply(const double * x,double * y)86   virtual void LeftMultiply(const double* x, double* y) const {
87     RightMultiply(x, y);
88   }
num_rows()89   virtual int num_rows() const { return num_parameters_; }
num_cols()90   virtual int num_cols() const { return num_parameters_; }
91 
92  private:
93   const int num_parameters_;
94   const int max_num_corrections_;
95   const bool use_approximate_eigenvalue_scaling_;
96   int num_corrections_;
97   double approximate_eigenvalue_scale_;
98   Matrix delta_x_history_;
99   Matrix delta_gradient_history_;
100   Vector delta_x_dot_delta_gradient_;
101 };
102 
103 }  // namespace internal
104 }  // namespace ceres
105 
106 #endif  // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
107