1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: moll.markus@arcor.de (Markus Moll)
30 // sameeragarwal@google.com (Sameer Agarwal)
31
32 #include "ceres/polynomial.h"
33
34 #include <cmath>
35 #include <cstddef>
36 #include <vector>
37
38 #include "Eigen/Dense"
39 #include "ceres/internal/port.h"
40 #include "glog/logging.h"
41
42 namespace ceres {
43 namespace internal {
44 namespace {
45
46 // Balancing function as described by B. N. Parlett and C. Reinsch,
47 // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
48 // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
49 // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
BalanceCompanionMatrix(Matrix * companion_matrix_ptr)50 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
51 CHECK_NOTNULL(companion_matrix_ptr);
52 Matrix& companion_matrix = *companion_matrix_ptr;
53 Matrix companion_matrix_offdiagonal = companion_matrix;
54 companion_matrix_offdiagonal.diagonal().setZero();
55
56 const int degree = companion_matrix.rows();
57
58 // gamma <= 1 controls how much a change in the scaling has to
59 // lower the 1-norm of the companion matrix to be accepted.
60 //
61 // gamma = 1 seems to lead to cycles (numerical issues?), so
62 // we set it slightly lower.
63 const double gamma = 0.9;
64
65 // Greedily scale row/column pairs until there is no change.
66 bool scaling_has_changed;
67 do {
68 scaling_has_changed = false;
69
70 for (int i = 0; i < degree; ++i) {
71 const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
72 const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
73
74 // Decompose row_norm/col_norm into mantissa * 2^exponent,
75 // where 0.5 <= mantissa < 1. Discard mantissa (return value
76 // of frexp), as only the exponent is needed.
77 int exponent = 0;
78 std::frexp(row_norm / col_norm, &exponent);
79 exponent /= 2;
80
81 if (exponent != 0) {
82 const double scaled_col_norm = std::ldexp(col_norm, exponent);
83 const double scaled_row_norm = std::ldexp(row_norm, -exponent);
84 if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
85 // Accept the new scaling. (Multiplication by powers of 2 should not
86 // introduce rounding errors (ignoring non-normalized numbers and
87 // over- or underflow))
88 scaling_has_changed = true;
89 companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
90 companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
91 }
92 }
93 }
94 } while (scaling_has_changed);
95
96 companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
97 companion_matrix = companion_matrix_offdiagonal;
98 VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
99 }
100
BuildCompanionMatrix(const Vector & polynomial,Matrix * companion_matrix_ptr)101 void BuildCompanionMatrix(const Vector& polynomial,
102 Matrix* companion_matrix_ptr) {
103 CHECK_NOTNULL(companion_matrix_ptr);
104 Matrix& companion_matrix = *companion_matrix_ptr;
105
106 const int degree = polynomial.size() - 1;
107
108 companion_matrix.resize(degree, degree);
109 companion_matrix.setZero();
110 companion_matrix.diagonal(-1).setOnes();
111 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
112 }
113
114 // Remove leading terms with zero coefficients.
RemoveLeadingZeros(const Vector & polynomial_in)115 Vector RemoveLeadingZeros(const Vector& polynomial_in) {
116 int i = 0;
117 while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
118 ++i;
119 }
120 return polynomial_in.tail(polynomial_in.size() - i);
121 }
122 } // namespace
123
FindPolynomialRoots(const Vector & polynomial_in,Vector * real,Vector * imaginary)124 bool FindPolynomialRoots(const Vector& polynomial_in,
125 Vector* real,
126 Vector* imaginary) {
127 if (polynomial_in.size() == 0) {
128 LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
129 return false;
130 }
131
132 Vector polynomial = RemoveLeadingZeros(polynomial_in);
133 const int degree = polynomial.size() - 1;
134
135 // Is the polynomial constant?
136 if (degree == 0) {
137 LOG(WARNING) << "Trying to extract roots from a constant "
138 << "polynomial in FindPolynomialRoots";
139 return true;
140 }
141
142 // Divide by leading term
143 const double leading_term = polynomial(0);
144 polynomial /= leading_term;
145
146 // Separately handle linear polynomials.
147 if (degree == 1) {
148 if (real != NULL) {
149 real->resize(1);
150 (*real)(0) = -polynomial(1);
151 }
152 if (imaginary != NULL) {
153 imaginary->resize(1);
154 imaginary->setZero();
155 }
156 }
157
158 // The degree is now known to be at least 2.
159 // Build and balance the companion matrix to the polynomial.
160 Matrix companion_matrix(degree, degree);
161 BuildCompanionMatrix(polynomial, &companion_matrix);
162 BalanceCompanionMatrix(&companion_matrix);
163
164 // Find its (complex) eigenvalues.
165 Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
166 if (solver.info() != Eigen::Success) {
167 LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
168 return false;
169 }
170
171 // Output roots
172 if (real != NULL) {
173 *real = solver.eigenvalues().real();
174 } else {
175 LOG(WARNING) << "NULL pointer passed as real argument to "
176 << "FindPolynomialRoots. Real parts of the roots will not "
177 << "be returned.";
178 }
179 if (imaginary != NULL) {
180 *imaginary = solver.eigenvalues().imag();
181 }
182 return true;
183 }
184
DifferentiatePolynomial(const Vector & polynomial)185 Vector DifferentiatePolynomial(const Vector& polynomial) {
186 const int degree = polynomial.rows() - 1;
187 CHECK_GE(degree, 0);
188
189 // Degree zero polynomials are constants, and their derivative does
190 // not result in a smaller degree polynomial, just a degree zero
191 // polynomial with value zero.
192 if (degree == 0) {
193 return Eigen::VectorXd::Zero(1);
194 }
195
196 Vector derivative(degree);
197 for (int i = 0; i < degree; ++i) {
198 derivative(i) = (degree - i) * polynomial(i);
199 }
200
201 return derivative;
202 }
203
MinimizePolynomial(const Vector & polynomial,const double x_min,const double x_max,double * optimal_x,double * optimal_value)204 void MinimizePolynomial(const Vector& polynomial,
205 const double x_min,
206 const double x_max,
207 double* optimal_x,
208 double* optimal_value) {
209 // Find the minimum of the polynomial at the two ends.
210 //
211 // We start by inspecting the middle of the interval. Technically
212 // this is not needed, but we do this to make this code as close to
213 // the minFunc package as possible.
214 *optimal_x = (x_min + x_max) / 2.0;
215 *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
216
217 const double x_min_value = EvaluatePolynomial(polynomial, x_min);
218 if (x_min_value < *optimal_value) {
219 *optimal_value = x_min_value;
220 *optimal_x = x_min;
221 }
222
223 const double x_max_value = EvaluatePolynomial(polynomial, x_max);
224 if (x_max_value < *optimal_value) {
225 *optimal_value = x_max_value;
226 *optimal_x = x_max;
227 }
228
229 // If the polynomial is linear or constant, we are done.
230 if (polynomial.rows() <= 2) {
231 return;
232 }
233
234 const Vector derivative = DifferentiatePolynomial(polynomial);
235 Vector roots_real;
236 if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
237 LOG(WARNING) << "Unable to find the critical points of "
238 << "the interpolating polynomial.";
239 return;
240 }
241
242 // This is a bit of an overkill, as some of the roots may actually
243 // have a complex part, but its simpler to just check these values.
244 for (int i = 0; i < roots_real.rows(); ++i) {
245 const double root = roots_real(i);
246 if ((root < x_min) || (root > x_max)) {
247 continue;
248 }
249
250 const double value = EvaluatePolynomial(polynomial, root);
251 if (value < *optimal_value) {
252 *optimal_value = value;
253 *optimal_x = root;
254 }
255 }
256 }
257
FindInterpolatingPolynomial(const vector<FunctionSample> & samples)258 Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
259 const int num_samples = samples.size();
260 int num_constraints = 0;
261 for (int i = 0; i < num_samples; ++i) {
262 if (samples[i].value_is_valid) {
263 ++num_constraints;
264 }
265 if (samples[i].gradient_is_valid) {
266 ++num_constraints;
267 }
268 }
269
270 const int degree = num_constraints - 1;
271 Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
272 Vector rhs = Vector::Zero(num_constraints);
273
274 int row = 0;
275 for (int i = 0; i < num_samples; ++i) {
276 const FunctionSample& sample = samples[i];
277 if (sample.value_is_valid) {
278 for (int j = 0; j <= degree; ++j) {
279 lhs(row, j) = pow(sample.x, degree - j);
280 }
281 rhs(row) = sample.value;
282 ++row;
283 }
284
285 if (sample.gradient_is_valid) {
286 for (int j = 0; j < degree; ++j) {
287 lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
288 }
289 rhs(row) = sample.gradient;
290 ++row;
291 }
292 }
293
294 return lhs.fullPivLu().solve(rhs);
295 }
296
MinimizeInterpolatingPolynomial(const vector<FunctionSample> & samples,double x_min,double x_max,double * optimal_x,double * optimal_value)297 void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
298 double x_min,
299 double x_max,
300 double* optimal_x,
301 double* optimal_value) {
302 const Vector polynomial = FindInterpolatingPolynomial(samples);
303 MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
304 for (int i = 0; i < samples.size(); ++i) {
305 const FunctionSample& sample = samples[i];
306 if ((sample.x < x_min) || (sample.x > x_max)) {
307 continue;
308 }
309
310 const double value = EvaluatePolynomial(polynomial, sample.x);
311 if (value < *optimal_value) {
312 *optimal_x = sample.x;
313 *optimal_value = value;
314 }
315 }
316 }
317
318 } // namespace internal
319 } // namespace ceres
320