• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: moll.markus@arcor.de (Markus Moll)
30 //         sameeragarwal@google.com (Sameer Agarwal)
31 
32 #include "ceres/polynomial.h"
33 
34 #include <cmath>
35 #include <cstddef>
36 #include <vector>
37 
38 #include "Eigen/Dense"
39 #include "ceres/internal/port.h"
40 #include "glog/logging.h"
41 
42 namespace ceres {
43 namespace internal {
44 namespace {
45 
46 // Balancing function as described by B. N. Parlett and C. Reinsch,
47 // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
48 // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
49 // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
BalanceCompanionMatrix(Matrix * companion_matrix_ptr)50 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
51   CHECK_NOTNULL(companion_matrix_ptr);
52   Matrix& companion_matrix = *companion_matrix_ptr;
53   Matrix companion_matrix_offdiagonal = companion_matrix;
54   companion_matrix_offdiagonal.diagonal().setZero();
55 
56   const int degree = companion_matrix.rows();
57 
58   // gamma <= 1 controls how much a change in the scaling has to
59   // lower the 1-norm of the companion matrix to be accepted.
60   //
61   // gamma = 1 seems to lead to cycles (numerical issues?), so
62   // we set it slightly lower.
63   const double gamma = 0.9;
64 
65   // Greedily scale row/column pairs until there is no change.
66   bool scaling_has_changed;
67   do {
68     scaling_has_changed = false;
69 
70     for (int i = 0; i < degree; ++i) {
71       const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
72       const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
73 
74       // Decompose row_norm/col_norm into mantissa * 2^exponent,
75       // where 0.5 <= mantissa < 1. Discard mantissa (return value
76       // of frexp), as only the exponent is needed.
77       int exponent = 0;
78       std::frexp(row_norm / col_norm, &exponent);
79       exponent /= 2;
80 
81       if (exponent != 0) {
82         const double scaled_col_norm = std::ldexp(col_norm, exponent);
83         const double scaled_row_norm = std::ldexp(row_norm, -exponent);
84         if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
85           // Accept the new scaling. (Multiplication by powers of 2 should not
86           // introduce rounding errors (ignoring non-normalized numbers and
87           // over- or underflow))
88           scaling_has_changed = true;
89           companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
90           companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
91         }
92       }
93     }
94   } while (scaling_has_changed);
95 
96   companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
97   companion_matrix = companion_matrix_offdiagonal;
98   VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
99 }
100 
BuildCompanionMatrix(const Vector & polynomial,Matrix * companion_matrix_ptr)101 void BuildCompanionMatrix(const Vector& polynomial,
102                           Matrix* companion_matrix_ptr) {
103   CHECK_NOTNULL(companion_matrix_ptr);
104   Matrix& companion_matrix = *companion_matrix_ptr;
105 
106   const int degree = polynomial.size() - 1;
107 
108   companion_matrix.resize(degree, degree);
109   companion_matrix.setZero();
110   companion_matrix.diagonal(-1).setOnes();
111   companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
112 }
113 
114 // Remove leading terms with zero coefficients.
RemoveLeadingZeros(const Vector & polynomial_in)115 Vector RemoveLeadingZeros(const Vector& polynomial_in) {
116   int i = 0;
117   while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
118     ++i;
119   }
120   return polynomial_in.tail(polynomial_in.size() - i);
121 }
122 }  // namespace
123 
FindPolynomialRoots(const Vector & polynomial_in,Vector * real,Vector * imaginary)124 bool FindPolynomialRoots(const Vector& polynomial_in,
125                          Vector* real,
126                          Vector* imaginary) {
127   if (polynomial_in.size() == 0) {
128     LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
129     return false;
130   }
131 
132   Vector polynomial = RemoveLeadingZeros(polynomial_in);
133   const int degree = polynomial.size() - 1;
134 
135   // Is the polynomial constant?
136   if (degree == 0) {
137     LOG(WARNING) << "Trying to extract roots from a constant "
138                  << "polynomial in FindPolynomialRoots";
139     return true;
140   }
141 
142   // Divide by leading term
143   const double leading_term = polynomial(0);
144   polynomial /= leading_term;
145 
146   // Separately handle linear polynomials.
147   if (degree == 1) {
148     if (real != NULL) {
149       real->resize(1);
150       (*real)(0) = -polynomial(1);
151     }
152     if (imaginary != NULL) {
153       imaginary->resize(1);
154       imaginary->setZero();
155     }
156   }
157 
158   // The degree is now known to be at least 2.
159   // Build and balance the companion matrix to the polynomial.
160   Matrix companion_matrix(degree, degree);
161   BuildCompanionMatrix(polynomial, &companion_matrix);
162   BalanceCompanionMatrix(&companion_matrix);
163 
164   // Find its (complex) eigenvalues.
165   Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
166   if (solver.info() != Eigen::Success) {
167     LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
168     return false;
169   }
170 
171   // Output roots
172   if (real != NULL) {
173     *real = solver.eigenvalues().real();
174   } else {
175     LOG(WARNING) << "NULL pointer passed as real argument to "
176                  << "FindPolynomialRoots. Real parts of the roots will not "
177                  << "be returned.";
178   }
179   if (imaginary != NULL) {
180     *imaginary = solver.eigenvalues().imag();
181   }
182   return true;
183 }
184 
DifferentiatePolynomial(const Vector & polynomial)185 Vector DifferentiatePolynomial(const Vector& polynomial) {
186   const int degree = polynomial.rows() - 1;
187   CHECK_GE(degree, 0);
188 
189   // Degree zero polynomials are constants, and their derivative does
190   // not result in a smaller degree polynomial, just a degree zero
191   // polynomial with value zero.
192   if (degree == 0) {
193     return Eigen::VectorXd::Zero(1);
194   }
195 
196   Vector derivative(degree);
197   for (int i = 0; i < degree; ++i) {
198     derivative(i) = (degree - i) * polynomial(i);
199   }
200 
201   return derivative;
202 }
203 
MinimizePolynomial(const Vector & polynomial,const double x_min,const double x_max,double * optimal_x,double * optimal_value)204 void MinimizePolynomial(const Vector& polynomial,
205                         const double x_min,
206                         const double x_max,
207                         double* optimal_x,
208                         double* optimal_value) {
209   // Find the minimum of the polynomial at the two ends.
210   //
211   // We start by inspecting the middle of the interval. Technically
212   // this is not needed, but we do this to make this code as close to
213   // the minFunc package as possible.
214   *optimal_x = (x_min + x_max) / 2.0;
215   *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
216 
217   const double x_min_value = EvaluatePolynomial(polynomial, x_min);
218   if (x_min_value < *optimal_value) {
219     *optimal_value = x_min_value;
220     *optimal_x = x_min;
221   }
222 
223   const double x_max_value = EvaluatePolynomial(polynomial, x_max);
224   if (x_max_value < *optimal_value) {
225     *optimal_value = x_max_value;
226     *optimal_x = x_max;
227   }
228 
229   // If the polynomial is linear or constant, we are done.
230   if (polynomial.rows() <= 2) {
231     return;
232   }
233 
234   const Vector derivative = DifferentiatePolynomial(polynomial);
235   Vector roots_real;
236   if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
237     LOG(WARNING) << "Unable to find the critical points of "
238                  << "the interpolating polynomial.";
239     return;
240   }
241 
242   // This is a bit of an overkill, as some of the roots may actually
243   // have a complex part, but its simpler to just check these values.
244   for (int i = 0; i < roots_real.rows(); ++i) {
245     const double root = roots_real(i);
246     if ((root < x_min) || (root > x_max)) {
247       continue;
248     }
249 
250     const double value = EvaluatePolynomial(polynomial, root);
251     if (value < *optimal_value) {
252       *optimal_value = value;
253       *optimal_x = root;
254     }
255   }
256 }
257 
FindInterpolatingPolynomial(const vector<FunctionSample> & samples)258 Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
259   const int num_samples = samples.size();
260   int num_constraints = 0;
261   for (int i = 0; i < num_samples; ++i) {
262     if (samples[i].value_is_valid) {
263       ++num_constraints;
264     }
265     if (samples[i].gradient_is_valid) {
266       ++num_constraints;
267     }
268   }
269 
270   const int degree = num_constraints - 1;
271   Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
272   Vector rhs = Vector::Zero(num_constraints);
273 
274   int row = 0;
275   for (int i = 0; i < num_samples; ++i) {
276     const FunctionSample& sample = samples[i];
277     if (sample.value_is_valid) {
278       for (int j = 0; j <= degree; ++j) {
279         lhs(row, j) = pow(sample.x, degree - j);
280       }
281       rhs(row) = sample.value;
282       ++row;
283     }
284 
285     if (sample.gradient_is_valid) {
286       for (int j = 0; j < degree; ++j) {
287         lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
288       }
289       rhs(row) = sample.gradient;
290       ++row;
291     }
292   }
293 
294   return lhs.fullPivLu().solve(rhs);
295 }
296 
MinimizeInterpolatingPolynomial(const vector<FunctionSample> & samples,double x_min,double x_max,double * optimal_x,double * optimal_value)297 void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
298                                      double x_min,
299                                      double x_max,
300                                      double* optimal_x,
301                                      double* optimal_value) {
302   const Vector polynomial = FindInterpolatingPolynomial(samples);
303   MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
304   for (int i = 0; i < samples.size(); ++i) {
305     const FunctionSample& sample = samples[i];
306     if ((sample.x < x_min) || (sample.x > x_max)) {
307       continue;
308     }
309 
310     const double value = EvaluatePolynomial(polynomial, sample.x);
311     if (value < *optimal_value) {
312       *optimal_x = sample.x;
313       *optimal_value = value;
314     }
315   }
316 }
317 
318 }  // namespace internal
319 }  // namespace ceres
320