• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Simple blas functions for use in the Schur Eliminator. These are
32 // fairly basic implementations which already yield a significant
33 // speedup in the eliminator performance.
34 
35 #ifndef CERES_INTERNAL_SMALL_BLAS_H_
36 #define CERES_INTERNAL_SMALL_BLAS_H_
37 
38 #include "ceres/internal/eigen.h"
39 #include "glog/logging.h"
40 
41 namespace ceres {
42 namespace internal {
43 
44 // Remove the ".noalias()" annotation from the matrix matrix
45 // mutliplies to produce a correct build with the Android NDK,
46 // including versions 6, 7, 8, and 8b, when built with STLPort and the
47 // non-standalone toolchain (i.e. ndk-build). This appears to be a
48 // compiler bug; if the workaround is not in place, the line
49 //
50 //   block.noalias() -= A * B;
51 //
52 // gets compiled to
53 //
54 //   block.noalias() += A * B;
55 //
56 // which breaks schur elimination. Introducing a temporary by removing the
57 // .noalias() annotation causes the issue to disappear. Tracking this
58 // issue down was tricky, since the test suite doesn't run when built with
59 // the non-standalone toolchain.
60 //
61 // TODO(keir): Make a reproduction case for this and send it upstream.
62 #ifdef CERES_WORK_AROUND_ANDROID_NDK_COMPILER_BUG
63 #define CERES_MAYBE_NOALIAS
64 #else
65 #define CERES_MAYBE_NOALIAS .noalias()
66 #endif
67 
68 // The following three macros are used to share code and reduce
69 // template junk across the various GEMM variants.
70 #define CERES_GEMM_BEGIN(name)                                          \
71   template<int kRowA, int kColA, int kRowB, int kColB, int kOperation>  \
72   inline void name(const double* A,                                     \
73                    const int num_row_a,                                 \
74                    const int num_col_a,                                 \
75                    const double* B,                                     \
76                    const int num_row_b,                                 \
77                    const int num_col_b,                                 \
78                    double* C,                                           \
79                    const int start_row_c,                               \
80                    const int start_col_c,                               \
81                    const int row_stride_c,                              \
82                    const int col_stride_c)
83 
84 #define CERES_GEMM_NAIVE_HEADER                                         \
85   DCHECK_GT(num_row_a, 0);                                              \
86   DCHECK_GT(num_col_a, 0);                                              \
87   DCHECK_GT(num_row_b, 0);                                              \
88   DCHECK_GT(num_col_b, 0);                                              \
89   DCHECK_GE(start_row_c, 0);                                            \
90   DCHECK_GE(start_col_c, 0);                                            \
91   DCHECK_GT(row_stride_c, 0);                                           \
92   DCHECK_GT(col_stride_c, 0);                                           \
93   DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));            \
94   DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));            \
95   DCHECK((kRowB == Eigen::Dynamic) || (kRowB == num_row_b));            \
96   DCHECK((kColB == Eigen::Dynamic) || (kColB == num_col_b));            \
97   const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);  \
98   const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);  \
99   const int NUM_ROW_B = (kColB != Eigen::Dynamic ? kRowB : num_row_b);  \
100   const int NUM_COL_B = (kColB != Eigen::Dynamic ? kColB : num_col_b);
101 
102 #define CERES_GEMM_EIGEN_HEADER                                         \
103   const typename EigenTypes<kRowA, kColA>::ConstMatrixRef               \
104   Aref(A, num_row_a, num_col_a);                                        \
105   const typename EigenTypes<kRowB, kColB>::ConstMatrixRef               \
106   Bref(B, num_row_b, num_col_b);                                        \
107   MatrixRef Cref(C, row_stride_c, col_stride_c);                        \
108 
109 #define CERES_CALL_GEMM(name)                                           \
110   name<kRowA, kColA, kRowB, kColB, kOperation>(                         \
111       A, num_row_a, num_col_a,                                          \
112       B, num_row_b, num_col_b,                                          \
113       C, start_row_c, start_col_c, row_stride_c, col_stride_c);
114 
115 
116 // For the matrix-matrix functions below, there are three variants for
117 // each functionality. Foo, FooNaive and FooEigen. Foo is the one to
118 // be called by the user. FooNaive is a basic loop based
119 // implementation and FooEigen uses Eigen's implementation. Foo
120 // chooses between FooNaive and FooEigen depending on how many of the
121 // template arguments are fixed at compile time. Currently, FooEigen
122 // is called if all matrix dimensions are compile time
123 // constants. FooNaive is called otherwise. This leads to the best
124 // performance currently.
125 //
126 // The MatrixMatrixMultiply variants compute:
127 //
128 //   C op A * B;
129 //
130 // The MatrixTransposeMatrixMultiply variants compute:
131 //
132 //   C op A' * B
133 //
134 // where op can be +=, -=, or =.
135 //
136 // The template parameters (kRowA, kColA, kRowB, kColB) allow
137 // specialization of the loop at compile time. If this information is
138 // not available, then Eigen::Dynamic should be used as the template
139 // argument.
140 //
141 //   kOperation =  1  -> C += A * B
142 //   kOperation = -1  -> C -= A * B
143 //   kOperation =  0  -> C  = A * B
144 //
145 // The functions can write into matrices C which are larger than the
146 // matrix A * B. This is done by specifying the true size of C via
147 // row_stride_c and col_stride_c, and then indicating where A * B
148 // should be written into by start_row_c and start_col_c.
149 //
150 // Graphically if row_stride_c = 10, col_stride_c = 12, start_row_c =
151 // 4 and start_col_c = 5, then if A = 3x2 and B = 2x4, we get
152 //
153 //   ------------
154 //   ------------
155 //   ------------
156 //   ------------
157 //   -----xxxx---
158 //   -----xxxx---
159 //   -----xxxx---
160 //   ------------
161 //   ------------
162 //   ------------
163 //
CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen)164 CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen) {
165   CERES_GEMM_EIGEN_HEADER
166   Eigen::Block<MatrixRef, kRowA, kColB>
167     block(Cref, start_row_c, start_col_c, num_row_a, num_col_b);
168 
169   if (kOperation > 0) {
170     block CERES_MAYBE_NOALIAS += Aref * Bref;
171   } else if (kOperation < 0) {
172     block CERES_MAYBE_NOALIAS -= Aref * Bref;
173   } else {
174     block CERES_MAYBE_NOALIAS = Aref * Bref;
175   }
176 }
177 
CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive)178 CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive) {
179   CERES_GEMM_NAIVE_HEADER
180   DCHECK_EQ(NUM_COL_A, NUM_ROW_B);
181 
182   const int NUM_ROW_C = NUM_ROW_A;
183   const int NUM_COL_C = NUM_COL_B;
184   DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);
185   DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);
186 
187   for (int row = 0; row < NUM_ROW_C; ++row) {
188     for (int col = 0; col < NUM_COL_C; ++col) {
189       double tmp = 0.0;
190       for (int k = 0; k < NUM_COL_A; ++k) {
191         tmp += A[row * NUM_COL_A + k] * B[k * NUM_COL_B + col];
192       }
193 
194       const int index = (row + start_row_c) * col_stride_c + start_col_c + col;
195       if (kOperation > 0) {
196         C[index] += tmp;
197       } else if (kOperation < 0) {
198         C[index] -= tmp;
199       } else {
200         C[index] = tmp;
201       }
202     }
203   }
204 }
205 
CERES_GEMM_BEGIN(MatrixMatrixMultiply)206 CERES_GEMM_BEGIN(MatrixMatrixMultiply) {
207 #ifdef CERES_NO_CUSTOM_BLAS
208 
209   CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)
210   return;
211 
212 #else
213 
214   if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&
215       kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {
216     CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)
217   } else {
218     CERES_CALL_GEMM(MatrixMatrixMultiplyNaive)
219   }
220 
221 #endif
222 }
223 
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen)224 CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen) {
225   CERES_GEMM_EIGEN_HEADER
226   Eigen::Block<MatrixRef, kColA, kColB> block(Cref,
227                                               start_row_c, start_col_c,
228                                               num_col_a, num_col_b);
229   if (kOperation > 0) {
230     block CERES_MAYBE_NOALIAS += Aref.transpose() * Bref;
231   } else if (kOperation < 0) {
232     block CERES_MAYBE_NOALIAS -= Aref.transpose() * Bref;
233   } else {
234     block CERES_MAYBE_NOALIAS = Aref.transpose() * Bref;
235   }
236 }
237 
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive)238 CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive) {
239   CERES_GEMM_NAIVE_HEADER
240   DCHECK_EQ(NUM_ROW_A, NUM_ROW_B);
241 
242   const int NUM_ROW_C = NUM_COL_A;
243   const int NUM_COL_C = NUM_COL_B;
244   DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);
245   DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);
246 
247   for (int row = 0; row < NUM_ROW_C; ++row) {
248     for (int col = 0; col < NUM_COL_C; ++col) {
249       double tmp = 0.0;
250       for (int k = 0; k < NUM_ROW_A; ++k) {
251         tmp += A[k * NUM_COL_A + row] * B[k * NUM_COL_B + col];
252       }
253 
254       const int index = (row + start_row_c) * col_stride_c + start_col_c + col;
255       if (kOperation > 0) {
256         C[index]+= tmp;
257       } else if (kOperation < 0) {
258         C[index]-= tmp;
259       } else {
260         C[index]= tmp;
261       }
262     }
263   }
264 }
265 
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply)266 CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply) {
267 #ifdef CERES_NO_CUSTOM_BLAS
268 
269   CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)
270   return;
271 
272 #else
273 
274   if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&
275       kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {
276     CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)
277   } else {
278     CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyNaive)
279   }
280 
281 #endif
282 }
283 
284 // Matrix-Vector multiplication
285 //
286 // c op A * b;
287 //
288 // where op can be +=, -=, or =.
289 //
290 // The template parameters (kRowA, kColA) allow specialization of the
291 // loop at compile time. If this information is not available, then
292 // Eigen::Dynamic should be used as the template argument.
293 //
294 // kOperation =  1  -> c += A' * b
295 // kOperation = -1  -> c -= A' * b
296 // kOperation =  0  -> c  = A' * b
297 template<int kRowA, int kColA, int kOperation>
MatrixVectorMultiply(const double * A,const int num_row_a,const int num_col_a,const double * b,double * c)298 inline void MatrixVectorMultiply(const double* A,
299                                  const int num_row_a,
300                                  const int num_col_a,
301                                  const double* b,
302                                  double* c) {
303 #ifdef CERES_NO_CUSTOM_BLAS
304   const typename EigenTypes<kRowA, kColA>::ConstMatrixRef
305       Aref(A, num_row_a, num_col_a);
306   const typename EigenTypes<kColA>::ConstVectorRef bref(b, num_col_a);
307   typename EigenTypes<kRowA>::VectorRef cref(c, num_row_a);
308 
309   // lazyProduct works better than .noalias() for matrix-vector
310   // products.
311   if (kOperation > 0) {
312     cref += Aref.lazyProduct(bref);
313   } else if (kOperation < 0) {
314     cref -= Aref.lazyProduct(bref);
315   } else {
316     cref = Aref.lazyProduct(bref);
317   }
318 #else
319 
320   DCHECK_GT(num_row_a, 0);
321   DCHECK_GT(num_col_a, 0);
322   DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));
323   DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));
324 
325   const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);
326   const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);
327 
328   for (int row = 0; row < NUM_ROW_A; ++row) {
329     double tmp = 0.0;
330     for (int col = 0; col < NUM_COL_A; ++col) {
331       tmp += A[row * NUM_COL_A + col] * b[col];
332     }
333 
334     if (kOperation > 0) {
335       c[row] += tmp;
336     } else if (kOperation < 0) {
337       c[row] -= tmp;
338     } else {
339       c[row] = tmp;
340     }
341   }
342 #endif  // CERES_NO_CUSTOM_BLAS
343 }
344 
345 // Similar to MatrixVectorMultiply, except that A is transposed, i.e.,
346 //
347 // c op A' * b;
348 template<int kRowA, int kColA, int kOperation>
MatrixTransposeVectorMultiply(const double * A,const int num_row_a,const int num_col_a,const double * b,double * c)349 inline void MatrixTransposeVectorMultiply(const double* A,
350                                           const int num_row_a,
351                                           const int num_col_a,
352                                           const double* b,
353                                           double* c) {
354 #ifdef CERES_NO_CUSTOM_BLAS
355   const typename EigenTypes<kRowA, kColA>::ConstMatrixRef
356       Aref(A, num_row_a, num_col_a);
357   const typename EigenTypes<kRowA>::ConstVectorRef bref(b, num_row_a);
358   typename EigenTypes<kColA>::VectorRef cref(c, num_col_a);
359 
360   // lazyProduct works better than .noalias() for matrix-vector
361   // products.
362   if (kOperation > 0) {
363     cref += Aref.transpose().lazyProduct(bref);
364   } else if (kOperation < 0) {
365     cref -= Aref.transpose().lazyProduct(bref);
366   } else {
367     cref = Aref.transpose().lazyProduct(bref);
368   }
369 #else
370 
371   DCHECK_GT(num_row_a, 0);
372   DCHECK_GT(num_col_a, 0);
373   DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));
374   DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));
375 
376   const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);
377   const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);
378 
379   for (int row = 0; row < NUM_COL_A; ++row) {
380     double tmp = 0.0;
381     for (int col = 0; col < NUM_ROW_A; ++col) {
382       tmp += A[col * NUM_COL_A + row] * b[col];
383     }
384 
385     if (kOperation > 0) {
386       c[row] += tmp;
387     } else if (kOperation < 0) {
388       c[row] -= tmp;
389     } else {
390       c[row] = tmp;
391     }
392   }
393 #endif  // CERES_NO_CUSTOM_BLAS
394 }
395 
396 
397 #undef CERES_MAYBE_NOALIAS
398 #undef CERES_GEMM_BEGIN
399 #undef CERES_GEMM_EIGEN_HEADER
400 #undef CERES_GEMM_NAIVE_HEADER
401 #undef CERES_CALL_GEMM
402 
403 }  // namespace internal
404 }  // namespace ceres
405 
406 #endif  // CERES_INTERNAL_SMALL_BLAS_H_
407