1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Simple blas functions for use in the Schur Eliminator. These are
32 // fairly basic implementations which already yield a significant
33 // speedup in the eliminator performance.
34
35 #ifndef CERES_INTERNAL_SMALL_BLAS_H_
36 #define CERES_INTERNAL_SMALL_BLAS_H_
37
38 #include "ceres/internal/eigen.h"
39 #include "glog/logging.h"
40
41 namespace ceres {
42 namespace internal {
43
44 // Remove the ".noalias()" annotation from the matrix matrix
45 // mutliplies to produce a correct build with the Android NDK,
46 // including versions 6, 7, 8, and 8b, when built with STLPort and the
47 // non-standalone toolchain (i.e. ndk-build). This appears to be a
48 // compiler bug; if the workaround is not in place, the line
49 //
50 // block.noalias() -= A * B;
51 //
52 // gets compiled to
53 //
54 // block.noalias() += A * B;
55 //
56 // which breaks schur elimination. Introducing a temporary by removing the
57 // .noalias() annotation causes the issue to disappear. Tracking this
58 // issue down was tricky, since the test suite doesn't run when built with
59 // the non-standalone toolchain.
60 //
61 // TODO(keir): Make a reproduction case for this and send it upstream.
62 #ifdef CERES_WORK_AROUND_ANDROID_NDK_COMPILER_BUG
63 #define CERES_MAYBE_NOALIAS
64 #else
65 #define CERES_MAYBE_NOALIAS .noalias()
66 #endif
67
68 // The following three macros are used to share code and reduce
69 // template junk across the various GEMM variants.
70 #define CERES_GEMM_BEGIN(name) \
71 template<int kRowA, int kColA, int kRowB, int kColB, int kOperation> \
72 inline void name(const double* A, \
73 const int num_row_a, \
74 const int num_col_a, \
75 const double* B, \
76 const int num_row_b, \
77 const int num_col_b, \
78 double* C, \
79 const int start_row_c, \
80 const int start_col_c, \
81 const int row_stride_c, \
82 const int col_stride_c)
83
84 #define CERES_GEMM_NAIVE_HEADER \
85 DCHECK_GT(num_row_a, 0); \
86 DCHECK_GT(num_col_a, 0); \
87 DCHECK_GT(num_row_b, 0); \
88 DCHECK_GT(num_col_b, 0); \
89 DCHECK_GE(start_row_c, 0); \
90 DCHECK_GE(start_col_c, 0); \
91 DCHECK_GT(row_stride_c, 0); \
92 DCHECK_GT(col_stride_c, 0); \
93 DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a)); \
94 DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a)); \
95 DCHECK((kRowB == Eigen::Dynamic) || (kRowB == num_row_b)); \
96 DCHECK((kColB == Eigen::Dynamic) || (kColB == num_col_b)); \
97 const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a); \
98 const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a); \
99 const int NUM_ROW_B = (kColB != Eigen::Dynamic ? kRowB : num_row_b); \
100 const int NUM_COL_B = (kColB != Eigen::Dynamic ? kColB : num_col_b);
101
102 #define CERES_GEMM_EIGEN_HEADER \
103 const typename EigenTypes<kRowA, kColA>::ConstMatrixRef \
104 Aref(A, num_row_a, num_col_a); \
105 const typename EigenTypes<kRowB, kColB>::ConstMatrixRef \
106 Bref(B, num_row_b, num_col_b); \
107 MatrixRef Cref(C, row_stride_c, col_stride_c); \
108
109 #define CERES_CALL_GEMM(name) \
110 name<kRowA, kColA, kRowB, kColB, kOperation>( \
111 A, num_row_a, num_col_a, \
112 B, num_row_b, num_col_b, \
113 C, start_row_c, start_col_c, row_stride_c, col_stride_c);
114
115
116 // For the matrix-matrix functions below, there are three variants for
117 // each functionality. Foo, FooNaive and FooEigen. Foo is the one to
118 // be called by the user. FooNaive is a basic loop based
119 // implementation and FooEigen uses Eigen's implementation. Foo
120 // chooses between FooNaive and FooEigen depending on how many of the
121 // template arguments are fixed at compile time. Currently, FooEigen
122 // is called if all matrix dimensions are compile time
123 // constants. FooNaive is called otherwise. This leads to the best
124 // performance currently.
125 //
126 // The MatrixMatrixMultiply variants compute:
127 //
128 // C op A * B;
129 //
130 // The MatrixTransposeMatrixMultiply variants compute:
131 //
132 // C op A' * B
133 //
134 // where op can be +=, -=, or =.
135 //
136 // The template parameters (kRowA, kColA, kRowB, kColB) allow
137 // specialization of the loop at compile time. If this information is
138 // not available, then Eigen::Dynamic should be used as the template
139 // argument.
140 //
141 // kOperation = 1 -> C += A * B
142 // kOperation = -1 -> C -= A * B
143 // kOperation = 0 -> C = A * B
144 //
145 // The functions can write into matrices C which are larger than the
146 // matrix A * B. This is done by specifying the true size of C via
147 // row_stride_c and col_stride_c, and then indicating where A * B
148 // should be written into by start_row_c and start_col_c.
149 //
150 // Graphically if row_stride_c = 10, col_stride_c = 12, start_row_c =
151 // 4 and start_col_c = 5, then if A = 3x2 and B = 2x4, we get
152 //
153 // ------------
154 // ------------
155 // ------------
156 // ------------
157 // -----xxxx---
158 // -----xxxx---
159 // -----xxxx---
160 // ------------
161 // ------------
162 // ------------
163 //
CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen)164 CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen) {
165 CERES_GEMM_EIGEN_HEADER
166 Eigen::Block<MatrixRef, kRowA, kColB>
167 block(Cref, start_row_c, start_col_c, num_row_a, num_col_b);
168
169 if (kOperation > 0) {
170 block CERES_MAYBE_NOALIAS += Aref * Bref;
171 } else if (kOperation < 0) {
172 block CERES_MAYBE_NOALIAS -= Aref * Bref;
173 } else {
174 block CERES_MAYBE_NOALIAS = Aref * Bref;
175 }
176 }
177
CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive)178 CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive) {
179 CERES_GEMM_NAIVE_HEADER
180 DCHECK_EQ(NUM_COL_A, NUM_ROW_B);
181
182 const int NUM_ROW_C = NUM_ROW_A;
183 const int NUM_COL_C = NUM_COL_B;
184 DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);
185 DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);
186
187 for (int row = 0; row < NUM_ROW_C; ++row) {
188 for (int col = 0; col < NUM_COL_C; ++col) {
189 double tmp = 0.0;
190 for (int k = 0; k < NUM_COL_A; ++k) {
191 tmp += A[row * NUM_COL_A + k] * B[k * NUM_COL_B + col];
192 }
193
194 const int index = (row + start_row_c) * col_stride_c + start_col_c + col;
195 if (kOperation > 0) {
196 C[index] += tmp;
197 } else if (kOperation < 0) {
198 C[index] -= tmp;
199 } else {
200 C[index] = tmp;
201 }
202 }
203 }
204 }
205
CERES_GEMM_BEGIN(MatrixMatrixMultiply)206 CERES_GEMM_BEGIN(MatrixMatrixMultiply) {
207 #ifdef CERES_NO_CUSTOM_BLAS
208
209 CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)
210 return;
211
212 #else
213
214 if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&
215 kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {
216 CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)
217 } else {
218 CERES_CALL_GEMM(MatrixMatrixMultiplyNaive)
219 }
220
221 #endif
222 }
223
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen)224 CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen) {
225 CERES_GEMM_EIGEN_HEADER
226 Eigen::Block<MatrixRef, kColA, kColB> block(Cref,
227 start_row_c, start_col_c,
228 num_col_a, num_col_b);
229 if (kOperation > 0) {
230 block CERES_MAYBE_NOALIAS += Aref.transpose() * Bref;
231 } else if (kOperation < 0) {
232 block CERES_MAYBE_NOALIAS -= Aref.transpose() * Bref;
233 } else {
234 block CERES_MAYBE_NOALIAS = Aref.transpose() * Bref;
235 }
236 }
237
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive)238 CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive) {
239 CERES_GEMM_NAIVE_HEADER
240 DCHECK_EQ(NUM_ROW_A, NUM_ROW_B);
241
242 const int NUM_ROW_C = NUM_COL_A;
243 const int NUM_COL_C = NUM_COL_B;
244 DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);
245 DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);
246
247 for (int row = 0; row < NUM_ROW_C; ++row) {
248 for (int col = 0; col < NUM_COL_C; ++col) {
249 double tmp = 0.0;
250 for (int k = 0; k < NUM_ROW_A; ++k) {
251 tmp += A[k * NUM_COL_A + row] * B[k * NUM_COL_B + col];
252 }
253
254 const int index = (row + start_row_c) * col_stride_c + start_col_c + col;
255 if (kOperation > 0) {
256 C[index]+= tmp;
257 } else if (kOperation < 0) {
258 C[index]-= tmp;
259 } else {
260 C[index]= tmp;
261 }
262 }
263 }
264 }
265
CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply)266 CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply) {
267 #ifdef CERES_NO_CUSTOM_BLAS
268
269 CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)
270 return;
271
272 #else
273
274 if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&
275 kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {
276 CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)
277 } else {
278 CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyNaive)
279 }
280
281 #endif
282 }
283
284 // Matrix-Vector multiplication
285 //
286 // c op A * b;
287 //
288 // where op can be +=, -=, or =.
289 //
290 // The template parameters (kRowA, kColA) allow specialization of the
291 // loop at compile time. If this information is not available, then
292 // Eigen::Dynamic should be used as the template argument.
293 //
294 // kOperation = 1 -> c += A' * b
295 // kOperation = -1 -> c -= A' * b
296 // kOperation = 0 -> c = A' * b
297 template<int kRowA, int kColA, int kOperation>
MatrixVectorMultiply(const double * A,const int num_row_a,const int num_col_a,const double * b,double * c)298 inline void MatrixVectorMultiply(const double* A,
299 const int num_row_a,
300 const int num_col_a,
301 const double* b,
302 double* c) {
303 #ifdef CERES_NO_CUSTOM_BLAS
304 const typename EigenTypes<kRowA, kColA>::ConstMatrixRef
305 Aref(A, num_row_a, num_col_a);
306 const typename EigenTypes<kColA>::ConstVectorRef bref(b, num_col_a);
307 typename EigenTypes<kRowA>::VectorRef cref(c, num_row_a);
308
309 // lazyProduct works better than .noalias() for matrix-vector
310 // products.
311 if (kOperation > 0) {
312 cref += Aref.lazyProduct(bref);
313 } else if (kOperation < 0) {
314 cref -= Aref.lazyProduct(bref);
315 } else {
316 cref = Aref.lazyProduct(bref);
317 }
318 #else
319
320 DCHECK_GT(num_row_a, 0);
321 DCHECK_GT(num_col_a, 0);
322 DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));
323 DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));
324
325 const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);
326 const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);
327
328 for (int row = 0; row < NUM_ROW_A; ++row) {
329 double tmp = 0.0;
330 for (int col = 0; col < NUM_COL_A; ++col) {
331 tmp += A[row * NUM_COL_A + col] * b[col];
332 }
333
334 if (kOperation > 0) {
335 c[row] += tmp;
336 } else if (kOperation < 0) {
337 c[row] -= tmp;
338 } else {
339 c[row] = tmp;
340 }
341 }
342 #endif // CERES_NO_CUSTOM_BLAS
343 }
344
345 // Similar to MatrixVectorMultiply, except that A is transposed, i.e.,
346 //
347 // c op A' * b;
348 template<int kRowA, int kColA, int kOperation>
MatrixTransposeVectorMultiply(const double * A,const int num_row_a,const int num_col_a,const double * b,double * c)349 inline void MatrixTransposeVectorMultiply(const double* A,
350 const int num_row_a,
351 const int num_col_a,
352 const double* b,
353 double* c) {
354 #ifdef CERES_NO_CUSTOM_BLAS
355 const typename EigenTypes<kRowA, kColA>::ConstMatrixRef
356 Aref(A, num_row_a, num_col_a);
357 const typename EigenTypes<kRowA>::ConstVectorRef bref(b, num_row_a);
358 typename EigenTypes<kColA>::VectorRef cref(c, num_col_a);
359
360 // lazyProduct works better than .noalias() for matrix-vector
361 // products.
362 if (kOperation > 0) {
363 cref += Aref.transpose().lazyProduct(bref);
364 } else if (kOperation < 0) {
365 cref -= Aref.transpose().lazyProduct(bref);
366 } else {
367 cref = Aref.transpose().lazyProduct(bref);
368 }
369 #else
370
371 DCHECK_GT(num_row_a, 0);
372 DCHECK_GT(num_col_a, 0);
373 DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));
374 DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));
375
376 const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);
377 const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);
378
379 for (int row = 0; row < NUM_COL_A; ++row) {
380 double tmp = 0.0;
381 for (int col = 0; col < NUM_ROW_A; ++col) {
382 tmp += A[col * NUM_COL_A + row] * b[col];
383 }
384
385 if (kOperation > 0) {
386 c[row] += tmp;
387 } else if (kOperation < 0) {
388 c[row] -= tmp;
389 } else {
390 c[row] = tmp;
391 }
392 }
393 #endif // CERES_NO_CUSTOM_BLAS
394 }
395
396
397 #undef CERES_MAYBE_NOALIAS
398 #undef CERES_GEMM_BEGIN
399 #undef CERES_GEMM_EIGEN_HEADER
400 #undef CERES_GEMM_NAIVE_HEADER
401 #undef CERES_CALL_GEMM
402
403 } // namespace internal
404 } // namespace ceres
405
406 #endif // CERES_INTERNAL_SMALL_BLAS_H_
407