1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #ifndef CERES_NO_SUITESPARSE
32
33 #include "ceres/visibility_based_preconditioner.h"
34
35 #include <algorithm>
36 #include <functional>
37 #include <iterator>
38 #include <set>
39 #include <utility>
40 #include <vector>
41 #include "Eigen/Dense"
42 #include "ceres/block_random_access_sparse_matrix.h"
43 #include "ceres/block_sparse_matrix.h"
44 #include "ceres/canonical_views_clustering.h"
45 #include "ceres/collections_port.h"
46 #include "ceres/detect_structure.h"
47 #include "ceres/graph.h"
48 #include "ceres/graph_algorithms.h"
49 #include "ceres/internal/scoped_ptr.h"
50 #include "ceres/linear_solver.h"
51 #include "ceres/schur_eliminator.h"
52 #include "ceres/visibility.h"
53 #include "glog/logging.h"
54
55 namespace ceres {
56 namespace internal {
57
58 // TODO(sameeragarwal): Currently these are magic weights for the
59 // preconditioner construction. Move these higher up into the Options
60 // struct and provide some guidelines for choosing them.
61 //
62 // This will require some more work on the clustering algorithm and
63 // possibly some more refactoring of the code.
64 static const double kSizePenaltyWeight = 3.0;
65 static const double kSimilarityPenaltyWeight = 0.0;
66
VisibilityBasedPreconditioner(const CompressedRowBlockStructure & bs,const Preconditioner::Options & options)67 VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
68 const CompressedRowBlockStructure& bs,
69 const Preconditioner::Options& options)
70 : options_(options),
71 num_blocks_(0),
72 num_clusters_(0),
73 factor_(NULL) {
74 CHECK_GT(options_.elimination_groups.size(), 1);
75 CHECK_GT(options_.elimination_groups[0], 0);
76 CHECK(options_.type == CLUSTER_JACOBI ||
77 options_.type == CLUSTER_TRIDIAGONAL)
78 << "Unknown preconditioner type: " << options_.type;
79 num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
80 CHECK_GT(num_blocks_, 0)
81 << "Jacobian should have atleast 1 f_block for "
82 << "visibility based preconditioning.";
83
84 // Vector of camera block sizes
85 block_size_.resize(num_blocks_);
86 for (int i = 0; i < num_blocks_; ++i) {
87 block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
88 }
89
90 const time_t start_time = time(NULL);
91 switch (options_.type) {
92 case CLUSTER_JACOBI:
93 ComputeClusterJacobiSparsity(bs);
94 break;
95 case CLUSTER_TRIDIAGONAL:
96 ComputeClusterTridiagonalSparsity(bs);
97 break;
98 default:
99 LOG(FATAL) << "Unknown preconditioner type";
100 }
101 const time_t structure_time = time(NULL);
102 InitStorage(bs);
103 const time_t storage_time = time(NULL);
104 InitEliminator(bs);
105 const time_t eliminator_time = time(NULL);
106
107 // Allocate temporary storage for a vector used during
108 // RightMultiply.
109 tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL,
110 m_->num_rows(),
111 m_->num_rows()));
112 const time_t init_time = time(NULL);
113 VLOG(2) << "init time: "
114 << init_time - start_time
115 << " structure time: " << structure_time - start_time
116 << " storage time:" << storage_time - structure_time
117 << " eliminator time: " << eliminator_time - storage_time;
118 }
119
~VisibilityBasedPreconditioner()120 VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {
121 if (factor_ != NULL) {
122 ss_.Free(factor_);
123 factor_ = NULL;
124 }
125 if (tmp_rhs_ != NULL) {
126 ss_.Free(tmp_rhs_);
127 tmp_rhs_ = NULL;
128 }
129 }
130
131 // Determine the sparsity structure of the CLUSTER_JACOBI
132 // preconditioner. It clusters cameras using their scene
133 // visibility. The clusters form the diagonal blocks of the
134 // preconditioner matrix.
ComputeClusterJacobiSparsity(const CompressedRowBlockStructure & bs)135 void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
136 const CompressedRowBlockStructure& bs) {
137 vector<set<int> > visibility;
138 ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
139 CHECK_EQ(num_blocks_, visibility.size());
140 ClusterCameras(visibility);
141 cluster_pairs_.clear();
142 for (int i = 0; i < num_clusters_; ++i) {
143 cluster_pairs_.insert(make_pair(i, i));
144 }
145 }
146
147 // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
148 // preconditioner. It clusters cameras using using the scene
149 // visibility and then finds the strongly interacting pairs of
150 // clusters by constructing another graph with the clusters as
151 // vertices and approximating it with a degree-2 maximum spanning
152 // forest. The set of edges in this forest are the cluster pairs.
ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure & bs)153 void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
154 const CompressedRowBlockStructure& bs) {
155 vector<set<int> > visibility;
156 ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
157 CHECK_EQ(num_blocks_, visibility.size());
158 ClusterCameras(visibility);
159
160 // Construct a weighted graph on the set of clusters, where the
161 // edges are the number of 3D points/e_blocks visible in both the
162 // clusters at the ends of the edge. Return an approximate degree-2
163 // maximum spanning forest of this graph.
164 vector<set<int> > cluster_visibility;
165 ComputeClusterVisibility(visibility, &cluster_visibility);
166 scoped_ptr<Graph<int> > cluster_graph(
167 CHECK_NOTNULL(CreateClusterGraph(cluster_visibility)));
168 scoped_ptr<Graph<int> > forest(
169 CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph)));
170 ForestToClusterPairs(*forest, &cluster_pairs_);
171 }
172
173 // Allocate storage for the preconditioner matrix.
InitStorage(const CompressedRowBlockStructure & bs)174 void VisibilityBasedPreconditioner::InitStorage(
175 const CompressedRowBlockStructure& bs) {
176 ComputeBlockPairsInPreconditioner(bs);
177 m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
178 }
179
180 // Call the canonical views algorithm and cluster the cameras based on
181 // their visibility sets. The visibility set of a camera is the set of
182 // e_blocks/3D points in the scene that are seen by it.
183 //
184 // The cluster_membership_ vector is updated to indicate cluster
185 // memberships for each camera block.
ClusterCameras(const vector<set<int>> & visibility)186 void VisibilityBasedPreconditioner::ClusterCameras(
187 const vector<set<int> >& visibility) {
188 scoped_ptr<Graph<int> > schur_complement_graph(
189 CHECK_NOTNULL(CreateSchurComplementGraph(visibility)));
190
191 CanonicalViewsClusteringOptions options;
192 options.size_penalty_weight = kSizePenaltyWeight;
193 options.similarity_penalty_weight = kSimilarityPenaltyWeight;
194
195 vector<int> centers;
196 HashMap<int, int> membership;
197 ComputeCanonicalViewsClustering(*schur_complement_graph,
198 options,
199 ¢ers,
200 &membership);
201 num_clusters_ = centers.size();
202 CHECK_GT(num_clusters_, 0);
203 VLOG(2) << "num_clusters: " << num_clusters_;
204 FlattenMembershipMap(membership, &cluster_membership_);
205 }
206
207 // Compute the block sparsity structure of the Schur complement
208 // matrix. For each pair of cameras contributing a non-zero cell to
209 // the schur complement, determine if that cell is present in the
210 // preconditioner or not.
211 //
212 // A pair of cameras contribute a cell to the preconditioner if they
213 // are part of the same cluster or if the the two clusters that they
214 // belong have an edge connecting them in the degree-2 maximum
215 // spanning forest.
216 //
217 // For example, a camera pair (i,j) where i belonges to cluster1 and
218 // j belongs to cluster2 (assume that cluster1 < cluster2).
219 //
220 // The cell corresponding to (i,j) is present in the preconditioner
221 // if cluster1 == cluster2 or the pair (cluster1, cluster2) were
222 // connected by an edge in the degree-2 maximum spanning forest.
223 //
224 // Since we have already expanded the forest into a set of camera
225 // pairs/edges, including self edges, the check can be reduced to
226 // checking membership of (cluster1, cluster2) in cluster_pairs_.
ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure & bs)227 void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
228 const CompressedRowBlockStructure& bs) {
229 block_pairs_.clear();
230 for (int i = 0; i < num_blocks_; ++i) {
231 block_pairs_.insert(make_pair(i, i));
232 }
233
234 int r = 0;
235 const int num_row_blocks = bs.rows.size();
236 const int num_eliminate_blocks = options_.elimination_groups[0];
237
238 // Iterate over each row of the matrix. The block structure of the
239 // matrix is assumed to be sorted in order of the e_blocks/point
240 // blocks. Thus all row blocks containing an e_block/point occur
241 // contiguously. Further, if present, an e_block is always the first
242 // parameter block in each row block. These structural assumptions
243 // are common to all Schur complement based solvers in Ceres.
244 //
245 // For each e_block/point block we identify the set of cameras
246 // seeing it. The cross product of this set with itself is the set
247 // of non-zero cells contibuted by this e_block.
248 //
249 // The time complexity of this is O(nm^2) where, n is the number of
250 // 3d points and m is the maximum number of cameras seeing any
251 // point, which for most scenes is a fairly small number.
252 while (r < num_row_blocks) {
253 int e_block_id = bs.rows[r].cells.front().block_id;
254 if (e_block_id >= num_eliminate_blocks) {
255 // Skip the rows whose first block is an f_block.
256 break;
257 }
258
259 set<int> f_blocks;
260 for (; r < num_row_blocks; ++r) {
261 const CompressedRow& row = bs.rows[r];
262 if (row.cells.front().block_id != e_block_id) {
263 break;
264 }
265
266 // Iterate over the blocks in the row, ignoring the first block
267 // since it is the one to be eliminated and adding the rest to
268 // the list of f_blocks associated with this e_block.
269 for (int c = 1; c < row.cells.size(); ++c) {
270 const Cell& cell = row.cells[c];
271 const int f_block_id = cell.block_id - num_eliminate_blocks;
272 CHECK_GE(f_block_id, 0);
273 f_blocks.insert(f_block_id);
274 }
275 }
276
277 for (set<int>::const_iterator block1 = f_blocks.begin();
278 block1 != f_blocks.end();
279 ++block1) {
280 set<int>::const_iterator block2 = block1;
281 ++block2;
282 for (; block2 != f_blocks.end(); ++block2) {
283 if (IsBlockPairInPreconditioner(*block1, *block2)) {
284 block_pairs_.insert(make_pair(*block1, *block2));
285 }
286 }
287 }
288 }
289
290 // The remaining rows which do not contain any e_blocks.
291 for (; r < num_row_blocks; ++r) {
292 const CompressedRow& row = bs.rows[r];
293 CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
294 for (int i = 0; i < row.cells.size(); ++i) {
295 const int block1 = row.cells[i].block_id - num_eliminate_blocks;
296 for (int j = 0; j < row.cells.size(); ++j) {
297 const int block2 = row.cells[j].block_id - num_eliminate_blocks;
298 if (block1 <= block2) {
299 if (IsBlockPairInPreconditioner(block1, block2)) {
300 block_pairs_.insert(make_pair(block1, block2));
301 }
302 }
303 }
304 }
305 }
306
307 VLOG(1) << "Block pair stats: " << block_pairs_.size();
308 }
309
310 // Initialize the SchurEliminator.
InitEliminator(const CompressedRowBlockStructure & bs)311 void VisibilityBasedPreconditioner::InitEliminator(
312 const CompressedRowBlockStructure& bs) {
313 LinearSolver::Options eliminator_options;
314 eliminator_options.elimination_groups = options_.elimination_groups;
315 eliminator_options.num_threads = options_.num_threads;
316
317 DetectStructure(bs, options_.elimination_groups[0],
318 &eliminator_options.row_block_size,
319 &eliminator_options.e_block_size,
320 &eliminator_options.f_block_size);
321
322 eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
323 eliminator_->Init(options_.elimination_groups[0], &bs);
324 }
325
326 // Update the values of the preconditioner matrix and factorize it.
UpdateImpl(const BlockSparseMatrix & A,const double * D)327 bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
328 const double* D) {
329 const time_t start_time = time(NULL);
330 const int num_rows = m_->num_rows();
331 CHECK_GT(num_rows, 0);
332
333 // We need a dummy rhs vector and a dummy b vector since the Schur
334 // eliminator combines the computation of the reduced camera matrix
335 // with the computation of the right hand side of that linear
336 // system.
337 //
338 // TODO(sameeragarwal): Perhaps its worth refactoring the
339 // SchurEliminator::Eliminate function to allow NULL for the rhs. As
340 // of now it does not seem to be worth the effort.
341 Vector rhs = Vector::Zero(m_->num_rows());
342 Vector b = Vector::Zero(A.num_rows());
343
344 // Compute a subset of the entries of the Schur complement.
345 eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data());
346
347 // Try factorizing the matrix. For CLUSTER_JACOBI, this should
348 // always succeed modulo some numerical/conditioning problems. For
349 // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
350 // constructed is not positive definite. However, we will go ahead
351 // and try factorizing it. If it works, great, otherwise we scale
352 // all the cells in the preconditioner corresponding to the edges in
353 // the degree-2 forest and that guarantees positive
354 // definiteness. The proof of this fact can be found in Lemma 1 in
355 // "Visibility Based Preconditioning for Bundle Adjustment".
356 //
357 // Doing the factorization like this saves us matrix mass when
358 // scaling is not needed, which is quite often in our experience.
359 bool status = Factorize();
360
361 // The scaling only affects the tri-diagonal case, since
362 // ScaleOffDiagonalBlocks only pays attenion to the cells that
363 // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
364 // case, the preconditioner is guaranteed to be positive
365 // semidefinite.
366 if (!status && options_.type == CLUSTER_TRIDIAGONAL) {
367 VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
368 << "scaling";
369 ScaleOffDiagonalCells();
370 status = Factorize();
371 }
372
373 VLOG(2) << "Compute time: " << time(NULL) - start_time;
374 return status;
375 }
376
377 // Consider the preconditioner matrix as meta-block matrix, whose
378 // blocks correspond to the clusters. Then cluster pairs corresponding
379 // to edges in the degree-2 forest are off diagonal entries of this
380 // matrix. Scaling these off-diagonal entries by 1/2 forces this
381 // matrix to be positive definite.
ScaleOffDiagonalCells()382 void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
383 for (set< pair<int, int> >::const_iterator it = block_pairs_.begin();
384 it != block_pairs_.end();
385 ++it) {
386 const int block1 = it->first;
387 const int block2 = it->second;
388 if (!IsBlockPairOffDiagonal(block1, block2)) {
389 continue;
390 }
391
392 int r, c, row_stride, col_stride;
393 CellInfo* cell_info = m_->GetCell(block1, block2,
394 &r, &c,
395 &row_stride, &col_stride);
396 CHECK(cell_info != NULL)
397 << "Cell missing for block pair (" << block1 << "," << block2 << ")"
398 << " cluster pair (" << cluster_membership_[block1]
399 << " " << cluster_membership_[block2] << ")";
400
401 // Ah the magic of tri-diagonal matrices and diagonal
402 // dominance. See Lemma 1 in "Visibility Based Preconditioning
403 // For Bundle Adjustment".
404 MatrixRef m(cell_info->values, row_stride, col_stride);
405 m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
406 }
407 }
408
409 // Compute the sparse Cholesky factorization of the preconditioner
410 // matrix.
Factorize()411 bool VisibilityBasedPreconditioner::Factorize() {
412 // Extract the TripletSparseMatrix that is used for actually storing
413 // S and convert it into a cholmod_sparse object.
414 cholmod_sparse* lhs = ss_.CreateSparseMatrix(
415 down_cast<BlockRandomAccessSparseMatrix*>(
416 m_.get())->mutable_matrix());
417
418 // The matrix is symmetric, and the upper triangular part of the
419 // matrix contains the values.
420 lhs->stype = 1;
421
422 // Symbolic factorization is computed if we don't already have one handy.
423 if (factor_ == NULL) {
424 factor_ = ss_.BlockAnalyzeCholesky(lhs, block_size_, block_size_);
425 }
426
427 bool status = ss_.Cholesky(lhs, factor_);
428 ss_.Free(lhs);
429 return status;
430 }
431
RightMultiply(const double * x,double * y) const432 void VisibilityBasedPreconditioner::RightMultiply(const double* x,
433 double* y) const {
434 CHECK_NOTNULL(x);
435 CHECK_NOTNULL(y);
436 SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_);
437
438 const int num_rows = m_->num_rows();
439 memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x));
440 cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_));
441 memcpy(y, solution->x, sizeof(*y) * num_rows);
442 ss->Free(solution);
443 }
444
num_rows() const445 int VisibilityBasedPreconditioner::num_rows() const {
446 return m_->num_rows();
447 }
448
449 // Classify camera/f_block pairs as in and out of the preconditioner,
450 // based on whether the cluster pair that they belong to is in the
451 // preconditioner or not.
IsBlockPairInPreconditioner(const int block1,const int block2) const452 bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
453 const int block1,
454 const int block2) const {
455 int cluster1 = cluster_membership_[block1];
456 int cluster2 = cluster_membership_[block2];
457 if (cluster1 > cluster2) {
458 std::swap(cluster1, cluster2);
459 }
460 return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
461 }
462
IsBlockPairOffDiagonal(const int block1,const int block2) const463 bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
464 const int block1,
465 const int block2) const {
466 return (cluster_membership_[block1] != cluster_membership_[block2]);
467 }
468
469 // Convert a graph into a list of edges that includes self edges for
470 // each vertex.
ForestToClusterPairs(const Graph<int> & forest,HashSet<pair<int,int>> * cluster_pairs) const471 void VisibilityBasedPreconditioner::ForestToClusterPairs(
472 const Graph<int>& forest,
473 HashSet<pair<int, int> >* cluster_pairs) const {
474 CHECK_NOTNULL(cluster_pairs)->clear();
475 const HashSet<int>& vertices = forest.vertices();
476 CHECK_EQ(vertices.size(), num_clusters_);
477
478 // Add all the cluster pairs corresponding to the edges in the
479 // forest.
480 for (HashSet<int>::const_iterator it1 = vertices.begin();
481 it1 != vertices.end();
482 ++it1) {
483 const int cluster1 = *it1;
484 cluster_pairs->insert(make_pair(cluster1, cluster1));
485 const HashSet<int>& neighbors = forest.Neighbors(cluster1);
486 for (HashSet<int>::const_iterator it2 = neighbors.begin();
487 it2 != neighbors.end();
488 ++it2) {
489 const int cluster2 = *it2;
490 if (cluster1 < cluster2) {
491 cluster_pairs->insert(make_pair(cluster1, cluster2));
492 }
493 }
494 }
495 }
496
497 // The visibilty set of a cluster is the union of the visibilty sets
498 // of all its cameras. In other words, the set of points visible to
499 // any camera in the cluster.
ComputeClusterVisibility(const vector<set<int>> & visibility,vector<set<int>> * cluster_visibility) const500 void VisibilityBasedPreconditioner::ComputeClusterVisibility(
501 const vector<set<int> >& visibility,
502 vector<set<int> >* cluster_visibility) const {
503 CHECK_NOTNULL(cluster_visibility)->resize(0);
504 cluster_visibility->resize(num_clusters_);
505 for (int i = 0; i < num_blocks_; ++i) {
506 const int cluster_id = cluster_membership_[i];
507 (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
508 visibility[i].end());
509 }
510 }
511
512 // Construct a graph whose vertices are the clusters, and the edge
513 // weights are the number of 3D points visible to cameras in both the
514 // vertices.
CreateClusterGraph(const vector<set<int>> & cluster_visibility) const515 Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
516 const vector<set<int> >& cluster_visibility) const {
517 Graph<int>* cluster_graph = new Graph<int>;
518
519 for (int i = 0; i < num_clusters_; ++i) {
520 cluster_graph->AddVertex(i);
521 }
522
523 for (int i = 0; i < num_clusters_; ++i) {
524 const set<int>& cluster_i = cluster_visibility[i];
525 for (int j = i+1; j < num_clusters_; ++j) {
526 vector<int> intersection;
527 const set<int>& cluster_j = cluster_visibility[j];
528 set_intersection(cluster_i.begin(), cluster_i.end(),
529 cluster_j.begin(), cluster_j.end(),
530 back_inserter(intersection));
531
532 if (intersection.size() > 0) {
533 // Clusters interact strongly when they share a large number
534 // of 3D points. The degree-2 maximum spanning forest
535 // alorithm, iterates on the edges in decreasing order of
536 // their weight, which is the number of points shared by the
537 // two cameras that it connects.
538 cluster_graph->AddEdge(i, j, intersection.size());
539 }
540 }
541 }
542 return cluster_graph;
543 }
544
545 // Canonical views clustering returns a HashMap from vertices to
546 // cluster ids. Convert this into a flat array for quick lookup. It is
547 // possible that some of the vertices may not be associated with any
548 // cluster. In that case, randomly assign them to one of the clusters.
FlattenMembershipMap(const HashMap<int,int> & membership_map,vector<int> * membership_vector) const549 void VisibilityBasedPreconditioner::FlattenMembershipMap(
550 const HashMap<int, int>& membership_map,
551 vector<int>* membership_vector) const {
552 CHECK_NOTNULL(membership_vector)->resize(0);
553 membership_vector->resize(num_blocks_, -1);
554 // Iterate over the cluster membership map and update the
555 // cluster_membership_ vector assigning arbitrary cluster ids to
556 // the few cameras that have not been clustered.
557 for (HashMap<int, int>::const_iterator it = membership_map.begin();
558 it != membership_map.end();
559 ++it) {
560 const int camera_id = it->first;
561 int cluster_id = it->second;
562
563 // If the view was not clustered, randomly assign it to one of the
564 // clusters. This preserves the mathematical correctness of the
565 // preconditioner. If there are too many views which are not
566 // clustered, it may lead to some quality degradation though.
567 //
568 // TODO(sameeragarwal): Check if a large number of views have not
569 // been clustered and deal with it?
570 if (cluster_id == -1) {
571 cluster_id = camera_id % num_clusters_;
572 }
573
574 membership_vector->at(camera_id) = cluster_id;
575 }
576 }
577
578 } // namespace internal
579 } // namespace ceres
580
581 #endif // CERES_NO_SUITESPARSE
582