• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_NO_SUITESPARSE
32 
33 #include "ceres/visibility_based_preconditioner.h"
34 
35 #include <algorithm>
36 #include <functional>
37 #include <iterator>
38 #include <set>
39 #include <utility>
40 #include <vector>
41 #include "Eigen/Dense"
42 #include "ceres/block_random_access_sparse_matrix.h"
43 #include "ceres/block_sparse_matrix.h"
44 #include "ceres/canonical_views_clustering.h"
45 #include "ceres/collections_port.h"
46 #include "ceres/detect_structure.h"
47 #include "ceres/graph.h"
48 #include "ceres/graph_algorithms.h"
49 #include "ceres/internal/scoped_ptr.h"
50 #include "ceres/linear_solver.h"
51 #include "ceres/schur_eliminator.h"
52 #include "ceres/visibility.h"
53 #include "glog/logging.h"
54 
55 namespace ceres {
56 namespace internal {
57 
58 // TODO(sameeragarwal): Currently these are magic weights for the
59 // preconditioner construction. Move these higher up into the Options
60 // struct and provide some guidelines for choosing them.
61 //
62 // This will require some more work on the clustering algorithm and
63 // possibly some more refactoring of the code.
64 static const double kSizePenaltyWeight = 3.0;
65 static const double kSimilarityPenaltyWeight = 0.0;
66 
VisibilityBasedPreconditioner(const CompressedRowBlockStructure & bs,const Preconditioner::Options & options)67 VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
68     const CompressedRowBlockStructure& bs,
69     const Preconditioner::Options& options)
70     : options_(options),
71       num_blocks_(0),
72       num_clusters_(0),
73       factor_(NULL) {
74   CHECK_GT(options_.elimination_groups.size(), 1);
75   CHECK_GT(options_.elimination_groups[0], 0);
76   CHECK(options_.type == CLUSTER_JACOBI ||
77         options_.type == CLUSTER_TRIDIAGONAL)
78       << "Unknown preconditioner type: " << options_.type;
79   num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
80   CHECK_GT(num_blocks_, 0)
81       << "Jacobian should have atleast 1 f_block for "
82       << "visibility based preconditioning.";
83 
84   // Vector of camera block sizes
85   block_size_.resize(num_blocks_);
86   for (int i = 0; i < num_blocks_; ++i) {
87     block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
88   }
89 
90   const time_t start_time = time(NULL);
91   switch (options_.type) {
92     case CLUSTER_JACOBI:
93       ComputeClusterJacobiSparsity(bs);
94       break;
95     case CLUSTER_TRIDIAGONAL:
96       ComputeClusterTridiagonalSparsity(bs);
97       break;
98     default:
99       LOG(FATAL) << "Unknown preconditioner type";
100   }
101   const time_t structure_time = time(NULL);
102   InitStorage(bs);
103   const time_t storage_time = time(NULL);
104   InitEliminator(bs);
105   const time_t eliminator_time = time(NULL);
106 
107   // Allocate temporary storage for a vector used during
108   // RightMultiply.
109   tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL,
110                                                  m_->num_rows(),
111                                                  m_->num_rows()));
112   const time_t init_time = time(NULL);
113   VLOG(2) << "init time: "
114           << init_time - start_time
115           << " structure time: " << structure_time - start_time
116           << " storage time:" << storage_time - structure_time
117           << " eliminator time: " << eliminator_time - storage_time;
118 }
119 
~VisibilityBasedPreconditioner()120 VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {
121   if (factor_ != NULL) {
122     ss_.Free(factor_);
123     factor_ = NULL;
124   }
125   if (tmp_rhs_ != NULL) {
126     ss_.Free(tmp_rhs_);
127     tmp_rhs_ = NULL;
128   }
129 }
130 
131 // Determine the sparsity structure of the CLUSTER_JACOBI
132 // preconditioner. It clusters cameras using their scene
133 // visibility. The clusters form the diagonal blocks of the
134 // preconditioner matrix.
ComputeClusterJacobiSparsity(const CompressedRowBlockStructure & bs)135 void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
136     const CompressedRowBlockStructure& bs) {
137   vector<set<int> > visibility;
138   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
139   CHECK_EQ(num_blocks_, visibility.size());
140   ClusterCameras(visibility);
141   cluster_pairs_.clear();
142   for (int i = 0; i < num_clusters_; ++i) {
143     cluster_pairs_.insert(make_pair(i, i));
144   }
145 }
146 
147 // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
148 // preconditioner. It clusters cameras using using the scene
149 // visibility and then finds the strongly interacting pairs of
150 // clusters by constructing another graph with the clusters as
151 // vertices and approximating it with a degree-2 maximum spanning
152 // forest. The set of edges in this forest are the cluster pairs.
ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure & bs)153 void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
154     const CompressedRowBlockStructure& bs) {
155   vector<set<int> > visibility;
156   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
157   CHECK_EQ(num_blocks_, visibility.size());
158   ClusterCameras(visibility);
159 
160   // Construct a weighted graph on the set of clusters, where the
161   // edges are the number of 3D points/e_blocks visible in both the
162   // clusters at the ends of the edge. Return an approximate degree-2
163   // maximum spanning forest of this graph.
164   vector<set<int> > cluster_visibility;
165   ComputeClusterVisibility(visibility, &cluster_visibility);
166   scoped_ptr<Graph<int> > cluster_graph(
167       CHECK_NOTNULL(CreateClusterGraph(cluster_visibility)));
168   scoped_ptr<Graph<int> > forest(
169       CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph)));
170   ForestToClusterPairs(*forest, &cluster_pairs_);
171 }
172 
173 // Allocate storage for the preconditioner matrix.
InitStorage(const CompressedRowBlockStructure & bs)174 void VisibilityBasedPreconditioner::InitStorage(
175     const CompressedRowBlockStructure& bs) {
176   ComputeBlockPairsInPreconditioner(bs);
177   m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
178 }
179 
180 // Call the canonical views algorithm and cluster the cameras based on
181 // their visibility sets. The visibility set of a camera is the set of
182 // e_blocks/3D points in the scene that are seen by it.
183 //
184 // The cluster_membership_ vector is updated to indicate cluster
185 // memberships for each camera block.
ClusterCameras(const vector<set<int>> & visibility)186 void VisibilityBasedPreconditioner::ClusterCameras(
187     const vector<set<int> >& visibility) {
188   scoped_ptr<Graph<int> > schur_complement_graph(
189       CHECK_NOTNULL(CreateSchurComplementGraph(visibility)));
190 
191   CanonicalViewsClusteringOptions options;
192   options.size_penalty_weight = kSizePenaltyWeight;
193   options.similarity_penalty_weight = kSimilarityPenaltyWeight;
194 
195   vector<int> centers;
196   HashMap<int, int> membership;
197   ComputeCanonicalViewsClustering(*schur_complement_graph,
198                                   options,
199                                   &centers,
200                                   &membership);
201   num_clusters_ = centers.size();
202   CHECK_GT(num_clusters_, 0);
203   VLOG(2) << "num_clusters: " << num_clusters_;
204   FlattenMembershipMap(membership, &cluster_membership_);
205 }
206 
207 // Compute the block sparsity structure of the Schur complement
208 // matrix. For each pair of cameras contributing a non-zero cell to
209 // the schur complement, determine if that cell is present in the
210 // preconditioner or not.
211 //
212 // A pair of cameras contribute a cell to the preconditioner if they
213 // are part of the same cluster or if the the two clusters that they
214 // belong have an edge connecting them in the degree-2 maximum
215 // spanning forest.
216 //
217 // For example, a camera pair (i,j) where i belonges to cluster1 and
218 // j belongs to cluster2 (assume that cluster1 < cluster2).
219 //
220 // The cell corresponding to (i,j) is present in the preconditioner
221 // if cluster1 == cluster2 or the pair (cluster1, cluster2) were
222 // connected by an edge in the degree-2 maximum spanning forest.
223 //
224 // Since we have already expanded the forest into a set of camera
225 // pairs/edges, including self edges, the check can be reduced to
226 // checking membership of (cluster1, cluster2) in cluster_pairs_.
ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure & bs)227 void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
228     const CompressedRowBlockStructure& bs) {
229   block_pairs_.clear();
230   for (int i = 0; i < num_blocks_; ++i) {
231     block_pairs_.insert(make_pair(i, i));
232   }
233 
234   int r = 0;
235   const int num_row_blocks = bs.rows.size();
236   const int num_eliminate_blocks = options_.elimination_groups[0];
237 
238   // Iterate over each row of the matrix. The block structure of the
239   // matrix is assumed to be sorted in order of the e_blocks/point
240   // blocks. Thus all row blocks containing an e_block/point occur
241   // contiguously. Further, if present, an e_block is always the first
242   // parameter block in each row block.  These structural assumptions
243   // are common to all Schur complement based solvers in Ceres.
244   //
245   // For each e_block/point block we identify the set of cameras
246   // seeing it. The cross product of this set with itself is the set
247   // of non-zero cells contibuted by this e_block.
248   //
249   // The time complexity of this is O(nm^2) where, n is the number of
250   // 3d points and m is the maximum number of cameras seeing any
251   // point, which for most scenes is a fairly small number.
252   while (r < num_row_blocks) {
253     int e_block_id = bs.rows[r].cells.front().block_id;
254     if (e_block_id >= num_eliminate_blocks) {
255       // Skip the rows whose first block is an f_block.
256       break;
257     }
258 
259     set<int> f_blocks;
260     for (; r < num_row_blocks; ++r) {
261       const CompressedRow& row = bs.rows[r];
262       if (row.cells.front().block_id != e_block_id) {
263         break;
264       }
265 
266       // Iterate over the blocks in the row, ignoring the first block
267       // since it is the one to be eliminated and adding the rest to
268       // the list of f_blocks associated with this e_block.
269       for (int c = 1; c < row.cells.size(); ++c) {
270         const Cell& cell = row.cells[c];
271         const int f_block_id = cell.block_id - num_eliminate_blocks;
272         CHECK_GE(f_block_id, 0);
273         f_blocks.insert(f_block_id);
274       }
275     }
276 
277     for (set<int>::const_iterator block1 = f_blocks.begin();
278          block1 != f_blocks.end();
279          ++block1) {
280       set<int>::const_iterator block2 = block1;
281       ++block2;
282       for (; block2 != f_blocks.end(); ++block2) {
283         if (IsBlockPairInPreconditioner(*block1, *block2)) {
284           block_pairs_.insert(make_pair(*block1, *block2));
285         }
286       }
287     }
288   }
289 
290   // The remaining rows which do not contain any e_blocks.
291   for (; r < num_row_blocks; ++r) {
292     const CompressedRow& row = bs.rows[r];
293     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
294     for (int i = 0; i < row.cells.size(); ++i) {
295       const int block1 = row.cells[i].block_id - num_eliminate_blocks;
296       for (int j = 0; j < row.cells.size(); ++j) {
297         const int block2 = row.cells[j].block_id - num_eliminate_blocks;
298         if (block1 <= block2) {
299           if (IsBlockPairInPreconditioner(block1, block2)) {
300             block_pairs_.insert(make_pair(block1, block2));
301           }
302         }
303       }
304     }
305   }
306 
307   VLOG(1) << "Block pair stats: " << block_pairs_.size();
308 }
309 
310 // Initialize the SchurEliminator.
InitEliminator(const CompressedRowBlockStructure & bs)311 void VisibilityBasedPreconditioner::InitEliminator(
312     const CompressedRowBlockStructure& bs) {
313   LinearSolver::Options eliminator_options;
314   eliminator_options.elimination_groups = options_.elimination_groups;
315   eliminator_options.num_threads = options_.num_threads;
316 
317   DetectStructure(bs, options_.elimination_groups[0],
318                   &eliminator_options.row_block_size,
319                   &eliminator_options.e_block_size,
320                   &eliminator_options.f_block_size);
321 
322   eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
323   eliminator_->Init(options_.elimination_groups[0], &bs);
324 }
325 
326 // Update the values of the preconditioner matrix and factorize it.
UpdateImpl(const BlockSparseMatrix & A,const double * D)327 bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
328                                                const double* D) {
329   const time_t start_time = time(NULL);
330   const int num_rows = m_->num_rows();
331   CHECK_GT(num_rows, 0);
332 
333   // We need a dummy rhs vector and a dummy b vector since the Schur
334   // eliminator combines the computation of the reduced camera matrix
335   // with the computation of the right hand side of that linear
336   // system.
337   //
338   // TODO(sameeragarwal): Perhaps its worth refactoring the
339   // SchurEliminator::Eliminate function to allow NULL for the rhs. As
340   // of now it does not seem to be worth the effort.
341   Vector rhs = Vector::Zero(m_->num_rows());
342   Vector b = Vector::Zero(A.num_rows());
343 
344   // Compute a subset of the entries of the Schur complement.
345   eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data());
346 
347   // Try factorizing the matrix. For CLUSTER_JACOBI, this should
348   // always succeed modulo some numerical/conditioning problems. For
349   // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
350   // constructed is not positive definite. However, we will go ahead
351   // and try factorizing it. If it works, great, otherwise we scale
352   // all the cells in the preconditioner corresponding to the edges in
353   // the degree-2 forest and that guarantees positive
354   // definiteness. The proof of this fact can be found in Lemma 1 in
355   // "Visibility Based Preconditioning for Bundle Adjustment".
356   //
357   // Doing the factorization like this saves us matrix mass when
358   // scaling is not needed, which is quite often in our experience.
359   bool status = Factorize();
360 
361   // The scaling only affects the tri-diagonal case, since
362   // ScaleOffDiagonalBlocks only pays attenion to the cells that
363   // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
364   // case, the preconditioner is guaranteed to be positive
365   // semidefinite.
366   if (!status && options_.type == CLUSTER_TRIDIAGONAL) {
367     VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
368             << "scaling";
369     ScaleOffDiagonalCells();
370     status = Factorize();
371   }
372 
373   VLOG(2) << "Compute time: " << time(NULL) - start_time;
374   return status;
375 }
376 
377 // Consider the preconditioner matrix as meta-block matrix, whose
378 // blocks correspond to the clusters. Then cluster pairs corresponding
379 // to edges in the degree-2 forest are off diagonal entries of this
380 // matrix. Scaling these off-diagonal entries by 1/2 forces this
381 // matrix to be positive definite.
ScaleOffDiagonalCells()382 void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
383   for (set< pair<int, int> >::const_iterator it = block_pairs_.begin();
384        it != block_pairs_.end();
385        ++it) {
386     const int block1 = it->first;
387     const int block2 = it->second;
388     if (!IsBlockPairOffDiagonal(block1, block2)) {
389       continue;
390     }
391 
392     int r, c, row_stride, col_stride;
393     CellInfo* cell_info = m_->GetCell(block1, block2,
394                                       &r, &c,
395                                       &row_stride, &col_stride);
396     CHECK(cell_info != NULL)
397         << "Cell missing for block pair (" << block1 << "," << block2 << ")"
398         << " cluster pair (" << cluster_membership_[block1]
399         << " " << cluster_membership_[block2] << ")";
400 
401     // Ah the magic of tri-diagonal matrices and diagonal
402     // dominance. See Lemma 1 in "Visibility Based Preconditioning
403     // For Bundle Adjustment".
404     MatrixRef m(cell_info->values, row_stride, col_stride);
405     m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
406   }
407 }
408 
409 // Compute the sparse Cholesky factorization of the preconditioner
410 // matrix.
Factorize()411 bool VisibilityBasedPreconditioner::Factorize() {
412   // Extract the TripletSparseMatrix that is used for actually storing
413   // S and convert it into a cholmod_sparse object.
414   cholmod_sparse* lhs = ss_.CreateSparseMatrix(
415       down_cast<BlockRandomAccessSparseMatrix*>(
416           m_.get())->mutable_matrix());
417 
418   // The matrix is symmetric, and the upper triangular part of the
419   // matrix contains the values.
420   lhs->stype = 1;
421 
422   // Symbolic factorization is computed if we don't already have one handy.
423   if (factor_ == NULL) {
424     factor_ = ss_.BlockAnalyzeCholesky(lhs, block_size_, block_size_);
425   }
426 
427   bool status = ss_.Cholesky(lhs, factor_);
428   ss_.Free(lhs);
429   return status;
430 }
431 
RightMultiply(const double * x,double * y) const432 void VisibilityBasedPreconditioner::RightMultiply(const double* x,
433                                                   double* y) const {
434   CHECK_NOTNULL(x);
435   CHECK_NOTNULL(y);
436   SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_);
437 
438   const int num_rows = m_->num_rows();
439   memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x));
440   cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_));
441   memcpy(y, solution->x, sizeof(*y) * num_rows);
442   ss->Free(solution);
443 }
444 
num_rows() const445 int VisibilityBasedPreconditioner::num_rows() const {
446   return m_->num_rows();
447 }
448 
449 // Classify camera/f_block pairs as in and out of the preconditioner,
450 // based on whether the cluster pair that they belong to is in the
451 // preconditioner or not.
IsBlockPairInPreconditioner(const int block1,const int block2) const452 bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
453     const int block1,
454     const int block2) const {
455   int cluster1 = cluster_membership_[block1];
456   int cluster2 = cluster_membership_[block2];
457   if (cluster1 > cluster2) {
458     std::swap(cluster1, cluster2);
459   }
460   return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
461 }
462 
IsBlockPairOffDiagonal(const int block1,const int block2) const463 bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
464     const int block1,
465     const int block2) const {
466   return (cluster_membership_[block1] != cluster_membership_[block2]);
467 }
468 
469 // Convert a graph into a list of edges that includes self edges for
470 // each vertex.
ForestToClusterPairs(const Graph<int> & forest,HashSet<pair<int,int>> * cluster_pairs) const471 void VisibilityBasedPreconditioner::ForestToClusterPairs(
472     const Graph<int>& forest,
473     HashSet<pair<int, int> >* cluster_pairs) const {
474   CHECK_NOTNULL(cluster_pairs)->clear();
475   const HashSet<int>& vertices = forest.vertices();
476   CHECK_EQ(vertices.size(), num_clusters_);
477 
478   // Add all the cluster pairs corresponding to the edges in the
479   // forest.
480   for (HashSet<int>::const_iterator it1 = vertices.begin();
481        it1 != vertices.end();
482        ++it1) {
483     const int cluster1 = *it1;
484     cluster_pairs->insert(make_pair(cluster1, cluster1));
485     const HashSet<int>& neighbors = forest.Neighbors(cluster1);
486     for (HashSet<int>::const_iterator it2 = neighbors.begin();
487          it2 != neighbors.end();
488          ++it2) {
489       const int cluster2 = *it2;
490       if (cluster1 < cluster2) {
491         cluster_pairs->insert(make_pair(cluster1, cluster2));
492       }
493     }
494   }
495 }
496 
497 // The visibilty set of a cluster is the union of the visibilty sets
498 // of all its cameras. In other words, the set of points visible to
499 // any camera in the cluster.
ComputeClusterVisibility(const vector<set<int>> & visibility,vector<set<int>> * cluster_visibility) const500 void VisibilityBasedPreconditioner::ComputeClusterVisibility(
501     const vector<set<int> >& visibility,
502     vector<set<int> >* cluster_visibility) const {
503   CHECK_NOTNULL(cluster_visibility)->resize(0);
504   cluster_visibility->resize(num_clusters_);
505   for (int i = 0; i < num_blocks_; ++i) {
506     const int cluster_id = cluster_membership_[i];
507     (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
508                                              visibility[i].end());
509   }
510 }
511 
512 // Construct a graph whose vertices are the clusters, and the edge
513 // weights are the number of 3D points visible to cameras in both the
514 // vertices.
CreateClusterGraph(const vector<set<int>> & cluster_visibility) const515 Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
516     const vector<set<int> >& cluster_visibility) const {
517   Graph<int>* cluster_graph = new Graph<int>;
518 
519   for (int i = 0; i < num_clusters_; ++i) {
520     cluster_graph->AddVertex(i);
521   }
522 
523   for (int i = 0; i < num_clusters_; ++i) {
524     const set<int>& cluster_i = cluster_visibility[i];
525     for (int j = i+1; j < num_clusters_; ++j) {
526       vector<int> intersection;
527       const set<int>& cluster_j = cluster_visibility[j];
528       set_intersection(cluster_i.begin(), cluster_i.end(),
529                        cluster_j.begin(), cluster_j.end(),
530                        back_inserter(intersection));
531 
532       if (intersection.size() > 0) {
533         // Clusters interact strongly when they share a large number
534         // of 3D points. The degree-2 maximum spanning forest
535         // alorithm, iterates on the edges in decreasing order of
536         // their weight, which is the number of points shared by the
537         // two cameras that it connects.
538         cluster_graph->AddEdge(i, j, intersection.size());
539       }
540     }
541   }
542   return cluster_graph;
543 }
544 
545 // Canonical views clustering returns a HashMap from vertices to
546 // cluster ids. Convert this into a flat array for quick lookup. It is
547 // possible that some of the vertices may not be associated with any
548 // cluster. In that case, randomly assign them to one of the clusters.
FlattenMembershipMap(const HashMap<int,int> & membership_map,vector<int> * membership_vector) const549 void VisibilityBasedPreconditioner::FlattenMembershipMap(
550     const HashMap<int, int>& membership_map,
551     vector<int>* membership_vector) const {
552   CHECK_NOTNULL(membership_vector)->resize(0);
553   membership_vector->resize(num_blocks_, -1);
554   // Iterate over the cluster membership map and update the
555   // cluster_membership_ vector assigning arbitrary cluster ids to
556   // the few cameras that have not been clustered.
557   for (HashMap<int, int>::const_iterator it = membership_map.begin();
558        it != membership_map.end();
559        ++it) {
560     const int camera_id = it->first;
561     int cluster_id = it->second;
562 
563     // If the view was not clustered, randomly assign it to one of the
564     // clusters. This preserves the mathematical correctness of the
565     // preconditioner. If there are too many views which are not
566     // clustered, it may lead to some quality degradation though.
567     //
568     // TODO(sameeragarwal): Check if a large number of views have not
569     // been clustered and deal with it?
570     if (cluster_id == -1) {
571       cluster_id = camera_id % num_clusters_;
572     }
573 
574     membership_vector->at(camera_id) = cluster_id;
575   }
576 }
577 
578 }  // namespace internal
579 }  // namespace ceres
580 
581 #endif  // CERES_NO_SUITESPARSE
582