1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // A "smart" pointer type with reference tracking. Every pointer to a
6 // particular object is kept on a circular linked list. When the last pointer
7 // to an object is destroyed or reassigned, the object is deleted.
8 //
9 // Used properly, this deletes the object when the last reference goes away.
10 // There are several caveats:
11 // - Like all reference counting schemes, cycles lead to leaks.
12 // - Each smart pointer is actually two pointers (8 bytes instead of 4).
13 // - Every time a pointer is released, the entire list of pointers to that
14 // object is traversed. This class is therefore NOT SUITABLE when there
15 // will often be more than two or three pointers to a particular object.
16 // - References are only tracked as long as linked_ptr<> objects are copied.
17 // If a linked_ptr<> is converted to a raw pointer and back, BAD THINGS
18 // will happen (double deletion).
19 //
20 // A good use of this class is storing object references in STL containers.
21 // You can safely put linked_ptr<> in a vector<>.
22 // Other uses may not be as good.
23 //
24 // Note: If you use an incomplete type with linked_ptr<>, the class
25 // *containing* linked_ptr<> must have a constructor and destructor (even
26 // if they do nothing!).
27 //
28 // Thread Safety:
29 // A linked_ptr is NOT thread safe. Copying a linked_ptr object is
30 // effectively a read-write operation.
31 //
32 // Alternative: to linked_ptr is shared_ptr, which
33 // - is also two pointers in size (8 bytes for 32 bit addresses)
34 // - is thread safe for copying and deletion
35 // - supports weak_ptrs
36
37 #ifndef BASE_MEMORY_LINKED_PTR_H_
38 #define BASE_MEMORY_LINKED_PTR_H_
39 #pragma once
40
41 #include "base/logging.h" // for CHECK macros
42
43 // This is used internally by all instances of linked_ptr<>. It needs to be
44 // a non-template class because different types of linked_ptr<> can refer to
45 // the same object (linked_ptr<Superclass>(obj) vs linked_ptr<Subclass>(obj)).
46 // So, it needs to be possible for different types of linked_ptr to participate
47 // in the same circular linked list, so we need a single class type here.
48 //
49 // DO NOT USE THIS CLASS DIRECTLY YOURSELF. Use linked_ptr<T>.
50 class linked_ptr_internal {
51 public:
52 // Create a new circle that includes only this instance.
join_new()53 void join_new() {
54 next_ = this;
55 }
56
57 // Join an existing circle.
join(linked_ptr_internal const * ptr)58 void join(linked_ptr_internal const* ptr) {
59 next_ = ptr->next_;
60 ptr->next_ = this;
61 }
62
63 // Leave whatever circle we're part of. Returns true iff we were the
64 // last member of the circle. Once this is done, you can join() another.
depart()65 bool depart() {
66 if (next_ == this) return true;
67 linked_ptr_internal const* p = next_;
68 while (p->next_ != this) p = p->next_;
69 p->next_ = next_;
70 return false;
71 }
72
73 private:
74 mutable linked_ptr_internal const* next_;
75 };
76
77 template <typename T>
78 class linked_ptr {
79 public:
80 typedef T element_type;
81
82 // Take over ownership of a raw pointer. This should happen as soon as
83 // possible after the object is created.
84 explicit linked_ptr(T* ptr = NULL) { capture(ptr); }
~linked_ptr()85 ~linked_ptr() { depart(); }
86
87 // Copy an existing linked_ptr<>, adding ourselves to the list of references.
linked_ptr(linked_ptr<U> const & ptr)88 template <typename U> linked_ptr(linked_ptr<U> const& ptr) { copy(&ptr); }
89
linked_ptr(linked_ptr const & ptr)90 linked_ptr(linked_ptr const& ptr) {
91 DCHECK_NE(&ptr, this);
92 copy(&ptr);
93 }
94
95 // Assignment releases the old value and acquires the new.
96 template <typename U> linked_ptr& operator=(linked_ptr<U> const& ptr) {
97 depart();
98 copy(&ptr);
99 return *this;
100 }
101
102 linked_ptr& operator=(linked_ptr const& ptr) {
103 if (&ptr != this) {
104 depart();
105 copy(&ptr);
106 }
107 return *this;
108 }
109
110 // Smart pointer members.
111 void reset(T* ptr = NULL) {
112 depart();
113 capture(ptr);
114 }
get()115 T* get() const { return value_; }
116 T* operator->() const { return value_; }
117 T& operator*() const { return *value_; }
118 // Release ownership of the pointed object and returns it.
119 // Sole ownership by this linked_ptr object is required.
release()120 T* release() {
121 bool last = link_.depart();
122 CHECK(last);
123 T* v = value_;
124 value_ = NULL;
125 return v;
126 }
127
128 bool operator==(const T* p) const { return value_ == p; }
129 bool operator!=(const T* p) const { return value_ != p; }
130 template <typename U>
131 bool operator==(linked_ptr<U> const& ptr) const {
132 return value_ == ptr.get();
133 }
134 template <typename U>
135 bool operator!=(linked_ptr<U> const& ptr) const {
136 return value_ != ptr.get();
137 }
138
139 private:
140 template <typename U>
141 friend class linked_ptr;
142
143 T* value_;
144 linked_ptr_internal link_;
145
depart()146 void depart() {
147 if (link_.depart()) delete value_;
148 }
149
capture(T * ptr)150 void capture(T* ptr) {
151 value_ = ptr;
152 link_.join_new();
153 }
154
copy(linked_ptr<U> const * ptr)155 template <typename U> void copy(linked_ptr<U> const* ptr) {
156 value_ = ptr->get();
157 if (value_)
158 link_.join(&ptr->link_);
159 else
160 link_.join_new();
161 }
162 };
163
164 template<typename T> inline
165 bool operator==(T* ptr, const linked_ptr<T>& x) {
166 return ptr == x.get();
167 }
168
169 template<typename T> inline
170 bool operator!=(T* ptr, const linked_ptr<T>& x) {
171 return ptr != x.get();
172 }
173
174 // A function to convert T* into linked_ptr<T>
175 // Doing e.g. make_linked_ptr(new FooBarBaz<type>(arg)) is a shorter notation
176 // for linked_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
177 template <typename T>
make_linked_ptr(T * ptr)178 linked_ptr<T> make_linked_ptr(T* ptr) {
179 return linked_ptr<T>(ptr);
180 }
181
182 #endif // BASE_MEMORY_LINKED_PTR_H_
183