• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Scopers help you manage ownership of a pointer, helping you easily manage the
6 // a pointer within a scope, and automatically destroying the pointer at the
7 // end of a scope.  There are two main classes you will use, which correspond
8 // to the operators new/delete and new[]/delete[].
9 //
10 // Example usage (scoped_ptr):
11 //   {
12 //     scoped_ptr<Foo> foo(new Foo("wee"));
13 //   }  // foo goes out of scope, releasing the pointer with it.
14 //
15 //   {
16 //     scoped_ptr<Foo> foo;          // No pointer managed.
17 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
18 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
19 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
20 //     foo->Method();                // Foo::Method() called.
21 //     foo.get()->Method();          // Foo::Method() called.
22 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
23 //                                   // manages a pointer.
24 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
25 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
26 //                                   // manages a pointer.
27 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
28 //
29 // Example usage (scoped_array):
30 //   {
31 //     scoped_array<Foo> foo(new Foo[100]);
32 //     foo.get()->Method();  // Foo::Method on the 0th element.
33 //     foo[10].Method();     // Foo::Method on the 10th element.
34 //   }
35 
36 #ifndef BASE_MEMORY_SCOPED_PTR_H_
37 #define BASE_MEMORY_SCOPED_PTR_H_
38 #pragma once
39 
40 // This is an implementation designed to match the anticipated future TR2
41 // implementation of the scoped_ptr class, and its closely-related brethren,
42 // scoped_array, scoped_ptr_malloc.
43 
44 #include <assert.h>
45 #include <stddef.h>
46 #include <stdlib.h>
47 
48 #include "base/compiler_specific.h"
49 
50 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
51 // automatically deletes the pointer it holds (if any).
52 // That is, scoped_ptr<T> owns the T object that it points to.
53 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
54 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
55 // dereference it, you get the threadsafety guarantees of T.
56 //
57 // The size of a scoped_ptr is small:
58 // sizeof(scoped_ptr<C>) == sizeof(C*)
59 template <class C>
60 class scoped_ptr {
61  public:
62 
63   // The element type
64   typedef C element_type;
65 
66   // Constructor.  Defaults to initializing with NULL.
67   // There is no way to create an uninitialized scoped_ptr.
68   // The input parameter must be allocated with new.
ptr_(p)69   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
70 
71   // Destructor.  If there is a C object, delete it.
72   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr()73   ~scoped_ptr() {
74     enum { type_must_be_complete = sizeof(C) };
75     delete ptr_;
76   }
77 
78   // Reset.  Deletes the current owned object, if any.
79   // Then takes ownership of a new object, if given.
80   // this->reset(this->get()) works.
81   void reset(C* p = NULL) {
82     if (p != ptr_) {
83       enum { type_must_be_complete = sizeof(C) };
84       delete ptr_;
85       ptr_ = p;
86     }
87   }
88 
89   // Accessors to get the owned object.
90   // operator* and operator-> will assert() if there is no current object.
91   C& operator*() const {
92     assert(ptr_ != NULL);
93     return *ptr_;
94   }
95   C* operator->() const  {
96     assert(ptr_ != NULL);
97     return ptr_;
98   }
get()99   C* get() const { return ptr_; }
100 
101   // Comparison operators.
102   // These return whether two scoped_ptr refer to the same object, not just to
103   // two different but equal objects.
104   bool operator==(C* p) const { return ptr_ == p; }
105   bool operator!=(C* p) const { return ptr_ != p; }
106 
107   // Swap two scoped pointers.
swap(scoped_ptr & p2)108   void swap(scoped_ptr& p2) {
109     C* tmp = ptr_;
110     ptr_ = p2.ptr_;
111     p2.ptr_ = tmp;
112   }
113 
114   // Release a pointer.
115   // The return value is the current pointer held by this object.
116   // If this object holds a NULL pointer, the return value is NULL.
117   // After this operation, this object will hold a NULL pointer,
118   // and will not own the object any more.
release()119   C* release() WARN_UNUSED_RESULT {
120     C* retVal = ptr_;
121     ptr_ = NULL;
122     return retVal;
123   }
124 
125  private:
126   C* ptr_;
127 
128   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
129   // make sense, and if C2 == C, it still doesn't make sense because you should
130   // never have the same object owned by two different scoped_ptrs.
131   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
132   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
133 
134   // Disallow evil constructors
135   scoped_ptr(const scoped_ptr&);
136   void operator=(const scoped_ptr&);
137 };
138 
139 // Free functions
140 template <class C>
swap(scoped_ptr<C> & p1,scoped_ptr<C> & p2)141 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
142   p1.swap(p2);
143 }
144 
145 template <class C>
146 bool operator==(C* p1, const scoped_ptr<C>& p2) {
147   return p1 == p2.get();
148 }
149 
150 template <class C>
151 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
152   return p1 != p2.get();
153 }
154 
155 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
156 // with new [] and the destructor deletes objects with delete [].
157 //
158 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
159 // or is NULL.  A scoped_array<C> owns the object that it points to.
160 // scoped_array<T> is thread-compatible, and once you index into it,
161 // the returned objects have only the threadsafety guarantees of T.
162 //
163 // Size: sizeof(scoped_array<C>) == sizeof(C*)
164 template <class C>
165 class scoped_array {
166  public:
167 
168   // The element type
169   typedef C element_type;
170 
171   // Constructor.  Defaults to intializing with NULL.
172   // There is no way to create an uninitialized scoped_array.
173   // The input parameter must be allocated with new [].
array_(p)174   explicit scoped_array(C* p = NULL) : array_(p) { }
175 
176   // Destructor.  If there is a C object, delete it.
177   // We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array()178   ~scoped_array() {
179     enum { type_must_be_complete = sizeof(C) };
180     delete[] array_;
181   }
182 
183   // Reset.  Deletes the current owned object, if any.
184   // Then takes ownership of a new object, if given.
185   // this->reset(this->get()) works.
186   void reset(C* p = NULL) {
187     if (p != array_) {
188       enum { type_must_be_complete = sizeof(C) };
189       delete[] array_;
190       array_ = p;
191     }
192   }
193 
194   // Get one element of the current object.
195   // Will assert() if there is no current object, or index i is negative.
196   C& operator[](ptrdiff_t i) const {
197     assert(i >= 0);
198     assert(array_ != NULL);
199     return array_[i];
200   }
201 
202   // Get a pointer to the zeroth element of the current object.
203   // If there is no current object, return NULL.
get()204   C* get() const {
205     return array_;
206   }
207 
208   // Comparison operators.
209   // These return whether two scoped_array refer to the same object, not just to
210   // two different but equal objects.
211   bool operator==(C* p) const { return array_ == p; }
212   bool operator!=(C* p) const { return array_ != p; }
213 
214   // Swap two scoped arrays.
swap(scoped_array & p2)215   void swap(scoped_array& p2) {
216     C* tmp = array_;
217     array_ = p2.array_;
218     p2.array_ = tmp;
219   }
220 
221   // Release an array.
222   // The return value is the current pointer held by this object.
223   // If this object holds a NULL pointer, the return value is NULL.
224   // After this operation, this object will hold a NULL pointer,
225   // and will not own the object any more.
release()226   C* release() WARN_UNUSED_RESULT {
227     C* retVal = array_;
228     array_ = NULL;
229     return retVal;
230   }
231 
232  private:
233   C* array_;
234 
235   // Forbid comparison of different scoped_array types.
236   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
237   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
238 
239   // Disallow evil constructors
240   scoped_array(const scoped_array&);
241   void operator=(const scoped_array&);
242 };
243 
244 // Free functions
245 template <class C>
swap(scoped_array<C> & p1,scoped_array<C> & p2)246 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
247   p1.swap(p2);
248 }
249 
250 template <class C>
251 bool operator==(C* p1, const scoped_array<C>& p2) {
252   return p1 == p2.get();
253 }
254 
255 template <class C>
256 bool operator!=(C* p1, const scoped_array<C>& p2) {
257   return p1 != p2.get();
258 }
259 
260 // This class wraps the c library function free() in a class that can be
261 // passed as a template argument to scoped_ptr_malloc below.
262 class ScopedPtrMallocFree {
263  public:
operator()264   inline void operator()(void* x) const {
265     free(x);
266   }
267 };
268 
269 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
270 // second template argument, the functor used to free the object.
271 
272 template<class C, class FreeProc = ScopedPtrMallocFree>
273 class scoped_ptr_malloc {
274  public:
275 
276   // The element type
277   typedef C element_type;
278 
279   // Constructor.  Defaults to initializing with NULL.
280   // There is no way to create an uninitialized scoped_ptr.
281   // The input parameter must be allocated with an allocator that matches the
282   // Free functor.  For the default Free functor, this is malloc, calloc, or
283   // realloc.
ptr_(p)284   explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
285 
286   // Destructor.  If there is a C object, call the Free functor.
~scoped_ptr_malloc()287   ~scoped_ptr_malloc() {
288     free_(ptr_);
289   }
290 
291   // Reset.  Calls the Free functor on the current owned object, if any.
292   // Then takes ownership of a new object, if given.
293   // this->reset(this->get()) works.
294   void reset(C* p = NULL) {
295     if (ptr_ != p) {
296       free_(ptr_);
297       ptr_ = p;
298     }
299   }
300 
301   // Get the current object.
302   // operator* and operator-> will cause an assert() failure if there is
303   // no current object.
304   C& operator*() const {
305     assert(ptr_ != NULL);
306     return *ptr_;
307   }
308 
309   C* operator->() const {
310     assert(ptr_ != NULL);
311     return ptr_;
312   }
313 
get()314   C* get() const {
315     return ptr_;
316   }
317 
318   // Comparison operators.
319   // These return whether a scoped_ptr_malloc and a plain pointer refer
320   // to the same object, not just to two different but equal objects.
321   // For compatibility with the boost-derived implementation, these
322   // take non-const arguments.
323   bool operator==(C* p) const {
324     return ptr_ == p;
325   }
326 
327   bool operator!=(C* p) const {
328     return ptr_ != p;
329   }
330 
331   // Swap two scoped pointers.
swap(scoped_ptr_malloc & b)332   void swap(scoped_ptr_malloc & b) {
333     C* tmp = b.ptr_;
334     b.ptr_ = ptr_;
335     ptr_ = tmp;
336   }
337 
338   // Release a pointer.
339   // The return value is the current pointer held by this object.
340   // If this object holds a NULL pointer, the return value is NULL.
341   // After this operation, this object will hold a NULL pointer,
342   // and will not own the object any more.
release()343   C* release() WARN_UNUSED_RESULT {
344     C* tmp = ptr_;
345     ptr_ = NULL;
346     return tmp;
347   }
348 
349  private:
350   C* ptr_;
351 
352   // no reason to use these: each scoped_ptr_malloc should have its own object
353   template <class C2, class GP>
354   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
355   template <class C2, class GP>
356   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
357 
358   static FreeProc const free_;
359 
360   // Disallow evil constructors
361   scoped_ptr_malloc(const scoped_ptr_malloc&);
362   void operator=(const scoped_ptr_malloc&);
363 };
364 
365 template<class C, class FP>
366 FP const scoped_ptr_malloc<C, FP>::free_ = FP();
367 
368 template<class C, class FP> inline
swap(scoped_ptr_malloc<C,FP> & a,scoped_ptr_malloc<C,FP> & b)369 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
370   a.swap(b);
371 }
372 
373 template<class C, class FP> inline
374 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
375   return p == b.get();
376 }
377 
378 template<class C, class FP> inline
379 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
380   return p != b.get();
381 }
382 
383 #endif  // BASE_MEMORY_SCOPED_PTR_H_
384