• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <algorithm>
6 #include <vector>
7 
8 #include "base/logging.h"
9 #include "base/synchronization/waitable_event.h"
10 #include "base/synchronization/condition_variable.h"
11 #include "base/synchronization/lock.h"
12 #include "base/threading/thread_restrictions.h"
13 
14 // -----------------------------------------------------------------------------
15 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
16 // support cross-process events (where one process can signal an event which
17 // others are waiting on). Because of this, we can avoid having one thread per
18 // listener in several cases.
19 //
20 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
21 // waiter is either an async wait, in which case we have a Task and the
22 // MessageLoop to run it on, or a blocking wait, in which case we have the
23 // condition variable to signal.
24 //
25 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
26 // waits can be canceled, which means grabbing the lock and removing oneself
27 // from the list.
28 //
29 // Waiting on multiple events is handled by adding a single, synchronous wait to
30 // the wait-list of many events. An event passes a pointer to itself when
31 // firing a waiter and so we can store that pointer to find out which event
32 // triggered.
33 // -----------------------------------------------------------------------------
34 
35 namespace base {
36 
37 // -----------------------------------------------------------------------------
38 // This is just an abstract base class for waking the two types of waiters
39 // -----------------------------------------------------------------------------
WaitableEvent(bool manual_reset,bool initially_signaled)40 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
41     : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
42 }
43 
~WaitableEvent()44 WaitableEvent::~WaitableEvent() {
45 }
46 
Reset()47 void WaitableEvent::Reset() {
48   base::AutoLock locked(kernel_->lock_);
49   kernel_->signaled_ = false;
50 }
51 
Signal()52 void WaitableEvent::Signal() {
53   base::AutoLock locked(kernel_->lock_);
54 
55   if (kernel_->signaled_)
56     return;
57 
58   if (kernel_->manual_reset_) {
59     SignalAll();
60     kernel_->signaled_ = true;
61   } else {
62     // In the case of auto reset, if no waiters were woken, we remain
63     // signaled.
64     if (!SignalOne())
65       kernel_->signaled_ = true;
66   }
67 }
68 
IsSignaled()69 bool WaitableEvent::IsSignaled() {
70   base::AutoLock locked(kernel_->lock_);
71 
72   const bool result = kernel_->signaled_;
73   if (result && !kernel_->manual_reset_)
74     kernel_->signaled_ = false;
75   return result;
76 }
77 
78 // -----------------------------------------------------------------------------
79 // Synchronous waits
80 
81 // -----------------------------------------------------------------------------
82 // This is a synchronous waiter. The thread is waiting on the given condition
83 // variable and the fired flag in this object.
84 // -----------------------------------------------------------------------------
85 class SyncWaiter : public WaitableEvent::Waiter {
86  public:
SyncWaiter()87   SyncWaiter()
88       : fired_(false),
89         signaling_event_(NULL),
90         lock_(),
91         cv_(&lock_) {
92   }
93 
Fire(WaitableEvent * signaling_event)94   virtual bool Fire(WaitableEvent* signaling_event) OVERRIDE {
95     base::AutoLock locked(lock_);
96 
97     if (fired_)
98       return false;
99 
100     fired_ = true;
101     signaling_event_ = signaling_event;
102 
103     cv_.Broadcast();
104 
105     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
106     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
107     // SyncWaiter object is destroyed when it goes out of scope.
108 
109     return true;
110   }
111 
signaling_event() const112   WaitableEvent* signaling_event() const {
113     return signaling_event_;
114   }
115 
116   // ---------------------------------------------------------------------------
117   // These waiters are always stack allocated and don't delete themselves. Thus
118   // there's no problem and the ABA tag is the same as the object pointer.
119   // ---------------------------------------------------------------------------
Compare(void * tag)120   virtual bool Compare(void* tag) OVERRIDE {
121     return this == tag;
122   }
123 
124   // ---------------------------------------------------------------------------
125   // Called with lock held.
126   // ---------------------------------------------------------------------------
fired() const127   bool fired() const {
128     return fired_;
129   }
130 
131   // ---------------------------------------------------------------------------
132   // During a TimedWait, we need a way to make sure that an auto-reset
133   // WaitableEvent doesn't think that this event has been signaled between
134   // unlocking it and removing it from the wait-list. Called with lock held.
135   // ---------------------------------------------------------------------------
Disable()136   void Disable() {
137     fired_ = true;
138   }
139 
lock()140   base::Lock* lock() {
141     return &lock_;
142   }
143 
cv()144   base::ConditionVariable* cv() {
145     return &cv_;
146   }
147 
148  private:
149   bool fired_;
150   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
151   base::Lock lock_;
152   base::ConditionVariable cv_;
153 };
154 
Wait()155 void WaitableEvent::Wait() {
156   bool result = TimedWait(TimeDelta::FromSeconds(-1));
157   DCHECK(result) << "TimedWait() should never fail with infinite timeout";
158 }
159 
TimedWait(const TimeDelta & max_time)160 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
161   base::ThreadRestrictions::AssertWaitAllowed();
162   const TimeTicks end_time(TimeTicks::Now() + max_time);
163   const bool finite_time = max_time.ToInternalValue() >= 0;
164 
165   kernel_->lock_.Acquire();
166   if (kernel_->signaled_) {
167     if (!kernel_->manual_reset_) {
168       // In this case we were signaled when we had no waiters. Now that
169       // someone has waited upon us, we can automatically reset.
170       kernel_->signaled_ = false;
171     }
172 
173     kernel_->lock_.Release();
174     return true;
175   }
176 
177   SyncWaiter sw;
178   sw.lock()->Acquire();
179 
180   Enqueue(&sw);
181   kernel_->lock_.Release();
182   // We are violating locking order here by holding the SyncWaiter lock but not
183   // the WaitableEvent lock. However, this is safe because we don't lock @lock_
184   // again before unlocking it.
185 
186   for (;;) {
187     const TimeTicks current_time(TimeTicks::Now());
188 
189     if (sw.fired() || (finite_time && current_time >= end_time)) {
190       const bool return_value = sw.fired();
191 
192       // We can't acquire @lock_ before releasing the SyncWaiter lock (because
193       // of locking order), however, in between the two a signal could be fired
194       // and @sw would accept it, however we will still return false, so the
195       // signal would be lost on an auto-reset WaitableEvent. Thus we call
196       // Disable which makes sw::Fire return false.
197       sw.Disable();
198       sw.lock()->Release();
199 
200       kernel_->lock_.Acquire();
201       kernel_->Dequeue(&sw, &sw);
202       kernel_->lock_.Release();
203 
204       return return_value;
205     }
206 
207     if (finite_time) {
208       const TimeDelta max_wait(end_time - current_time);
209       sw.cv()->TimedWait(max_wait);
210     } else {
211       sw.cv()->Wait();
212     }
213   }
214 }
215 
216 // -----------------------------------------------------------------------------
217 // Synchronous waiting on multiple objects.
218 
219 static bool  // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)220 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
221              const std::pair<WaitableEvent*, unsigned> &b) {
222   return a.first < b.first;
223 }
224 
225 // static
WaitMany(WaitableEvent ** raw_waitables,size_t count)226 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
227                                size_t count) {
228   base::ThreadRestrictions::AssertWaitAllowed();
229   DCHECK(count) << "Cannot wait on no events";
230 
231   // We need to acquire the locks in a globally consistent order. Thus we sort
232   // the array of waitables by address. We actually sort a pairs so that we can
233   // map back to the original index values later.
234   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
235   waitables.reserve(count);
236   for (size_t i = 0; i < count; ++i)
237     waitables.push_back(std::make_pair(raw_waitables[i], i));
238 
239   DCHECK_EQ(count, waitables.size());
240 
241   sort(waitables.begin(), waitables.end(), cmp_fst_addr);
242 
243   // The set of waitables must be distinct. Since we have just sorted by
244   // address, we can check this cheaply by comparing pairs of consecutive
245   // elements.
246   for (size_t i = 0; i < waitables.size() - 1; ++i) {
247     DCHECK(waitables[i].first != waitables[i+1].first);
248   }
249 
250   SyncWaiter sw;
251 
252   const size_t r = EnqueueMany(&waitables[0], count, &sw);
253   if (r) {
254     // One of the events is already signaled. The SyncWaiter has not been
255     // enqueued anywhere. EnqueueMany returns the count of remaining waitables
256     // when the signaled one was seen, so the index of the signaled event is
257     // @count - @r.
258     return waitables[count - r].second;
259   }
260 
261   // At this point, we hold the locks on all the WaitableEvents and we have
262   // enqueued our waiter in them all.
263   sw.lock()->Acquire();
264     // Release the WaitableEvent locks in the reverse order
265     for (size_t i = 0; i < count; ++i) {
266       waitables[count - (1 + i)].first->kernel_->lock_.Release();
267     }
268 
269     for (;;) {
270       if (sw.fired())
271         break;
272 
273       sw.cv()->Wait();
274     }
275   sw.lock()->Release();
276 
277   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
278   WaitableEvent *const signaled_event = sw.signaling_event();
279   // This will store the index of the raw_waitables which fired.
280   size_t signaled_index = 0;
281 
282   // Take the locks of each WaitableEvent in turn (except the signaled one) and
283   // remove our SyncWaiter from the wait-list
284   for (size_t i = 0; i < count; ++i) {
285     if (raw_waitables[i] != signaled_event) {
286       raw_waitables[i]->kernel_->lock_.Acquire();
287         // There's no possible ABA issue with the address of the SyncWaiter here
288         // because it lives on the stack. Thus the tag value is just the pointer
289         // value again.
290         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
291       raw_waitables[i]->kernel_->lock_.Release();
292     } else {
293       signaled_index = i;
294     }
295   }
296 
297   return signaled_index;
298 }
299 
300 // -----------------------------------------------------------------------------
301 // If return value == 0:
302 //   The locks of the WaitableEvents have been taken in order and the Waiter has
303 //   been enqueued in the wait-list of each. None of the WaitableEvents are
304 //   currently signaled
305 // else:
306 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
307 //   in any of them and the return value is the index of the first WaitableEvent
308 //   which was signaled, from the end of the array.
309 // -----------------------------------------------------------------------------
310 // static
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)311 size_t WaitableEvent::EnqueueMany
312     (std::pair<WaitableEvent*, size_t>* waitables,
313      size_t count, Waiter* waiter) {
314   if (!count)
315     return 0;
316 
317   waitables[0].first->kernel_->lock_.Acquire();
318     if (waitables[0].first->kernel_->signaled_) {
319       if (!waitables[0].first->kernel_->manual_reset_)
320         waitables[0].first->kernel_->signaled_ = false;
321       waitables[0].first->kernel_->lock_.Release();
322       return count;
323     }
324 
325     const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
326     if (r) {
327       waitables[0].first->kernel_->lock_.Release();
328     } else {
329       waitables[0].first->Enqueue(waiter);
330     }
331 
332     return r;
333 }
334 
335 // -----------------------------------------------------------------------------
336 
337 
338 // -----------------------------------------------------------------------------
339 // Private functions...
340 
WaitableEventKernel(bool manual_reset,bool initially_signaled)341 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
342                                                         bool initially_signaled)
343     : manual_reset_(manual_reset),
344       signaled_(initially_signaled) {
345 }
346 
~WaitableEventKernel()347 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
348 }
349 
350 // -----------------------------------------------------------------------------
351 // Wake all waiting waiters. Called with lock held.
352 // -----------------------------------------------------------------------------
SignalAll()353 bool WaitableEvent::SignalAll() {
354   bool signaled_at_least_one = false;
355 
356   for (std::list<Waiter*>::iterator
357        i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
358     if ((*i)->Fire(this))
359       signaled_at_least_one = true;
360   }
361 
362   kernel_->waiters_.clear();
363   return signaled_at_least_one;
364 }
365 
366 // ---------------------------------------------------------------------------
367 // Try to wake a single waiter. Return true if one was woken. Called with lock
368 // held.
369 // ---------------------------------------------------------------------------
SignalOne()370 bool WaitableEvent::SignalOne() {
371   for (;;) {
372     if (kernel_->waiters_.empty())
373       return false;
374 
375     const bool r = (*kernel_->waiters_.begin())->Fire(this);
376     kernel_->waiters_.pop_front();
377     if (r)
378       return true;
379   }
380 }
381 
382 // -----------------------------------------------------------------------------
383 // Add a waiter to the list of those waiting. Called with lock held.
384 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)385 void WaitableEvent::Enqueue(Waiter* waiter) {
386   kernel_->waiters_.push_back(waiter);
387 }
388 
389 // -----------------------------------------------------------------------------
390 // Remove a waiter from the list of those waiting. Return true if the waiter was
391 // actually removed. Called with lock held.
392 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)393 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
394   for (std::list<Waiter*>::iterator
395        i = waiters_.begin(); i != waiters_.end(); ++i) {
396     if (*i == waiter && (*i)->Compare(tag)) {
397       waiters_.erase(i);
398       return true;
399     }
400   }
401 
402   return false;
403 }
404 
405 // -----------------------------------------------------------------------------
406 
407 }  // namespace base
408