1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/basictypes.h"
6 #include "base/bind.h"
7 #include "base/bind_helpers.h"
8 #include "base/file_util.h"
9 #include "base/strings/string_util.h"
10 #include "base/strings/stringprintf.h"
11 #include "base/threading/platform_thread.h"
12 #include "base/timer/timer.h"
13 #include "net/base/completion_callback.h"
14 #include "net/base/io_buffer.h"
15 #include "net/base/net_errors.h"
16 #include "net/base/test_completion_callback.h"
17 #include "net/disk_cache/backend_impl.h"
18 #include "net/disk_cache/disk_cache_test_base.h"
19 #include "net/disk_cache/disk_cache_test_util.h"
20 #include "net/disk_cache/entry_impl.h"
21 #include "net/disk_cache/mem_entry_impl.h"
22 #include "net/disk_cache/simple/simple_entry_format.h"
23 #include "net/disk_cache/simple/simple_entry_impl.h"
24 #include "net/disk_cache/simple/simple_synchronous_entry.h"
25 #include "net/disk_cache/simple/simple_test_util.h"
26 #include "net/disk_cache/simple/simple_util.h"
27 #include "testing/gtest/include/gtest/gtest.h"
28
29 using base::Time;
30 using disk_cache::ScopedEntryPtr;
31
32 // Tests that can run with different types of caches.
33 class DiskCacheEntryTest : public DiskCacheTestWithCache {
34 public:
35 void InternalSyncIOBackground(disk_cache::Entry* entry);
36 void ExternalSyncIOBackground(disk_cache::Entry* entry);
37
38 protected:
39 void InternalSyncIO();
40 void InternalAsyncIO();
41 void ExternalSyncIO();
42 void ExternalAsyncIO();
43 void ReleaseBuffer();
44 void StreamAccess();
45 void GetKey();
46 void GetTimes();
47 void GrowData();
48 void TruncateData();
49 void ZeroLengthIO();
50 void Buffering();
51 void SizeAtCreate();
52 void SizeChanges();
53 void ReuseEntry(int size);
54 void InvalidData();
55 void ReadWriteDestroyBuffer();
56 void DoomNormalEntry();
57 void DoomEntryNextToOpenEntry();
58 void DoomedEntry();
59 void BasicSparseIO();
60 void HugeSparseIO();
61 void GetAvailableRange();
62 void CouldBeSparse();
63 void UpdateSparseEntry();
64 void DoomSparseEntry();
65 void PartialSparseEntry();
66 bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int* data_size);
67 bool SimpleCacheThirdStreamFileExists(const char* key);
68 void SyncDoomEntry(const char* key);
69 };
70
71 // This part of the test runs on the background thread.
InternalSyncIOBackground(disk_cache::Entry * entry)72 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) {
73 const int kSize1 = 10;
74 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
75 CacheTestFillBuffer(buffer1->data(), kSize1, false);
76 EXPECT_EQ(
77 0,
78 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback()));
79 base::strlcpy(buffer1->data(), "the data", kSize1);
80 EXPECT_EQ(10,
81 entry->WriteData(
82 0, 0, buffer1.get(), kSize1, net::CompletionCallback(), false));
83 memset(buffer1->data(), 0, kSize1);
84 EXPECT_EQ(
85 10,
86 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback()));
87 EXPECT_STREQ("the data", buffer1->data());
88
89 const int kSize2 = 5000;
90 const int kSize3 = 10000;
91 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
92 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
93 memset(buffer3->data(), 0, kSize3);
94 CacheTestFillBuffer(buffer2->data(), kSize2, false);
95 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
96 EXPECT_EQ(
97 5000,
98 entry->WriteData(
99 1, 1500, buffer2.get(), kSize2, net::CompletionCallback(), false));
100 memset(buffer2->data(), 0, kSize2);
101 EXPECT_EQ(4989,
102 entry->ReadData(
103 1, 1511, buffer2.get(), kSize2, net::CompletionCallback()));
104 EXPECT_STREQ("big data goes here", buffer2->data());
105 EXPECT_EQ(
106 5000,
107 entry->ReadData(1, 0, buffer2.get(), kSize2, net::CompletionCallback()));
108 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
109 EXPECT_EQ(1500,
110 entry->ReadData(
111 1, 5000, buffer2.get(), kSize2, net::CompletionCallback()));
112
113 EXPECT_EQ(0,
114 entry->ReadData(
115 1, 6500, buffer2.get(), kSize2, net::CompletionCallback()));
116 EXPECT_EQ(
117 6500,
118 entry->ReadData(1, 0, buffer3.get(), kSize3, net::CompletionCallback()));
119 EXPECT_EQ(8192,
120 entry->WriteData(
121 1, 0, buffer3.get(), 8192, net::CompletionCallback(), false));
122 EXPECT_EQ(
123 8192,
124 entry->ReadData(1, 0, buffer3.get(), kSize3, net::CompletionCallback()));
125 EXPECT_EQ(8192, entry->GetDataSize(1));
126
127 // We need to delete the memory buffer on this thread.
128 EXPECT_EQ(0, entry->WriteData(
129 0, 0, NULL, 0, net::CompletionCallback(), true));
130 EXPECT_EQ(0, entry->WriteData(
131 1, 0, NULL, 0, net::CompletionCallback(), true));
132 }
133
134 // We need to support synchronous IO even though it is not a supported operation
135 // from the point of view of the disk cache's public interface, because we use
136 // it internally, not just by a few tests, but as part of the implementation
137 // (see sparse_control.cc, for example).
InternalSyncIO()138 void DiskCacheEntryTest::InternalSyncIO() {
139 disk_cache::Entry* entry = NULL;
140 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
141 ASSERT_TRUE(NULL != entry);
142
143 // The bulk of the test runs from within the callback, on the cache thread.
144 RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground,
145 base::Unretained(this),
146 entry));
147
148
149 entry->Doom();
150 entry->Close();
151 FlushQueueForTest();
152 EXPECT_EQ(0, cache_->GetEntryCount());
153 }
154
TEST_F(DiskCacheEntryTest,InternalSyncIO)155 TEST_F(DiskCacheEntryTest, InternalSyncIO) {
156 InitCache();
157 InternalSyncIO();
158 }
159
TEST_F(DiskCacheEntryTest,MemoryOnlyInternalSyncIO)160 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
161 SetMemoryOnlyMode();
162 InitCache();
163 InternalSyncIO();
164 }
165
InternalAsyncIO()166 void DiskCacheEntryTest::InternalAsyncIO() {
167 disk_cache::Entry* entry = NULL;
168 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
169 ASSERT_TRUE(NULL != entry);
170
171 // Avoid using internal buffers for the test. We have to write something to
172 // the entry and close it so that we flush the internal buffer to disk. After
173 // that, IO operations will be really hitting the disk. We don't care about
174 // the content, so just extending the entry is enough (all extensions zero-
175 // fill any holes).
176 EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false));
177 EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false));
178 entry->Close();
179 ASSERT_EQ(net::OK, OpenEntry("the first key", &entry));
180
181 MessageLoopHelper helper;
182 // Let's verify that each IO goes to the right callback object.
183 CallbackTest callback1(&helper, false);
184 CallbackTest callback2(&helper, false);
185 CallbackTest callback3(&helper, false);
186 CallbackTest callback4(&helper, false);
187 CallbackTest callback5(&helper, false);
188 CallbackTest callback6(&helper, false);
189 CallbackTest callback7(&helper, false);
190 CallbackTest callback8(&helper, false);
191 CallbackTest callback9(&helper, false);
192 CallbackTest callback10(&helper, false);
193 CallbackTest callback11(&helper, false);
194 CallbackTest callback12(&helper, false);
195 CallbackTest callback13(&helper, false);
196
197 const int kSize1 = 10;
198 const int kSize2 = 5000;
199 const int kSize3 = 10000;
200 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
201 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
202 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
203 CacheTestFillBuffer(buffer1->data(), kSize1, false);
204 CacheTestFillBuffer(buffer2->data(), kSize2, false);
205 CacheTestFillBuffer(buffer3->data(), kSize3, false);
206
207 EXPECT_EQ(0,
208 entry->ReadData(
209 0,
210 15 * 1024,
211 buffer1.get(),
212 kSize1,
213 base::Bind(&CallbackTest::Run, base::Unretained(&callback1))));
214 base::strlcpy(buffer1->data(), "the data", kSize1);
215 int expected = 0;
216 int ret = entry->WriteData(
217 0,
218 0,
219 buffer1.get(),
220 kSize1,
221 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)),
222 false);
223 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
224 if (net::ERR_IO_PENDING == ret)
225 expected++;
226
227 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
228 memset(buffer2->data(), 0, kSize2);
229 ret = entry->ReadData(
230 0,
231 0,
232 buffer2.get(),
233 kSize1,
234 base::Bind(&CallbackTest::Run, base::Unretained(&callback3)));
235 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
236 if (net::ERR_IO_PENDING == ret)
237 expected++;
238
239 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
240 EXPECT_STREQ("the data", buffer2->data());
241
242 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
243 ret = entry->WriteData(
244 1,
245 1500,
246 buffer2.get(),
247 kSize2,
248 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)),
249 true);
250 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
251 if (net::ERR_IO_PENDING == ret)
252 expected++;
253
254 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
255 memset(buffer3->data(), 0, kSize3);
256 ret = entry->ReadData(
257 1,
258 1511,
259 buffer3.get(),
260 kSize2,
261 base::Bind(&CallbackTest::Run, base::Unretained(&callback5)));
262 EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
263 if (net::ERR_IO_PENDING == ret)
264 expected++;
265
266 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
267 EXPECT_STREQ("big data goes here", buffer3->data());
268 ret = entry->ReadData(
269 1,
270 0,
271 buffer2.get(),
272 kSize2,
273 base::Bind(&CallbackTest::Run, base::Unretained(&callback6)));
274 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
275 if (net::ERR_IO_PENDING == ret)
276 expected++;
277
278 memset(buffer3->data(), 0, kSize3);
279
280 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
281 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
282 ret = entry->ReadData(
283 1,
284 5000,
285 buffer2.get(),
286 kSize2,
287 base::Bind(&CallbackTest::Run, base::Unretained(&callback7)));
288 EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
289 if (net::ERR_IO_PENDING == ret)
290 expected++;
291
292 ret = entry->ReadData(
293 1,
294 0,
295 buffer3.get(),
296 kSize3,
297 base::Bind(&CallbackTest::Run, base::Unretained(&callback9)));
298 EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
299 if (net::ERR_IO_PENDING == ret)
300 expected++;
301
302 ret = entry->WriteData(
303 1,
304 0,
305 buffer3.get(),
306 8192,
307 base::Bind(&CallbackTest::Run, base::Unretained(&callback10)),
308 true);
309 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
310 if (net::ERR_IO_PENDING == ret)
311 expected++;
312
313 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
314 ret = entry->ReadData(
315 1,
316 0,
317 buffer3.get(),
318 kSize3,
319 base::Bind(&CallbackTest::Run, base::Unretained(&callback11)));
320 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
321 if (net::ERR_IO_PENDING == ret)
322 expected++;
323
324 EXPECT_EQ(8192, entry->GetDataSize(1));
325
326 ret = entry->ReadData(
327 0,
328 0,
329 buffer1.get(),
330 kSize1,
331 base::Bind(&CallbackTest::Run, base::Unretained(&callback12)));
332 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
333 if (net::ERR_IO_PENDING == ret)
334 expected++;
335
336 ret = entry->ReadData(
337 1,
338 0,
339 buffer2.get(),
340 kSize2,
341 base::Bind(&CallbackTest::Run, base::Unretained(&callback13)));
342 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
343 if (net::ERR_IO_PENDING == ret)
344 expected++;
345
346 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
347
348 EXPECT_FALSE(helper.callback_reused_error());
349
350 entry->Doom();
351 entry->Close();
352 FlushQueueForTest();
353 EXPECT_EQ(0, cache_->GetEntryCount());
354 }
355
TEST_F(DiskCacheEntryTest,InternalAsyncIO)356 TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
357 InitCache();
358 InternalAsyncIO();
359 }
360
TEST_F(DiskCacheEntryTest,MemoryOnlyInternalAsyncIO)361 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
362 SetMemoryOnlyMode();
363 InitCache();
364 InternalAsyncIO();
365 }
366
367 // This part of the test runs on the background thread.
ExternalSyncIOBackground(disk_cache::Entry * entry)368 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) {
369 const int kSize1 = 17000;
370 const int kSize2 = 25000;
371 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
372 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
373 CacheTestFillBuffer(buffer1->data(), kSize1, false);
374 CacheTestFillBuffer(buffer2->data(), kSize2, false);
375 base::strlcpy(buffer1->data(), "the data", kSize1);
376 EXPECT_EQ(17000,
377 entry->WriteData(
378 0, 0, buffer1.get(), kSize1, net::CompletionCallback(), false));
379 memset(buffer1->data(), 0, kSize1);
380 EXPECT_EQ(
381 17000,
382 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback()));
383 EXPECT_STREQ("the data", buffer1->data());
384
385 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
386 EXPECT_EQ(
387 25000,
388 entry->WriteData(
389 1, 10000, buffer2.get(), kSize2, net::CompletionCallback(), false));
390 memset(buffer2->data(), 0, kSize2);
391 EXPECT_EQ(24989,
392 entry->ReadData(
393 1, 10011, buffer2.get(), kSize2, net::CompletionCallback()));
394 EXPECT_STREQ("big data goes here", buffer2->data());
395 EXPECT_EQ(
396 25000,
397 entry->ReadData(1, 0, buffer2.get(), kSize2, net::CompletionCallback()));
398 EXPECT_EQ(5000,
399 entry->ReadData(
400 1, 30000, buffer2.get(), kSize2, net::CompletionCallback()));
401
402 EXPECT_EQ(0,
403 entry->ReadData(
404 1, 35000, buffer2.get(), kSize2, net::CompletionCallback()));
405 EXPECT_EQ(
406 17000,
407 entry->ReadData(1, 0, buffer1.get(), kSize1, net::CompletionCallback()));
408 EXPECT_EQ(
409 17000,
410 entry->WriteData(
411 1, 20000, buffer1.get(), kSize1, net::CompletionCallback(), false));
412 EXPECT_EQ(37000, entry->GetDataSize(1));
413
414 // We need to delete the memory buffer on this thread.
415 EXPECT_EQ(0, entry->WriteData(
416 0, 0, NULL, 0, net::CompletionCallback(), true));
417 EXPECT_EQ(0, entry->WriteData(
418 1, 0, NULL, 0, net::CompletionCallback(), true));
419 }
420
ExternalSyncIO()421 void DiskCacheEntryTest::ExternalSyncIO() {
422 disk_cache::Entry* entry;
423 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
424
425 // The bulk of the test runs from within the callback, on the cache thread.
426 RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground,
427 base::Unretained(this),
428 entry));
429
430 entry->Doom();
431 entry->Close();
432 FlushQueueForTest();
433 EXPECT_EQ(0, cache_->GetEntryCount());
434 }
435
TEST_F(DiskCacheEntryTest,ExternalSyncIO)436 TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
437 InitCache();
438 ExternalSyncIO();
439 }
440
TEST_F(DiskCacheEntryTest,ExternalSyncIONoBuffer)441 TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) {
442 InitCache();
443 cache_impl_->SetFlags(disk_cache::kNoBuffering);
444 ExternalSyncIO();
445 }
446
TEST_F(DiskCacheEntryTest,MemoryOnlyExternalSyncIO)447 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
448 SetMemoryOnlyMode();
449 InitCache();
450 ExternalSyncIO();
451 }
452
ExternalAsyncIO()453 void DiskCacheEntryTest::ExternalAsyncIO() {
454 disk_cache::Entry* entry;
455 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
456
457 int expected = 0;
458
459 MessageLoopHelper helper;
460 // Let's verify that each IO goes to the right callback object.
461 CallbackTest callback1(&helper, false);
462 CallbackTest callback2(&helper, false);
463 CallbackTest callback3(&helper, false);
464 CallbackTest callback4(&helper, false);
465 CallbackTest callback5(&helper, false);
466 CallbackTest callback6(&helper, false);
467 CallbackTest callback7(&helper, false);
468 CallbackTest callback8(&helper, false);
469 CallbackTest callback9(&helper, false);
470
471 const int kSize1 = 17000;
472 const int kSize2 = 25000;
473 const int kSize3 = 25000;
474 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
475 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
476 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
477 CacheTestFillBuffer(buffer1->data(), kSize1, false);
478 CacheTestFillBuffer(buffer2->data(), kSize2, false);
479 CacheTestFillBuffer(buffer3->data(), kSize3, false);
480 base::strlcpy(buffer1->data(), "the data", kSize1);
481 int ret = entry->WriteData(
482 0,
483 0,
484 buffer1.get(),
485 kSize1,
486 base::Bind(&CallbackTest::Run, base::Unretained(&callback1)),
487 false);
488 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
489 if (net::ERR_IO_PENDING == ret)
490 expected++;
491
492 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
493
494 memset(buffer2->data(), 0, kSize1);
495 ret = entry->ReadData(
496 0,
497 0,
498 buffer2.get(),
499 kSize1,
500 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)));
501 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
502 if (net::ERR_IO_PENDING == ret)
503 expected++;
504
505 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
506 EXPECT_STREQ("the data", buffer2->data());
507
508 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
509 ret = entry->WriteData(
510 1,
511 10000,
512 buffer2.get(),
513 kSize2,
514 base::Bind(&CallbackTest::Run, base::Unretained(&callback3)),
515 false);
516 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
517 if (net::ERR_IO_PENDING == ret)
518 expected++;
519
520 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
521
522 memset(buffer3->data(), 0, kSize3);
523 ret = entry->ReadData(
524 1,
525 10011,
526 buffer3.get(),
527 kSize3,
528 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)));
529 EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
530 if (net::ERR_IO_PENDING == ret)
531 expected++;
532
533 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
534 EXPECT_STREQ("big data goes here", buffer3->data());
535 ret = entry->ReadData(
536 1,
537 0,
538 buffer2.get(),
539 kSize2,
540 base::Bind(&CallbackTest::Run, base::Unretained(&callback5)));
541 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
542 if (net::ERR_IO_PENDING == ret)
543 expected++;
544
545 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
546 memset(buffer3->data(), 0, kSize3);
547 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000));
548 ret = entry->ReadData(
549 1,
550 30000,
551 buffer2.get(),
552 kSize2,
553 base::Bind(&CallbackTest::Run, base::Unretained(&callback6)));
554 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
555 if (net::ERR_IO_PENDING == ret)
556 expected++;
557
558 EXPECT_EQ(0,
559 entry->ReadData(
560 1,
561 35000,
562 buffer2.get(),
563 kSize2,
564 base::Bind(&CallbackTest::Run, base::Unretained(&callback7))));
565 ret = entry->ReadData(
566 1,
567 0,
568 buffer1.get(),
569 kSize1,
570 base::Bind(&CallbackTest::Run, base::Unretained(&callback8)));
571 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
572 if (net::ERR_IO_PENDING == ret)
573 expected++;
574 ret = entry->WriteData(
575 1,
576 20000,
577 buffer3.get(),
578 kSize1,
579 base::Bind(&CallbackTest::Run, base::Unretained(&callback9)),
580 false);
581 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
582 if (net::ERR_IO_PENDING == ret)
583 expected++;
584
585 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
586 EXPECT_EQ(37000, entry->GetDataSize(1));
587
588 EXPECT_FALSE(helper.callback_reused_error());
589
590 entry->Doom();
591 entry->Close();
592 FlushQueueForTest();
593 EXPECT_EQ(0, cache_->GetEntryCount());
594 }
595
TEST_F(DiskCacheEntryTest,ExternalAsyncIO)596 TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
597 InitCache();
598 ExternalAsyncIO();
599 }
600
TEST_F(DiskCacheEntryTest,ExternalAsyncIONoBuffer)601 TEST_F(DiskCacheEntryTest, ExternalAsyncIONoBuffer) {
602 InitCache();
603 cache_impl_->SetFlags(disk_cache::kNoBuffering);
604 ExternalAsyncIO();
605 }
606
TEST_F(DiskCacheEntryTest,MemoryOnlyExternalAsyncIO)607 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
608 SetMemoryOnlyMode();
609 InitCache();
610 ExternalAsyncIO();
611 }
612
613 // Tests that IOBuffers are not referenced after IO completes.
ReleaseBuffer()614 void DiskCacheEntryTest::ReleaseBuffer() {
615 disk_cache::Entry* entry = NULL;
616 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
617 ASSERT_TRUE(NULL != entry);
618
619 const int kBufferSize = 1024;
620 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kBufferSize));
621 CacheTestFillBuffer(buffer->data(), kBufferSize, false);
622
623 net::ReleaseBufferCompletionCallback cb(buffer.get());
624 int rv =
625 entry->WriteData(0, 0, buffer.get(), kBufferSize, cb.callback(), false);
626 EXPECT_EQ(kBufferSize, cb.GetResult(rv));
627 entry->Close();
628 }
629
TEST_F(DiskCacheEntryTest,ReleaseBuffer)630 TEST_F(DiskCacheEntryTest, ReleaseBuffer) {
631 InitCache();
632 cache_impl_->SetFlags(disk_cache::kNoBuffering);
633 ReleaseBuffer();
634 }
635
TEST_F(DiskCacheEntryTest,MemoryOnlyReleaseBuffer)636 TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) {
637 SetMemoryOnlyMode();
638 InitCache();
639 ReleaseBuffer();
640 }
641
StreamAccess()642 void DiskCacheEntryTest::StreamAccess() {
643 disk_cache::Entry* entry = NULL;
644 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
645 ASSERT_TRUE(NULL != entry);
646
647 const int kBufferSize = 1024;
648 const int kNumStreams = 3;
649 scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams];
650 for (int i = 0; i < kNumStreams; i++) {
651 reference_buffers[i] = new net::IOBuffer(kBufferSize);
652 CacheTestFillBuffer(reference_buffers[i]->data(), kBufferSize, false);
653 }
654 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kBufferSize));
655 for (int i = 0; i < kNumStreams; i++) {
656 EXPECT_EQ(
657 kBufferSize,
658 WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false));
659 memset(buffer1->data(), 0, kBufferSize);
660 EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize));
661 EXPECT_EQ(
662 0, memcmp(reference_buffers[i]->data(), buffer1->data(), kBufferSize));
663 }
664 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
665 ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize));
666 entry->Close();
667
668 // Open the entry and read it in chunks, including a read past the end.
669 ASSERT_EQ(net::OK, OpenEntry("the first key", &entry));
670 ASSERT_TRUE(NULL != entry);
671 const int kReadBufferSize = 600;
672 const int kFinalReadSize = kBufferSize - kReadBufferSize;
673 COMPILE_ASSERT(kFinalReadSize < kReadBufferSize, should_be_exactly_two_reads);
674 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kReadBufferSize));
675 for (int i = 0; i < kNumStreams; i++) {
676 memset(buffer2->data(), 0, kReadBufferSize);
677 EXPECT_EQ(kReadBufferSize,
678 ReadData(entry, i, 0, buffer2.get(), kReadBufferSize));
679 EXPECT_EQ(
680 0,
681 memcmp(reference_buffers[i]->data(), buffer2->data(), kReadBufferSize));
682
683 memset(buffer2->data(), 0, kReadBufferSize);
684 EXPECT_EQ(
685 kFinalReadSize,
686 ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize));
687 EXPECT_EQ(0,
688 memcmp(reference_buffers[i]->data() + kReadBufferSize,
689 buffer2->data(),
690 kFinalReadSize));
691 }
692
693 entry->Close();
694 }
695
TEST_F(DiskCacheEntryTest,StreamAccess)696 TEST_F(DiskCacheEntryTest, StreamAccess) {
697 InitCache();
698 StreamAccess();
699 }
700
TEST_F(DiskCacheEntryTest,MemoryOnlyStreamAccess)701 TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
702 SetMemoryOnlyMode();
703 InitCache();
704 StreamAccess();
705 }
706
GetKey()707 void DiskCacheEntryTest::GetKey() {
708 std::string key("the first key");
709 disk_cache::Entry* entry;
710 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
711 EXPECT_EQ(key, entry->GetKey()) << "short key";
712 entry->Close();
713
714 int seed = static_cast<int>(Time::Now().ToInternalValue());
715 srand(seed);
716 char key_buffer[20000];
717
718 CacheTestFillBuffer(key_buffer, 3000, true);
719 key_buffer[1000] = '\0';
720
721 key = key_buffer;
722 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
723 EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key";
724 entry->Close();
725
726 key_buffer[1000] = 'p';
727 key_buffer[3000] = '\0';
728 key = key_buffer;
729 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
730 EXPECT_TRUE(key == entry->GetKey()) << "medium size key";
731 entry->Close();
732
733 CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
734 key_buffer[19999] = '\0';
735
736 key = key_buffer;
737 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
738 EXPECT_TRUE(key == entry->GetKey()) << "long key";
739 entry->Close();
740
741 CacheTestFillBuffer(key_buffer, 0x4000, true);
742 key_buffer[0x4000] = '\0';
743
744 key = key_buffer;
745 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
746 EXPECT_TRUE(key == entry->GetKey()) << "16KB key";
747 entry->Close();
748 }
749
TEST_F(DiskCacheEntryTest,GetKey)750 TEST_F(DiskCacheEntryTest, GetKey) {
751 InitCache();
752 GetKey();
753 }
754
TEST_F(DiskCacheEntryTest,MemoryOnlyGetKey)755 TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
756 SetMemoryOnlyMode();
757 InitCache();
758 GetKey();
759 }
760
GetTimes()761 void DiskCacheEntryTest::GetTimes() {
762 std::string key("the first key");
763 disk_cache::Entry* entry;
764
765 Time t1 = Time::Now();
766 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
767 EXPECT_TRUE(entry->GetLastModified() >= t1);
768 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
769
770 AddDelay();
771 Time t2 = Time::Now();
772 EXPECT_TRUE(t2 > t1);
773 EXPECT_EQ(0, WriteData(entry, 0, 200, NULL, 0, false));
774 if (type_ == net::APP_CACHE) {
775 EXPECT_TRUE(entry->GetLastModified() < t2);
776 } else {
777 EXPECT_TRUE(entry->GetLastModified() >= t2);
778 }
779 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
780
781 AddDelay();
782 Time t3 = Time::Now();
783 EXPECT_TRUE(t3 > t2);
784 const int kSize = 200;
785 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
786 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer.get(), kSize));
787 if (type_ == net::APP_CACHE) {
788 EXPECT_TRUE(entry->GetLastUsed() < t2);
789 EXPECT_TRUE(entry->GetLastModified() < t2);
790 } else if (type_ == net::SHADER_CACHE) {
791 EXPECT_TRUE(entry->GetLastUsed() < t3);
792 EXPECT_TRUE(entry->GetLastModified() < t3);
793 } else {
794 EXPECT_TRUE(entry->GetLastUsed() >= t3);
795 EXPECT_TRUE(entry->GetLastModified() < t3);
796 }
797 entry->Close();
798 }
799
TEST_F(DiskCacheEntryTest,GetTimes)800 TEST_F(DiskCacheEntryTest, GetTimes) {
801 InitCache();
802 GetTimes();
803 }
804
TEST_F(DiskCacheEntryTest,MemoryOnlyGetTimes)805 TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) {
806 SetMemoryOnlyMode();
807 InitCache();
808 GetTimes();
809 }
810
TEST_F(DiskCacheEntryTest,AppCacheGetTimes)811 TEST_F(DiskCacheEntryTest, AppCacheGetTimes) {
812 SetCacheType(net::APP_CACHE);
813 InitCache();
814 GetTimes();
815 }
816
TEST_F(DiskCacheEntryTest,ShaderCacheGetTimes)817 TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) {
818 SetCacheType(net::SHADER_CACHE);
819 InitCache();
820 GetTimes();
821 }
822
GrowData()823 void DiskCacheEntryTest::GrowData() {
824 std::string key1("the first key");
825 disk_cache::Entry* entry;
826 ASSERT_EQ(net::OK, CreateEntry(key1, &entry));
827
828 const int kSize = 20000;
829 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
830 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
831 CacheTestFillBuffer(buffer1->data(), kSize, false);
832 memset(buffer2->data(), 0, kSize);
833
834 base::strlcpy(buffer1->data(), "the data", kSize);
835 EXPECT_EQ(10, WriteData(entry, 0, 0, buffer1.get(), 10, false));
836 EXPECT_EQ(10, ReadData(entry, 0, 0, buffer2.get(), 10));
837 EXPECT_STREQ("the data", buffer2->data());
838 EXPECT_EQ(10, entry->GetDataSize(0));
839
840 EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1.get(), 2000, false));
841 EXPECT_EQ(2000, entry->GetDataSize(0));
842 EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2.get(), 2000));
843 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
844
845 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1.get(), kSize, false));
846 EXPECT_EQ(20000, entry->GetDataSize(0));
847 EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2.get(), kSize));
848 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
849 entry->Close();
850
851 memset(buffer2->data(), 0, kSize);
852 std::string key2("Second key");
853 ASSERT_EQ(net::OK, CreateEntry(key2, &entry));
854 EXPECT_EQ(10, WriteData(entry, 0, 0, buffer1.get(), 10, false));
855 EXPECT_EQ(10, entry->GetDataSize(0));
856 entry->Close();
857
858 // Go from an internal address to a bigger block size.
859 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
860 EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1.get(), 2000, false));
861 EXPECT_EQ(2000, entry->GetDataSize(0));
862 EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2.get(), 2000));
863 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
864 entry->Close();
865 memset(buffer2->data(), 0, kSize);
866
867 // Go from an internal address to an external one.
868 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
869 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1.get(), kSize, false));
870 EXPECT_EQ(20000, entry->GetDataSize(0));
871 EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2.get(), kSize));
872 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
873 entry->Close();
874
875 // Double check the size from disk.
876 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
877 EXPECT_EQ(20000, entry->GetDataSize(0));
878
879 // Now extend the entry without actual data.
880 EXPECT_EQ(0, WriteData(entry, 0, 45500, buffer1.get(), 0, false));
881 entry->Close();
882
883 // And check again from disk.
884 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
885 EXPECT_EQ(45500, entry->GetDataSize(0));
886 entry->Close();
887 }
888
TEST_F(DiskCacheEntryTest,GrowData)889 TEST_F(DiskCacheEntryTest, GrowData) {
890 InitCache();
891 GrowData();
892 }
893
TEST_F(DiskCacheEntryTest,GrowDataNoBuffer)894 TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) {
895 InitCache();
896 cache_impl_->SetFlags(disk_cache::kNoBuffering);
897 GrowData();
898 }
899
TEST_F(DiskCacheEntryTest,MemoryOnlyGrowData)900 TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
901 SetMemoryOnlyMode();
902 InitCache();
903 GrowData();
904 }
905
TruncateData()906 void DiskCacheEntryTest::TruncateData() {
907 std::string key("the first key");
908 disk_cache::Entry* entry;
909 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
910
911 const int kSize1 = 20000;
912 const int kSize2 = 20000;
913 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
914 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
915
916 CacheTestFillBuffer(buffer1->data(), kSize1, false);
917 memset(buffer2->data(), 0, kSize2);
918
919 // Simple truncation:
920 EXPECT_EQ(200, WriteData(entry, 0, 0, buffer1.get(), 200, false));
921 EXPECT_EQ(200, entry->GetDataSize(0));
922 EXPECT_EQ(100, WriteData(entry, 0, 0, buffer1.get(), 100, false));
923 EXPECT_EQ(200, entry->GetDataSize(0));
924 EXPECT_EQ(100, WriteData(entry, 0, 0, buffer1.get(), 100, true));
925 EXPECT_EQ(100, entry->GetDataSize(0));
926 EXPECT_EQ(0, WriteData(entry, 0, 50, buffer1.get(), 0, true));
927 EXPECT_EQ(50, entry->GetDataSize(0));
928 EXPECT_EQ(0, WriteData(entry, 0, 0, buffer1.get(), 0, true));
929 EXPECT_EQ(0, entry->GetDataSize(0));
930 entry->Close();
931 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
932
933 // Go to an external file.
934 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1.get(), 20000, true));
935 EXPECT_EQ(20000, entry->GetDataSize(0));
936 EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2.get(), 20000));
937 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
938 memset(buffer2->data(), 0, kSize2);
939
940 // External file truncation
941 EXPECT_EQ(18000, WriteData(entry, 0, 0, buffer1.get(), 18000, false));
942 EXPECT_EQ(20000, entry->GetDataSize(0));
943 EXPECT_EQ(18000, WriteData(entry, 0, 0, buffer1.get(), 18000, true));
944 EXPECT_EQ(18000, entry->GetDataSize(0));
945 EXPECT_EQ(0, WriteData(entry, 0, 17500, buffer1.get(), 0, true));
946 EXPECT_EQ(17500, entry->GetDataSize(0));
947
948 // And back to an internal block.
949 EXPECT_EQ(600, WriteData(entry, 0, 1000, buffer1.get(), 600, true));
950 EXPECT_EQ(1600, entry->GetDataSize(0));
951 EXPECT_EQ(600, ReadData(entry, 0, 1000, buffer2.get(), 600));
952 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
953 EXPECT_EQ(1000, ReadData(entry, 0, 0, buffer2.get(), 1000));
954 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000))
955 << "Preserves previous data";
956
957 // Go from external file to zero length.
958 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1.get(), 20000, true));
959 EXPECT_EQ(20000, entry->GetDataSize(0));
960 EXPECT_EQ(0, WriteData(entry, 0, 0, buffer1.get(), 0, true));
961 EXPECT_EQ(0, entry->GetDataSize(0));
962
963 entry->Close();
964 }
965
TEST_F(DiskCacheEntryTest,TruncateData)966 TEST_F(DiskCacheEntryTest, TruncateData) {
967 InitCache();
968 TruncateData();
969 }
970
TEST_F(DiskCacheEntryTest,TruncateDataNoBuffer)971 TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) {
972 InitCache();
973 cache_impl_->SetFlags(disk_cache::kNoBuffering);
974 TruncateData();
975 }
976
TEST_F(DiskCacheEntryTest,MemoryOnlyTruncateData)977 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
978 SetMemoryOnlyMode();
979 InitCache();
980 TruncateData();
981 }
982
ZeroLengthIO()983 void DiskCacheEntryTest::ZeroLengthIO() {
984 std::string key("the first key");
985 disk_cache::Entry* entry;
986 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
987
988 EXPECT_EQ(0, ReadData(entry, 0, 0, NULL, 0));
989 EXPECT_EQ(0, WriteData(entry, 0, 0, NULL, 0, false));
990
991 // This write should extend the entry.
992 EXPECT_EQ(0, WriteData(entry, 0, 1000, NULL, 0, false));
993 EXPECT_EQ(0, ReadData(entry, 0, 500, NULL, 0));
994 EXPECT_EQ(0, ReadData(entry, 0, 2000, NULL, 0));
995 EXPECT_EQ(1000, entry->GetDataSize(0));
996
997 EXPECT_EQ(0, WriteData(entry, 0, 100000, NULL, 0, true));
998 EXPECT_EQ(0, ReadData(entry, 0, 50000, NULL, 0));
999 EXPECT_EQ(100000, entry->GetDataSize(0));
1000
1001 // Let's verify the actual content.
1002 const int kSize = 20;
1003 const char zeros[kSize] = {};
1004 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1005
1006 CacheTestFillBuffer(buffer->data(), kSize, false);
1007 EXPECT_EQ(kSize, ReadData(entry, 0, 500, buffer.get(), kSize));
1008 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
1009
1010 CacheTestFillBuffer(buffer->data(), kSize, false);
1011 EXPECT_EQ(kSize, ReadData(entry, 0, 5000, buffer.get(), kSize));
1012 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
1013
1014 CacheTestFillBuffer(buffer->data(), kSize, false);
1015 EXPECT_EQ(kSize, ReadData(entry, 0, 50000, buffer.get(), kSize));
1016 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
1017
1018 entry->Close();
1019 }
1020
TEST_F(DiskCacheEntryTest,ZeroLengthIO)1021 TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
1022 InitCache();
1023 ZeroLengthIO();
1024 }
1025
TEST_F(DiskCacheEntryTest,ZeroLengthIONoBuffer)1026 TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) {
1027 InitCache();
1028 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1029 ZeroLengthIO();
1030 }
1031
TEST_F(DiskCacheEntryTest,MemoryOnlyZeroLengthIO)1032 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
1033 SetMemoryOnlyMode();
1034 InitCache();
1035 ZeroLengthIO();
1036 }
1037
1038 // Tests that we handle the content correctly when buffering, a feature of the
1039 // standard cache that permits fast responses to certain reads.
Buffering()1040 void DiskCacheEntryTest::Buffering() {
1041 std::string key("the first key");
1042 disk_cache::Entry* entry;
1043 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1044
1045 const int kSize = 200;
1046 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
1047 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
1048 CacheTestFillBuffer(buffer1->data(), kSize, true);
1049 CacheTestFillBuffer(buffer2->data(), kSize, true);
1050
1051 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
1052 entry->Close();
1053
1054 // Write a little more and read what we wrote before.
1055 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1056 EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false));
1057 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1058 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1059
1060 // Now go to an external file.
1061 EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false));
1062 entry->Close();
1063
1064 // Write something else and verify old data.
1065 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1066 EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false));
1067 CacheTestFillBuffer(buffer2->data(), kSize, true);
1068 EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize));
1069 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1070 CacheTestFillBuffer(buffer2->data(), kSize, true);
1071 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1072 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1073 CacheTestFillBuffer(buffer2->data(), kSize, true);
1074 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1075 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1076
1077 // Extend the file some more.
1078 EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false));
1079 entry->Close();
1080
1081 // And now make sure that we can deal with data in both places (ram/disk).
1082 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1083 EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false));
1084
1085 // We should not overwrite the data at 18000 with this.
1086 EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false));
1087 CacheTestFillBuffer(buffer2->data(), kSize, true);
1088 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1089 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1090 CacheTestFillBuffer(buffer2->data(), kSize, true);
1091 EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize));
1092 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1093
1094 EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false));
1095 CacheTestFillBuffer(buffer2->data(), kSize, true);
1096 EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize));
1097 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1098
1099 CacheTestFillBuffer(buffer2->data(), kSize, true);
1100 EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize));
1101 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1102
1103 // Extend the file again and read before without closing the entry.
1104 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false));
1105 EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false));
1106 CacheTestFillBuffer(buffer2->data(), kSize, true);
1107 EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize));
1108 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1109 CacheTestFillBuffer(buffer2->data(), kSize, true);
1110 EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize));
1111 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1112
1113 entry->Close();
1114 }
1115
TEST_F(DiskCacheEntryTest,Buffering)1116 TEST_F(DiskCacheEntryTest, Buffering) {
1117 InitCache();
1118 Buffering();
1119 }
1120
TEST_F(DiskCacheEntryTest,BufferingNoBuffer)1121 TEST_F(DiskCacheEntryTest, BufferingNoBuffer) {
1122 InitCache();
1123 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1124 Buffering();
1125 }
1126
1127 // Checks that entries are zero length when created.
SizeAtCreate()1128 void DiskCacheEntryTest::SizeAtCreate() {
1129 const char key[] = "the first key";
1130 disk_cache::Entry* entry;
1131 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1132
1133 const int kNumStreams = 3;
1134 for (int i = 0; i < kNumStreams; ++i)
1135 EXPECT_EQ(0, entry->GetDataSize(i));
1136 entry->Close();
1137 }
1138
TEST_F(DiskCacheEntryTest,SizeAtCreate)1139 TEST_F(DiskCacheEntryTest, SizeAtCreate) {
1140 InitCache();
1141 SizeAtCreate();
1142 }
1143
TEST_F(DiskCacheEntryTest,MemoryOnlySizeAtCreate)1144 TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) {
1145 SetMemoryOnlyMode();
1146 InitCache();
1147 SizeAtCreate();
1148 }
1149
1150 // Some extra tests to make sure that buffering works properly when changing
1151 // the entry size.
SizeChanges()1152 void DiskCacheEntryTest::SizeChanges() {
1153 std::string key("the first key");
1154 disk_cache::Entry* entry;
1155 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1156
1157 const int kSize = 200;
1158 const char zeros[kSize] = {};
1159 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
1160 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
1161 CacheTestFillBuffer(buffer1->data(), kSize, true);
1162 CacheTestFillBuffer(buffer2->data(), kSize, true);
1163
1164 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, true));
1165 EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, true));
1166 EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, true));
1167 entry->Close();
1168
1169 // Extend the file and read between the old size and the new write.
1170 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1171 EXPECT_EQ(23000 + kSize, entry->GetDataSize(1));
1172 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, true));
1173 EXPECT_EQ(25000 + kSize, entry->GetDataSize(1));
1174 EXPECT_EQ(kSize, ReadData(entry, 1, 24000, buffer2.get(), kSize));
1175 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize));
1176
1177 // Read at the end of the old file size.
1178 EXPECT_EQ(kSize,
1179 ReadData(entry, 1, 23000 + kSize - 35, buffer2.get(), kSize));
1180 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35));
1181
1182 // Read slightly before the last write.
1183 CacheTestFillBuffer(buffer2->data(), kSize, true);
1184 EXPECT_EQ(kSize, ReadData(entry, 1, 24900, buffer2.get(), kSize));
1185 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1186 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1187
1188 // Extend the entry a little more.
1189 EXPECT_EQ(kSize, WriteData(entry, 1, 26000, buffer1.get(), kSize, true));
1190 EXPECT_EQ(26000 + kSize, entry->GetDataSize(1));
1191 CacheTestFillBuffer(buffer2->data(), kSize, true);
1192 EXPECT_EQ(kSize, ReadData(entry, 1, 25900, buffer2.get(), kSize));
1193 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1194 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1195
1196 // And now reduce the size.
1197 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, true));
1198 EXPECT_EQ(25000 + kSize, entry->GetDataSize(1));
1199 EXPECT_EQ(28, ReadData(entry, 1, 25000 + kSize - 28, buffer2.get(), kSize));
1200 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28));
1201
1202 // Reduce the size with a buffer that is not extending the size.
1203 EXPECT_EQ(kSize, WriteData(entry, 1, 24000, buffer1.get(), kSize, false));
1204 EXPECT_EQ(25000 + kSize, entry->GetDataSize(1));
1205 EXPECT_EQ(kSize, WriteData(entry, 1, 24500, buffer1.get(), kSize, true));
1206 EXPECT_EQ(24500 + kSize, entry->GetDataSize(1));
1207 EXPECT_EQ(kSize, ReadData(entry, 1, 23900, buffer2.get(), kSize));
1208 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1209 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1210
1211 // And now reduce the size below the old size.
1212 EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, true));
1213 EXPECT_EQ(19000 + kSize, entry->GetDataSize(1));
1214 EXPECT_EQ(kSize, ReadData(entry, 1, 18900, buffer2.get(), kSize));
1215 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1216 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1217
1218 // Verify that the actual file is truncated.
1219 entry->Close();
1220 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1221 EXPECT_EQ(19000 + kSize, entry->GetDataSize(1));
1222
1223 // Extend the newly opened file with a zero length write, expect zero fill.
1224 EXPECT_EQ(0, WriteData(entry, 1, 20000 + kSize, buffer1.get(), 0, false));
1225 EXPECT_EQ(kSize, ReadData(entry, 1, 19000 + kSize, buffer1.get(), kSize));
1226 EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize));
1227
1228 entry->Close();
1229 }
1230
TEST_F(DiskCacheEntryTest,SizeChanges)1231 TEST_F(DiskCacheEntryTest, SizeChanges) {
1232 InitCache();
1233 SizeChanges();
1234 }
1235
TEST_F(DiskCacheEntryTest,SizeChangesNoBuffer)1236 TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) {
1237 InitCache();
1238 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1239 SizeChanges();
1240 }
1241
1242 // Write more than the total cache capacity but to a single entry. |size| is the
1243 // amount of bytes to write each time.
ReuseEntry(int size)1244 void DiskCacheEntryTest::ReuseEntry(int size) {
1245 std::string key1("the first key");
1246 disk_cache::Entry* entry;
1247 ASSERT_EQ(net::OK, CreateEntry(key1, &entry));
1248
1249 entry->Close();
1250 std::string key2("the second key");
1251 ASSERT_EQ(net::OK, CreateEntry(key2, &entry));
1252
1253 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(size));
1254 CacheTestFillBuffer(buffer->data(), size, false);
1255
1256 for (int i = 0; i < 15; i++) {
1257 EXPECT_EQ(0, WriteData(entry, 0, 0, buffer.get(), 0, true));
1258 EXPECT_EQ(size, WriteData(entry, 0, 0, buffer.get(), size, false));
1259 entry->Close();
1260 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
1261 }
1262
1263 entry->Close();
1264 ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry";
1265 entry->Close();
1266 }
1267
TEST_F(DiskCacheEntryTest,ReuseExternalEntry)1268 TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
1269 SetMaxSize(200 * 1024);
1270 InitCache();
1271 ReuseEntry(20 * 1024);
1272 }
1273
TEST_F(DiskCacheEntryTest,MemoryOnlyReuseExternalEntry)1274 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
1275 SetMemoryOnlyMode();
1276 SetMaxSize(200 * 1024);
1277 InitCache();
1278 ReuseEntry(20 * 1024);
1279 }
1280
TEST_F(DiskCacheEntryTest,ReuseInternalEntry)1281 TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
1282 SetMaxSize(100 * 1024);
1283 InitCache();
1284 ReuseEntry(10 * 1024);
1285 }
1286
TEST_F(DiskCacheEntryTest,MemoryOnlyReuseInternalEntry)1287 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
1288 SetMemoryOnlyMode();
1289 SetMaxSize(100 * 1024);
1290 InitCache();
1291 ReuseEntry(10 * 1024);
1292 }
1293
1294 // Reading somewhere that was not written should return zeros.
InvalidData()1295 void DiskCacheEntryTest::InvalidData() {
1296 std::string key("the first key");
1297 disk_cache::Entry* entry;
1298 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1299
1300 const int kSize1 = 20000;
1301 const int kSize2 = 20000;
1302 const int kSize3 = 20000;
1303 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
1304 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
1305 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
1306
1307 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1308 memset(buffer2->data(), 0, kSize2);
1309
1310 // Simple data grow:
1311 EXPECT_EQ(200, WriteData(entry, 0, 400, buffer1.get(), 200, false));
1312 EXPECT_EQ(600, entry->GetDataSize(0));
1313 EXPECT_EQ(100, ReadData(entry, 0, 300, buffer3.get(), 100));
1314 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1315 entry->Close();
1316 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1317
1318 // The entry is now on disk. Load it and extend it.
1319 EXPECT_EQ(200, WriteData(entry, 0, 800, buffer1.get(), 200, false));
1320 EXPECT_EQ(1000, entry->GetDataSize(0));
1321 EXPECT_EQ(100, ReadData(entry, 0, 700, buffer3.get(), 100));
1322 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1323 entry->Close();
1324 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1325
1326 // This time using truncate.
1327 EXPECT_EQ(200, WriteData(entry, 0, 1800, buffer1.get(), 200, true));
1328 EXPECT_EQ(2000, entry->GetDataSize(0));
1329 EXPECT_EQ(100, ReadData(entry, 0, 1500, buffer3.get(), 100));
1330 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1331
1332 // Go to an external file.
1333 EXPECT_EQ(200, WriteData(entry, 0, 19800, buffer1.get(), 200, false));
1334 EXPECT_EQ(20000, entry->GetDataSize(0));
1335 EXPECT_EQ(4000, ReadData(entry, 0, 14000, buffer3.get(), 4000));
1336 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
1337
1338 // And back to an internal block.
1339 EXPECT_EQ(600, WriteData(entry, 0, 1000, buffer1.get(), 600, true));
1340 EXPECT_EQ(1600, entry->GetDataSize(0));
1341 EXPECT_EQ(600, ReadData(entry, 0, 1000, buffer3.get(), 600));
1342 EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
1343
1344 // Extend it again.
1345 EXPECT_EQ(600, WriteData(entry, 0, 2000, buffer1.get(), 600, false));
1346 EXPECT_EQ(2600, entry->GetDataSize(0));
1347 EXPECT_EQ(200, ReadData(entry, 0, 1800, buffer3.get(), 200));
1348 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1349
1350 // And again (with truncation flag).
1351 EXPECT_EQ(600, WriteData(entry, 0, 3000, buffer1.get(), 600, true));
1352 EXPECT_EQ(3600, entry->GetDataSize(0));
1353 EXPECT_EQ(200, ReadData(entry, 0, 2800, buffer3.get(), 200));
1354 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1355
1356 entry->Close();
1357 }
1358
TEST_F(DiskCacheEntryTest,InvalidData)1359 TEST_F(DiskCacheEntryTest, InvalidData) {
1360 InitCache();
1361 InvalidData();
1362 }
1363
TEST_F(DiskCacheEntryTest,InvalidDataNoBuffer)1364 TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) {
1365 InitCache();
1366 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1367 InvalidData();
1368 }
1369
TEST_F(DiskCacheEntryTest,MemoryOnlyInvalidData)1370 TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
1371 SetMemoryOnlyMode();
1372 InitCache();
1373 InvalidData();
1374 }
1375
1376 // Tests that the cache preserves the buffer of an IO operation.
ReadWriteDestroyBuffer()1377 void DiskCacheEntryTest::ReadWriteDestroyBuffer() {
1378 std::string key("the first key");
1379 disk_cache::Entry* entry;
1380 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1381
1382 const int kSize = 200;
1383 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1384 CacheTestFillBuffer(buffer->data(), kSize, false);
1385
1386 net::TestCompletionCallback cb;
1387 EXPECT_EQ(net::ERR_IO_PENDING,
1388 entry->WriteData(0, 0, buffer.get(), kSize, cb.callback(), false));
1389
1390 // Release our reference to the buffer.
1391 buffer = NULL;
1392 EXPECT_EQ(kSize, cb.WaitForResult());
1393
1394 // And now test with a Read().
1395 buffer = new net::IOBuffer(kSize);
1396 CacheTestFillBuffer(buffer->data(), kSize, false);
1397
1398 EXPECT_EQ(net::ERR_IO_PENDING,
1399 entry->ReadData(0, 0, buffer.get(), kSize, cb.callback()));
1400 buffer = NULL;
1401 EXPECT_EQ(kSize, cb.WaitForResult());
1402
1403 entry->Close();
1404 }
1405
TEST_F(DiskCacheEntryTest,ReadWriteDestroyBuffer)1406 TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) {
1407 InitCache();
1408 ReadWriteDestroyBuffer();
1409 }
1410
DoomNormalEntry()1411 void DiskCacheEntryTest::DoomNormalEntry() {
1412 std::string key("the first key");
1413 disk_cache::Entry* entry;
1414 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1415 entry->Doom();
1416 entry->Close();
1417
1418 const int kSize = 20000;
1419 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1420 CacheTestFillBuffer(buffer->data(), kSize, true);
1421 buffer->data()[19999] = '\0';
1422
1423 key = buffer->data();
1424 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1425 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1426 EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false));
1427 entry->Doom();
1428 entry->Close();
1429
1430 FlushQueueForTest();
1431 EXPECT_EQ(0, cache_->GetEntryCount());
1432 }
1433
TEST_F(DiskCacheEntryTest,DoomEntry)1434 TEST_F(DiskCacheEntryTest, DoomEntry) {
1435 InitCache();
1436 DoomNormalEntry();
1437 }
1438
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomEntry)1439 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
1440 SetMemoryOnlyMode();
1441 InitCache();
1442 DoomNormalEntry();
1443 }
1444
1445 // Tests dooming an entry that's linked to an open entry.
DoomEntryNextToOpenEntry()1446 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1447 disk_cache::Entry* entry1;
1448 disk_cache::Entry* entry2;
1449 ASSERT_EQ(net::OK, CreateEntry("fixed", &entry1));
1450 entry1->Close();
1451 ASSERT_EQ(net::OK, CreateEntry("foo", &entry1));
1452 entry1->Close();
1453 ASSERT_EQ(net::OK, CreateEntry("bar", &entry1));
1454 entry1->Close();
1455
1456 ASSERT_EQ(net::OK, OpenEntry("foo", &entry1));
1457 ASSERT_EQ(net::OK, OpenEntry("bar", &entry2));
1458 entry2->Doom();
1459 entry2->Close();
1460
1461 ASSERT_EQ(net::OK, OpenEntry("foo", &entry2));
1462 entry2->Doom();
1463 entry2->Close();
1464 entry1->Close();
1465
1466 ASSERT_EQ(net::OK, OpenEntry("fixed", &entry1));
1467 entry1->Close();
1468 }
1469
TEST_F(DiskCacheEntryTest,DoomEntryNextToOpenEntry)1470 TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) {
1471 InitCache();
1472 DoomEntryNextToOpenEntry();
1473 }
1474
TEST_F(DiskCacheEntryTest,NewEvictionDoomEntryNextToOpenEntry)1475 TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) {
1476 SetNewEviction();
1477 InitCache();
1478 DoomEntryNextToOpenEntry();
1479 }
1480
TEST_F(DiskCacheEntryTest,AppCacheDoomEntryNextToOpenEntry)1481 TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) {
1482 SetCacheType(net::APP_CACHE);
1483 InitCache();
1484 DoomEntryNextToOpenEntry();
1485 }
1486
1487 // Verify that basic operations work as expected with doomed entries.
DoomedEntry()1488 void DiskCacheEntryTest::DoomedEntry() {
1489 std::string key("the first key");
1490 disk_cache::Entry* entry;
1491 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1492 entry->Doom();
1493
1494 FlushQueueForTest();
1495 EXPECT_EQ(0, cache_->GetEntryCount());
1496 Time initial = Time::Now();
1497 AddDelay();
1498
1499 const int kSize1 = 2000;
1500 const int kSize2 = 2000;
1501 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
1502 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
1503 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1504 memset(buffer2->data(), 0, kSize2);
1505
1506 EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1.get(), 2000, false));
1507 EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2.get(), 2000));
1508 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
1509 EXPECT_EQ(key, entry->GetKey());
1510 EXPECT_TRUE(initial < entry->GetLastModified());
1511 EXPECT_TRUE(initial < entry->GetLastUsed());
1512
1513 entry->Close();
1514 }
1515
TEST_F(DiskCacheEntryTest,DoomedEntry)1516 TEST_F(DiskCacheEntryTest, DoomedEntry) {
1517 InitCache();
1518 DoomedEntry();
1519 }
1520
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomedEntry)1521 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
1522 SetMemoryOnlyMode();
1523 InitCache();
1524 DoomedEntry();
1525 }
1526
1527 // Tests that we discard entries if the data is missing.
TEST_F(DiskCacheEntryTest,MissingData)1528 TEST_F(DiskCacheEntryTest, MissingData) {
1529 InitCache();
1530
1531 std::string key("the first key");
1532 disk_cache::Entry* entry;
1533 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1534
1535 // Write to an external file.
1536 const int kSize = 20000;
1537 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1538 CacheTestFillBuffer(buffer->data(), kSize, false);
1539 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1540 entry->Close();
1541 FlushQueueForTest();
1542
1543 disk_cache::Addr address(0x80000001);
1544 base::FilePath name = cache_impl_->GetFileName(address);
1545 EXPECT_TRUE(base::DeleteFile(name, false));
1546
1547 // Attempt to read the data.
1548 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1549 EXPECT_EQ(net::ERR_FILE_NOT_FOUND,
1550 ReadData(entry, 0, 0, buffer.get(), kSize));
1551 entry->Close();
1552
1553 // The entry should be gone.
1554 ASSERT_NE(net::OK, OpenEntry(key, &entry));
1555 }
1556
1557 // Test that child entries in a memory cache backend are not visible from
1558 // enumerations.
TEST_F(DiskCacheEntryTest,MemoryOnlyEnumerationWithSparseEntries)1559 TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
1560 SetMemoryOnlyMode();
1561 InitCache();
1562
1563 const int kSize = 4096;
1564 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1565 CacheTestFillBuffer(buf->data(), kSize, false);
1566
1567 std::string key("the first key");
1568 disk_cache::Entry* parent_entry;
1569 ASSERT_EQ(net::OK, CreateEntry(key, &parent_entry));
1570
1571 // Writes to the parent entry.
1572 EXPECT_EQ(kSize,
1573 parent_entry->WriteSparseData(
1574 0, buf.get(), kSize, net::CompletionCallback()));
1575
1576 // This write creates a child entry and writes to it.
1577 EXPECT_EQ(kSize,
1578 parent_entry->WriteSparseData(
1579 8192, buf.get(), kSize, net::CompletionCallback()));
1580
1581 parent_entry->Close();
1582
1583 // Perform the enumerations.
1584 void* iter = NULL;
1585 disk_cache::Entry* entry = NULL;
1586 int count = 0;
1587 while (OpenNextEntry(&iter, &entry) == net::OK) {
1588 ASSERT_TRUE(entry != NULL);
1589 ++count;
1590 disk_cache::MemEntryImpl* mem_entry =
1591 reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
1592 EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type());
1593 mem_entry->Close();
1594 }
1595 EXPECT_EQ(1, count);
1596 }
1597
1598 // Writes |buf_1| to offset and reads it back as |buf_2|.
VerifySparseIO(disk_cache::Entry * entry,int64 offset,net::IOBuffer * buf_1,int size,net::IOBuffer * buf_2)1599 void VerifySparseIO(disk_cache::Entry* entry, int64 offset,
1600 net::IOBuffer* buf_1, int size, net::IOBuffer* buf_2) {
1601 net::TestCompletionCallback cb;
1602
1603 memset(buf_2->data(), 0, size);
1604 int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1605 EXPECT_EQ(0, cb.GetResult(ret));
1606
1607 ret = entry->WriteSparseData(offset, buf_1, size, cb.callback());
1608 EXPECT_EQ(size, cb.GetResult(ret));
1609
1610 ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1611 EXPECT_EQ(size, cb.GetResult(ret));
1612
1613 EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
1614 }
1615
1616 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1617 // same as the content of the provided |buffer|.
VerifyContentSparseIO(disk_cache::Entry * entry,int64 offset,char * buffer,int size)1618 void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer,
1619 int size) {
1620 net::TestCompletionCallback cb;
1621
1622 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(size));
1623 memset(buf_1->data(), 0, size);
1624 int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback());
1625 EXPECT_EQ(size, cb.GetResult(ret));
1626 EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
1627 }
1628
BasicSparseIO()1629 void DiskCacheEntryTest::BasicSparseIO() {
1630 std::string key("the first key");
1631 disk_cache::Entry* entry;
1632 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1633
1634 const int kSize = 2048;
1635 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1636 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1637 CacheTestFillBuffer(buf_1->data(), kSize, false);
1638
1639 // Write at offset 0.
1640 VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get());
1641
1642 // Write at offset 0x400000 (4 MB).
1643 VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get());
1644
1645 // Write at offset 0x800000000 (32 GB).
1646 VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get());
1647
1648 entry->Close();
1649
1650 // Check everything again.
1651 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1652 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
1653 VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize);
1654 VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize);
1655 entry->Close();
1656 }
1657
TEST_F(DiskCacheEntryTest,BasicSparseIO)1658 TEST_F(DiskCacheEntryTest, BasicSparseIO) {
1659 InitCache();
1660 BasicSparseIO();
1661 }
1662
TEST_F(DiskCacheEntryTest,MemoryOnlyBasicSparseIO)1663 TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) {
1664 SetMemoryOnlyMode();
1665 InitCache();
1666 BasicSparseIO();
1667 }
1668
HugeSparseIO()1669 void DiskCacheEntryTest::HugeSparseIO() {
1670 std::string key("the first key");
1671 disk_cache::Entry* entry;
1672 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1673
1674 // Write 1.2 MB so that we cover multiple entries.
1675 const int kSize = 1200 * 1024;
1676 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1677 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1678 CacheTestFillBuffer(buf_1->data(), kSize, false);
1679
1680 // Write at offset 0x20F0000 (33 MB - 64 KB).
1681 VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get());
1682 entry->Close();
1683
1684 // Check it again.
1685 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1686 VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize);
1687 entry->Close();
1688 }
1689
TEST_F(DiskCacheEntryTest,HugeSparseIO)1690 TEST_F(DiskCacheEntryTest, HugeSparseIO) {
1691 InitCache();
1692 HugeSparseIO();
1693 }
1694
TEST_F(DiskCacheEntryTest,MemoryOnlyHugeSparseIO)1695 TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) {
1696 SetMemoryOnlyMode();
1697 InitCache();
1698 HugeSparseIO();
1699 }
1700
GetAvailableRange()1701 void DiskCacheEntryTest::GetAvailableRange() {
1702 std::string key("the first key");
1703 disk_cache::Entry* entry;
1704 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1705
1706 const int kSize = 16 * 1024;
1707 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1708 CacheTestFillBuffer(buf->data(), kSize, false);
1709
1710 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1711 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1712 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize));
1713
1714 // We stop at the first empty block.
1715 int64 start;
1716 net::TestCompletionCallback cb;
1717 int rv = entry->GetAvailableRange(
1718 0x20F0000, kSize * 2, &start, cb.callback());
1719 EXPECT_EQ(kSize, cb.GetResult(rv));
1720 EXPECT_EQ(0x20F0000, start);
1721
1722 start = 0;
1723 rv = entry->GetAvailableRange(0, kSize, &start, cb.callback());
1724 EXPECT_EQ(0, cb.GetResult(rv));
1725 rv = entry->GetAvailableRange(
1726 0x20F0000 - kSize, kSize, &start, cb.callback());
1727 EXPECT_EQ(0, cb.GetResult(rv));
1728 rv = entry->GetAvailableRange(0, 0x2100000, &start, cb.callback());
1729 EXPECT_EQ(kSize, cb.GetResult(rv));
1730 EXPECT_EQ(0x20F0000, start);
1731
1732 // We should be able to Read based on the results of GetAvailableRange.
1733 start = -1;
1734 rv = entry->GetAvailableRange(0x2100000, kSize, &start, cb.callback());
1735 EXPECT_EQ(0, cb.GetResult(rv));
1736 rv = entry->ReadSparseData(start, buf.get(), kSize, cb.callback());
1737 EXPECT_EQ(0, cb.GetResult(rv));
1738
1739 start = 0;
1740 rv = entry->GetAvailableRange(0x20F2000, kSize, &start, cb.callback());
1741 EXPECT_EQ(0x2000, cb.GetResult(rv));
1742 EXPECT_EQ(0x20F2000, start);
1743 EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf.get(), kSize));
1744
1745 // Make sure that we respect the |len| argument.
1746 start = 0;
1747 rv = entry->GetAvailableRange(
1748 0x20F0001 - kSize, kSize, &start, cb.callback());
1749 EXPECT_EQ(1, cb.GetResult(rv));
1750 EXPECT_EQ(0x20F0000, start);
1751
1752 entry->Close();
1753 }
1754
TEST_F(DiskCacheEntryTest,GetAvailableRange)1755 TEST_F(DiskCacheEntryTest, GetAvailableRange) {
1756 InitCache();
1757 GetAvailableRange();
1758 }
1759
TEST_F(DiskCacheEntryTest,MemoryOnlyGetAvailableRange)1760 TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
1761 SetMemoryOnlyMode();
1762 InitCache();
1763 GetAvailableRange();
1764 }
1765
CouldBeSparse()1766 void DiskCacheEntryTest::CouldBeSparse() {
1767 std::string key("the first key");
1768 disk_cache::Entry* entry;
1769 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1770
1771 const int kSize = 16 * 1024;
1772 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1773 CacheTestFillBuffer(buf->data(), kSize, false);
1774
1775 // Write at offset 0x20F0000 (33 MB - 64 KB).
1776 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1777
1778 EXPECT_TRUE(entry->CouldBeSparse());
1779 entry->Close();
1780
1781 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1782 EXPECT_TRUE(entry->CouldBeSparse());
1783 entry->Close();
1784
1785 // Now verify a regular entry.
1786 key.assign("another key");
1787 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1788 EXPECT_FALSE(entry->CouldBeSparse());
1789
1790 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false));
1791 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false));
1792 EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false));
1793
1794 EXPECT_FALSE(entry->CouldBeSparse());
1795 entry->Close();
1796
1797 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1798 EXPECT_FALSE(entry->CouldBeSparse());
1799 entry->Close();
1800 }
1801
TEST_F(DiskCacheEntryTest,CouldBeSparse)1802 TEST_F(DiskCacheEntryTest, CouldBeSparse) {
1803 InitCache();
1804 CouldBeSparse();
1805 }
1806
TEST_F(DiskCacheEntryTest,MemoryCouldBeSparse)1807 TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) {
1808 SetMemoryOnlyMode();
1809 InitCache();
1810 CouldBeSparse();
1811 }
1812
TEST_F(DiskCacheEntryTest,MemoryOnlyMisalignedSparseIO)1813 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
1814 SetMemoryOnlyMode();
1815 InitCache();
1816
1817 const int kSize = 8192;
1818 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1819 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1820 CacheTestFillBuffer(buf_1->data(), kSize, false);
1821
1822 std::string key("the first key");
1823 disk_cache::Entry* entry;
1824 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1825
1826 // This loop writes back to back starting from offset 0 and 9000.
1827 for (int i = 0; i < kSize; i += 1024) {
1828 scoped_refptr<net::WrappedIOBuffer> buf_3(
1829 new net::WrappedIOBuffer(buf_1->data() + i));
1830 VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get());
1831 VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get());
1832 }
1833
1834 // Make sure we have data written.
1835 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
1836 VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize);
1837
1838 // This tests a large write that spans 3 entries from a misaligned offset.
1839 VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get());
1840
1841 entry->Close();
1842 }
1843
TEST_F(DiskCacheEntryTest,MemoryOnlyMisalignedGetAvailableRange)1844 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
1845 SetMemoryOnlyMode();
1846 InitCache();
1847
1848 const int kSize = 8192;
1849 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1850 CacheTestFillBuffer(buf->data(), kSize, false);
1851
1852 disk_cache::Entry* entry;
1853 std::string key("the first key");
1854 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1855
1856 // Writes in the middle of an entry.
1857 EXPECT_EQ(
1858 1024,
1859 entry->WriteSparseData(0, buf.get(), 1024, net::CompletionCallback()));
1860 EXPECT_EQ(
1861 1024,
1862 entry->WriteSparseData(5120, buf.get(), 1024, net::CompletionCallback()));
1863 EXPECT_EQ(1024,
1864 entry->WriteSparseData(
1865 10000, buf.get(), 1024, net::CompletionCallback()));
1866
1867 // Writes in the middle of an entry and spans 2 child entries.
1868 EXPECT_EQ(8192,
1869 entry->WriteSparseData(
1870 50000, buf.get(), 8192, net::CompletionCallback()));
1871
1872 int64 start;
1873 net::TestCompletionCallback cb;
1874 // Test that we stop at a discontinuous child at the second block.
1875 int rv = entry->GetAvailableRange(0, 10000, &start, cb.callback());
1876 EXPECT_EQ(1024, cb.GetResult(rv));
1877 EXPECT_EQ(0, start);
1878
1879 // Test that number of bytes is reported correctly when we start from the
1880 // middle of a filled region.
1881 rv = entry->GetAvailableRange(512, 10000, &start, cb.callback());
1882 EXPECT_EQ(512, cb.GetResult(rv));
1883 EXPECT_EQ(512, start);
1884
1885 // Test that we found bytes in the child of next block.
1886 rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback());
1887 EXPECT_EQ(1024, cb.GetResult(rv));
1888 EXPECT_EQ(5120, start);
1889
1890 // Test that the desired length is respected. It starts within a filled
1891 // region.
1892 rv = entry->GetAvailableRange(5500, 512, &start, cb.callback());
1893 EXPECT_EQ(512, cb.GetResult(rv));
1894 EXPECT_EQ(5500, start);
1895
1896 // Test that the desired length is respected. It starts before a filled
1897 // region.
1898 rv = entry->GetAvailableRange(5000, 620, &start, cb.callback());
1899 EXPECT_EQ(500, cb.GetResult(rv));
1900 EXPECT_EQ(5120, start);
1901
1902 // Test that multiple blocks are scanned.
1903 rv = entry->GetAvailableRange(40000, 20000, &start, cb.callback());
1904 EXPECT_EQ(8192, cb.GetResult(rv));
1905 EXPECT_EQ(50000, start);
1906
1907 entry->Close();
1908 }
1909
UpdateSparseEntry()1910 void DiskCacheEntryTest::UpdateSparseEntry() {
1911 std::string key("the first key");
1912 disk_cache::Entry* entry1;
1913 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
1914
1915 const int kSize = 2048;
1916 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1917 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1918 CacheTestFillBuffer(buf_1->data(), kSize, false);
1919
1920 // Write at offset 0.
1921 VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get());
1922 entry1->Close();
1923
1924 // Write at offset 2048.
1925 ASSERT_EQ(net::OK, OpenEntry(key, &entry1));
1926 VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get());
1927
1928 disk_cache::Entry* entry2;
1929 ASSERT_EQ(net::OK, CreateEntry("the second key", &entry2));
1930
1931 entry1->Close();
1932 entry2->Close();
1933 FlushQueueForTest();
1934 if (memory_only_ || simple_cache_mode_)
1935 EXPECT_EQ(2, cache_->GetEntryCount());
1936 else
1937 EXPECT_EQ(3, cache_->GetEntryCount());
1938 }
1939
TEST_F(DiskCacheEntryTest,UpdateSparseEntry)1940 TEST_F(DiskCacheEntryTest, UpdateSparseEntry) {
1941 SetCacheType(net::MEDIA_CACHE);
1942 InitCache();
1943 UpdateSparseEntry();
1944 }
1945
TEST_F(DiskCacheEntryTest,MemoryOnlyUpdateSparseEntry)1946 TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) {
1947 SetMemoryOnlyMode();
1948 SetCacheType(net::MEDIA_CACHE);
1949 InitCache();
1950 UpdateSparseEntry();
1951 }
1952
DoomSparseEntry()1953 void DiskCacheEntryTest::DoomSparseEntry() {
1954 std::string key1("the first key");
1955 std::string key2("the second key");
1956 disk_cache::Entry *entry1, *entry2;
1957 ASSERT_EQ(net::OK, CreateEntry(key1, &entry1));
1958 ASSERT_EQ(net::OK, CreateEntry(key2, &entry2));
1959
1960 const int kSize = 4 * 1024;
1961 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1962 CacheTestFillBuffer(buf->data(), kSize, false);
1963
1964 int64 offset = 1024;
1965 // Write to a bunch of ranges.
1966 for (int i = 0; i < 12; i++) {
1967 EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize));
1968 // Keep the second map under the default size.
1969 if (i < 9)
1970 EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize));
1971
1972 offset *= 4;
1973 }
1974
1975 if (memory_only_ || simple_cache_mode_)
1976 EXPECT_EQ(2, cache_->GetEntryCount());
1977 else
1978 EXPECT_EQ(15, cache_->GetEntryCount());
1979
1980 // Doom the first entry while it's still open.
1981 entry1->Doom();
1982 entry1->Close();
1983 entry2->Close();
1984
1985 // Doom the second entry after it's fully saved.
1986 EXPECT_EQ(net::OK, DoomEntry(key2));
1987
1988 // Make sure we do all needed work. This may fail for entry2 if between Close
1989 // and DoomEntry the system decides to remove all traces of the file from the
1990 // system cache so we don't see that there is pending IO.
1991 base::MessageLoop::current()->RunUntilIdle();
1992
1993 if (memory_only_) {
1994 EXPECT_EQ(0, cache_->GetEntryCount());
1995 } else {
1996 if (5 == cache_->GetEntryCount()) {
1997 // Most likely we are waiting for the result of reading the sparse info
1998 // (it's always async on Posix so it is easy to miss). Unfortunately we
1999 // don't have any signal to watch for so we can only wait.
2000 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500));
2001 base::MessageLoop::current()->RunUntilIdle();
2002 }
2003 EXPECT_EQ(0, cache_->GetEntryCount());
2004 }
2005 }
2006
TEST_F(DiskCacheEntryTest,DoomSparseEntry)2007 TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
2008 UseCurrentThread();
2009 InitCache();
2010 DoomSparseEntry();
2011 }
2012
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomSparseEntry)2013 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
2014 SetMemoryOnlyMode();
2015 InitCache();
2016 DoomSparseEntry();
2017 }
2018
2019 // A CompletionCallback wrapper that deletes the cache from within the callback.
2020 // The way a CompletionCallback works means that all tasks (even new ones)
2021 // are executed by the message loop before returning to the caller so the only
2022 // way to simulate a race is to execute what we want on the callback.
2023 class SparseTestCompletionCallback: public net::TestCompletionCallback {
2024 public:
SparseTestCompletionCallback(scoped_ptr<disk_cache::Backend> cache)2025 explicit SparseTestCompletionCallback(scoped_ptr<disk_cache::Backend> cache)
2026 : cache_(cache.Pass()) {
2027 }
2028
2029 private:
SetResult(int result)2030 virtual void SetResult(int result) OVERRIDE {
2031 cache_.reset();
2032 TestCompletionCallback::SetResult(result);
2033 }
2034
2035 scoped_ptr<disk_cache::Backend> cache_;
2036 DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback);
2037 };
2038
2039 // Tests that we don't crash when the backend is deleted while we are working
2040 // deleting the sub-entries of a sparse entry.
TEST_F(DiskCacheEntryTest,DoomSparseEntry2)2041 TEST_F(DiskCacheEntryTest, DoomSparseEntry2) {
2042 UseCurrentThread();
2043 InitCache();
2044 std::string key("the key");
2045 disk_cache::Entry* entry;
2046 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2047
2048 const int kSize = 4 * 1024;
2049 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
2050 CacheTestFillBuffer(buf->data(), kSize, false);
2051
2052 int64 offset = 1024;
2053 // Write to a bunch of ranges.
2054 for (int i = 0; i < 12; i++) {
2055 EXPECT_EQ(kSize,
2056 entry->WriteSparseData(
2057 offset, buf.get(), kSize, net::CompletionCallback()));
2058 offset *= 4;
2059 }
2060 EXPECT_EQ(9, cache_->GetEntryCount());
2061
2062 entry->Close();
2063 disk_cache::Backend* cache = cache_.get();
2064 SparseTestCompletionCallback cb(cache_.Pass());
2065 int rv = cache->DoomEntry(key, cb.callback());
2066 EXPECT_EQ(net::ERR_IO_PENDING, rv);
2067 EXPECT_EQ(net::OK, cb.WaitForResult());
2068 }
2069
PartialSparseEntry()2070 void DiskCacheEntryTest::PartialSparseEntry() {
2071 std::string key("the first key");
2072 disk_cache::Entry* entry;
2073 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2074
2075 // We should be able to deal with IO that is not aligned to the block size
2076 // of a sparse entry, at least to write a big range without leaving holes.
2077 const int kSize = 4 * 1024;
2078 const int kSmallSize = 128;
2079 scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize));
2080 CacheTestFillBuffer(buf1->data(), kSize, false);
2081
2082 // The first write is just to extend the entry. The third write occupies
2083 // a 1KB block partially, it may not be written internally depending on the
2084 // implementation.
2085 EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize));
2086 EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize));
2087 EXPECT_EQ(kSmallSize,
2088 WriteSparseData(entry, 1080321, buf1.get(), kSmallSize));
2089 entry->Close();
2090 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2091
2092 scoped_refptr<net::IOBuffer> buf2(new net::IOBuffer(kSize));
2093 memset(buf2->data(), 0, kSize);
2094 EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize));
2095
2096 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2097 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2098 EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize));
2099
2100 // This read should not change anything.
2101 EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize));
2102 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2103 EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize));
2104
2105 int rv;
2106 int64 start;
2107 net::TestCompletionCallback cb;
2108 if (memory_only_ || simple_cache_mode_) {
2109 rv = entry->GetAvailableRange(0, 600, &start, cb.callback());
2110 EXPECT_EQ(100, cb.GetResult(rv));
2111 EXPECT_EQ(500, start);
2112 } else {
2113 rv = entry->GetAvailableRange(0, 2048, &start, cb.callback());
2114 EXPECT_EQ(1024, cb.GetResult(rv));
2115 EXPECT_EQ(1024, start);
2116 }
2117 rv = entry->GetAvailableRange(kSize, kSize, &start, cb.callback());
2118 EXPECT_EQ(500, cb.GetResult(rv));
2119 EXPECT_EQ(kSize, start);
2120 rv = entry->GetAvailableRange(20 * 1024, 10000, &start, cb.callback());
2121 EXPECT_EQ(3616, cb.GetResult(rv));
2122 EXPECT_EQ(20 * 1024, start);
2123
2124 // 1. Query before a filled 1KB block.
2125 // 2. Query within a filled 1KB block.
2126 // 3. Query beyond a filled 1KB block.
2127 if (memory_only_ || simple_cache_mode_) {
2128 rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback());
2129 EXPECT_EQ(3496, cb.GetResult(rv));
2130 EXPECT_EQ(20000, start);
2131 } else {
2132 rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback());
2133 EXPECT_EQ(3016, cb.GetResult(rv));
2134 EXPECT_EQ(20480, start);
2135 }
2136 rv = entry->GetAvailableRange(3073, kSize, &start, cb.callback());
2137 EXPECT_EQ(1523, cb.GetResult(rv));
2138 EXPECT_EQ(3073, start);
2139 rv = entry->GetAvailableRange(4600, kSize, &start, cb.callback());
2140 EXPECT_EQ(0, cb.GetResult(rv));
2141 EXPECT_EQ(4600, start);
2142
2143 // Now make another write and verify that there is no hole in between.
2144 EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize));
2145 rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback());
2146 EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv));
2147 EXPECT_EQ(1024, start);
2148 EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize));
2149 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2150 EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
2151
2152 entry->Close();
2153 }
2154
TEST_F(DiskCacheEntryTest,PartialSparseEntry)2155 TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
2156 InitCache();
2157 PartialSparseEntry();
2158 }
2159
TEST_F(DiskCacheEntryTest,MemoryPartialSparseEntry)2160 TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
2161 SetMemoryOnlyMode();
2162 InitCache();
2163 PartialSparseEntry();
2164 }
2165
2166 // Tests that corrupt sparse children are removed automatically.
TEST_F(DiskCacheEntryTest,CleanupSparseEntry)2167 TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
2168 InitCache();
2169 std::string key("the first key");
2170 disk_cache::Entry* entry;
2171 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2172
2173 const int kSize = 4 * 1024;
2174 scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize));
2175 CacheTestFillBuffer(buf1->data(), kSize, false);
2176
2177 const int k1Meg = 1024 * 1024;
2178 EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize));
2179 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2180 EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2181 entry->Close();
2182 EXPECT_EQ(4, cache_->GetEntryCount());
2183
2184 void* iter = NULL;
2185 int count = 0;
2186 std::string child_key[2];
2187 while (OpenNextEntry(&iter, &entry) == net::OK) {
2188 ASSERT_TRUE(entry != NULL);
2189 // Writing to an entry will alter the LRU list and invalidate the iterator.
2190 if (entry->GetKey() != key && count < 2)
2191 child_key[count++] = entry->GetKey();
2192 entry->Close();
2193 }
2194 for (int i = 0; i < 2; i++) {
2195 ASSERT_EQ(net::OK, OpenEntry(child_key[i], &entry));
2196 // Overwrite the header's magic and signature.
2197 EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false));
2198 entry->Close();
2199 }
2200
2201 EXPECT_EQ(4, cache_->GetEntryCount());
2202 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2203
2204 // Two children should be gone. One while reading and one while writing.
2205 EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2206 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize));
2207 EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2208
2209 // We never touched this one.
2210 EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize));
2211 entry->Close();
2212
2213 // We re-created one of the corrupt children.
2214 EXPECT_EQ(3, cache_->GetEntryCount());
2215 }
2216
TEST_F(DiskCacheEntryTest,CancelSparseIO)2217 TEST_F(DiskCacheEntryTest, CancelSparseIO) {
2218 UseCurrentThread();
2219 InitCache();
2220 std::string key("the first key");
2221 disk_cache::Entry* entry;
2222 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2223
2224 const int kSize = 40 * 1024;
2225 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
2226 CacheTestFillBuffer(buf->data(), kSize, false);
2227
2228 // This will open and write two "real" entries.
2229 net::TestCompletionCallback cb1, cb2, cb3, cb4, cb5;
2230 int rv = entry->WriteSparseData(
2231 1024 * 1024 - 4096, buf.get(), kSize, cb1.callback());
2232 EXPECT_EQ(net::ERR_IO_PENDING, rv);
2233
2234 int64 offset = 0;
2235 rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback());
2236 rv = cb5.GetResult(rv);
2237 if (!cb1.have_result()) {
2238 // We may or may not have finished writing to the entry. If we have not,
2239 // we cannot start another operation at this time.
2240 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
2241 }
2242
2243 // We cancel the pending operation, and register multiple notifications.
2244 entry->CancelSparseIO();
2245 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb2.callback()));
2246 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb3.callback()));
2247 entry->CancelSparseIO(); // Should be a no op at this point.
2248 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb4.callback()));
2249
2250 if (!cb1.have_result()) {
2251 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2252 entry->ReadSparseData(
2253 offset, buf.get(), kSize, net::CompletionCallback()));
2254 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2255 entry->WriteSparseData(
2256 offset, buf.get(), kSize, net::CompletionCallback()));
2257 }
2258
2259 // Now see if we receive all notifications. Note that we should not be able
2260 // to write everything (unless the timing of the system is really weird).
2261 rv = cb1.WaitForResult();
2262 EXPECT_TRUE(rv == 4096 || rv == kSize);
2263 EXPECT_EQ(net::OK, cb2.WaitForResult());
2264 EXPECT_EQ(net::OK, cb3.WaitForResult());
2265 EXPECT_EQ(net::OK, cb4.WaitForResult());
2266
2267 rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback());
2268 EXPECT_EQ(0, cb5.GetResult(rv));
2269 entry->Close();
2270 }
2271
2272 // Tests that we perform sanity checks on an entry's key. Note that there are
2273 // other tests that exercise sanity checks by using saved corrupt files.
TEST_F(DiskCacheEntryTest,KeySanityCheck)2274 TEST_F(DiskCacheEntryTest, KeySanityCheck) {
2275 UseCurrentThread();
2276 InitCache();
2277 std::string key("the first key");
2278 disk_cache::Entry* entry;
2279 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2280
2281 disk_cache::EntryImpl* entry_impl =
2282 static_cast<disk_cache::EntryImpl*>(entry);
2283 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2284
2285 // We have reserved space for a short key (one block), let's say that the key
2286 // takes more than one block, and remove the NULLs after the actual key.
2287 store->key_len = 800;
2288 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
2289 entry_impl->entry()->set_modified();
2290 entry->Close();
2291
2292 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2293 // allocated buffer here.
2294 ASSERT_NE(net::OK, OpenEntry(key, &entry));
2295 DisableIntegrityCheck();
2296 }
2297
2298 // The Simple Cache backend requires a few guarantees from the filesystem like
2299 // atomic renaming of recently open files. Those guarantees are not provided in
2300 // general on Windows.
2301 #if defined(OS_POSIX)
2302
TEST_F(DiskCacheEntryTest,SimpleCacheInternalAsyncIO)2303 TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) {
2304 SetSimpleCacheMode();
2305 InitCache();
2306 InternalAsyncIO();
2307 }
2308
TEST_F(DiskCacheEntryTest,SimpleCacheExternalAsyncIO)2309 TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) {
2310 SetSimpleCacheMode();
2311 InitCache();
2312 ExternalAsyncIO();
2313 }
2314
TEST_F(DiskCacheEntryTest,SimpleCacheReleaseBuffer)2315 TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) {
2316 SetSimpleCacheMode();
2317 InitCache();
2318 ReleaseBuffer();
2319 }
2320
TEST_F(DiskCacheEntryTest,SimpleCacheStreamAccess)2321 TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) {
2322 SetSimpleCacheMode();
2323 InitCache();
2324 StreamAccess();
2325 }
2326
TEST_F(DiskCacheEntryTest,SimpleCacheGetKey)2327 TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) {
2328 SetSimpleCacheMode();
2329 InitCache();
2330 GetKey();
2331 }
2332
TEST_F(DiskCacheEntryTest,SimpleCacheGetTimes)2333 TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) {
2334 SetSimpleCacheMode();
2335 InitCache();
2336 GetTimes();
2337 }
2338
TEST_F(DiskCacheEntryTest,SimpleCacheGrowData)2339 TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) {
2340 SetSimpleCacheMode();
2341 InitCache();
2342 GrowData();
2343 }
2344
TEST_F(DiskCacheEntryTest,SimpleCacheTruncateData)2345 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) {
2346 SetSimpleCacheMode();
2347 InitCache();
2348 TruncateData();
2349 }
2350
TEST_F(DiskCacheEntryTest,SimpleCacheZeroLengthIO)2351 TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) {
2352 SetSimpleCacheMode();
2353 InitCache();
2354 ZeroLengthIO();
2355 }
2356
TEST_F(DiskCacheEntryTest,SimpleCacheSizeAtCreate)2357 TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) {
2358 SetSimpleCacheMode();
2359 InitCache();
2360 SizeAtCreate();
2361 }
2362
TEST_F(DiskCacheEntryTest,SimpleCacheReuseExternalEntry)2363 TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) {
2364 SetSimpleCacheMode();
2365 SetMaxSize(200 * 1024);
2366 InitCache();
2367 ReuseEntry(20 * 1024);
2368 }
2369
TEST_F(DiskCacheEntryTest,SimpleCacheReuseInternalEntry)2370 TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) {
2371 SetSimpleCacheMode();
2372 SetMaxSize(100 * 1024);
2373 InitCache();
2374 ReuseEntry(10 * 1024);
2375 }
2376
TEST_F(DiskCacheEntryTest,SimpleCacheSizeChanges)2377 TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) {
2378 SetSimpleCacheMode();
2379 InitCache();
2380 SizeChanges();
2381 }
2382
TEST_F(DiskCacheEntryTest,SimpleCacheInvalidData)2383 TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) {
2384 SetSimpleCacheMode();
2385 InitCache();
2386 InvalidData();
2387 }
2388
TEST_F(DiskCacheEntryTest,SimpleCacheReadWriteDestroyBuffer)2389 TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) {
2390 SetSimpleCacheMode();
2391 InitCache();
2392 ReadWriteDestroyBuffer();
2393 }
2394
TEST_F(DiskCacheEntryTest,SimpleCacheDoomEntry)2395 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) {
2396 SetSimpleCacheMode();
2397 InitCache();
2398 DoomNormalEntry();
2399 }
2400
TEST_F(DiskCacheEntryTest,SimpleCacheDoomEntryNextToOpenEntry)2401 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) {
2402 SetSimpleCacheMode();
2403 InitCache();
2404 DoomEntryNextToOpenEntry();
2405 }
2406
TEST_F(DiskCacheEntryTest,SimpleCacheDoomedEntry)2407 TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) {
2408 SetSimpleCacheMode();
2409 InitCache();
2410 DoomedEntry();
2411 }
2412
2413 // Creates an entry with corrupted last byte in stream 0.
2414 // Requires SimpleCacheMode.
SimpleCacheMakeBadChecksumEntry(const std::string & key,int * data_size)2415 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key,
2416 int* data_size) {
2417 disk_cache::Entry* entry = NULL;
2418
2419 if (CreateEntry(key, &entry) != net::OK || !entry) {
2420 LOG(ERROR) << "Could not create entry";
2421 return false;
2422 }
2423
2424 const char data[] = "this is very good data";
2425 const int kDataSize = arraysize(data);
2426 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kDataSize));
2427 base::strlcpy(buffer->data(), data, kDataSize);
2428
2429 EXPECT_EQ(kDataSize, WriteData(entry, 1, 0, buffer.get(), kDataSize, false));
2430 entry->Close();
2431 entry = NULL;
2432
2433 // Corrupt the last byte of the data.
2434 base::FilePath entry_file0_path = cache_path_.AppendASCII(
2435 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
2436 int flags = base::PLATFORM_FILE_WRITE | base::PLATFORM_FILE_OPEN;
2437 base::PlatformFile entry_file0 =
2438 base::CreatePlatformFile(entry_file0_path, flags, NULL, NULL);
2439 if (entry_file0 == base::kInvalidPlatformFileValue)
2440 return false;
2441
2442 int64 file_offset =
2443 sizeof(disk_cache::SimpleFileHeader) + key.size() + kDataSize - 2;
2444 EXPECT_EQ(1, base::WritePlatformFile(entry_file0, file_offset, "X", 1));
2445 if (!base::ClosePlatformFile(entry_file0))
2446 return false;
2447 *data_size = kDataSize;
2448 return true;
2449 }
2450
2451 // Tests that the simple cache can detect entries that have bad data.
TEST_F(DiskCacheEntryTest,SimpleCacheBadChecksum)2452 TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) {
2453 SetSimpleCacheMode();
2454 InitCache();
2455
2456 const char key[] = "the first key";
2457 int size_unused;
2458 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size_unused));
2459
2460 disk_cache::Entry* entry = NULL;
2461
2462 // Open the entry.
2463 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2464 ScopedEntryPtr entry_closer(entry);
2465
2466 const int kReadBufferSize = 200;
2467 EXPECT_GE(kReadBufferSize, entry->GetDataSize(1));
2468 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize));
2469 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
2470 ReadData(entry, 1, 0, read_buffer.get(), kReadBufferSize));
2471 }
2472
2473 // Tests that an entry that has had an IO error occur can still be Doomed().
TEST_F(DiskCacheEntryTest,SimpleCacheErrorThenDoom)2474 TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) {
2475 SetSimpleCacheMode();
2476 InitCache();
2477
2478 const char key[] = "the first key";
2479 int size_unused;
2480 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size_unused));
2481
2482 disk_cache::Entry* entry = NULL;
2483
2484 // Open the entry, forcing an IO error.
2485 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2486 ScopedEntryPtr entry_closer(entry);
2487
2488 const int kReadBufferSize = 200;
2489 EXPECT_GE(kReadBufferSize, entry->GetDataSize(1));
2490 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize));
2491 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
2492 ReadData(entry, 1, 0, read_buffer.get(), kReadBufferSize));
2493
2494 entry->Doom(); // Should not crash.
2495 }
2496
TruncatePath(const base::FilePath & file_path,int64 length)2497 bool TruncatePath(const base::FilePath& file_path, int64 length) {
2498 const int flags = base::PLATFORM_FILE_WRITE | base::PLATFORM_FILE_OPEN;
2499 base::PlatformFile file =
2500 base::CreatePlatformFile(file_path, flags, NULL, NULL);
2501 if (base::kInvalidPlatformFileValue == file)
2502 return false;
2503 const bool result = base::TruncatePlatformFile(file, length);
2504 base::ClosePlatformFile(file);
2505 return result;
2506 }
2507
TEST_F(DiskCacheEntryTest,SimpleCacheNoEOF)2508 TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) {
2509 SetSimpleCacheMode();
2510 InitCache();
2511
2512 const char key[] = "the first key";
2513
2514 disk_cache::Entry* entry = NULL;
2515 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2516 disk_cache::Entry* null = NULL;
2517 EXPECT_NE(null, entry);
2518 entry->Close();
2519 entry = NULL;
2520
2521 // Force the entry to flush to disk, so subsequent platform file operations
2522 // succed.
2523 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2524 entry->Close();
2525 entry = NULL;
2526
2527 // Truncate the file such that the length isn't sufficient to have an EOF
2528 // record.
2529 int kTruncationBytes = -implicit_cast<int>(sizeof(disk_cache::SimpleFileEOF));
2530 const base::FilePath entry_path = cache_path_.AppendASCII(
2531 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
2532 const int64 invalid_size =
2533 disk_cache::simple_util::GetFileSizeFromKeyAndDataSize(key,
2534 kTruncationBytes);
2535 EXPECT_TRUE(TruncatePath(entry_path, invalid_size));
2536 EXPECT_EQ(net::ERR_FAILED, OpenEntry(key, &entry));
2537 DisableIntegrityCheck();
2538 }
2539
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsBasic)2540 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) {
2541 // Test sequence:
2542 // Create, Write, Read, Close.
2543 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
2544 SetSimpleCacheMode();
2545 InitCache();
2546 disk_cache::Entry* const null_entry = NULL;
2547
2548 disk_cache::Entry* entry = NULL;
2549 EXPECT_EQ(net::OK, CreateEntry("my key", &entry));
2550 ASSERT_NE(null_entry, entry);
2551 ScopedEntryPtr entry_closer(entry);
2552
2553 const int kBufferSize = 10;
2554 scoped_refptr<net::IOBufferWithSize> write_buffer(
2555 new net::IOBufferWithSize(kBufferSize));
2556 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
2557 EXPECT_EQ(
2558 write_buffer->size(),
2559 WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false));
2560
2561 scoped_refptr<net::IOBufferWithSize> read_buffer(
2562 new net::IOBufferWithSize(kBufferSize));
2563 EXPECT_EQ(read_buffer->size(),
2564 ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size()));
2565 }
2566
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsDontBlock)2567 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) {
2568 // Test sequence:
2569 // Create, Write, Close.
2570 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
2571 SetSimpleCacheMode();
2572 InitCache();
2573 disk_cache::Entry* const null_entry = NULL;
2574
2575 MessageLoopHelper helper;
2576 CallbackTest create_callback(&helper, false);
2577
2578 int expected_callback_runs = 0;
2579 const int kBufferSize = 10;
2580 scoped_refptr<net::IOBufferWithSize> write_buffer(
2581 new net::IOBufferWithSize(kBufferSize));
2582
2583 disk_cache::Entry* entry = NULL;
2584 EXPECT_EQ(net::OK, CreateEntry("my key", &entry));
2585 ASSERT_NE(null_entry, entry);
2586 ScopedEntryPtr entry_closer(entry);
2587
2588 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
2589 CallbackTest write_callback(&helper, false);
2590 int ret = entry->WriteData(
2591 1,
2592 0,
2593 write_buffer.get(),
2594 write_buffer->size(),
2595 base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)),
2596 false);
2597 ASSERT_EQ(net::ERR_IO_PENDING, ret);
2598 helper.WaitUntilCacheIoFinished(++expected_callback_runs);
2599 }
2600
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting)2601 TEST_F(DiskCacheEntryTest,
2602 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) {
2603 // Test sequence:
2604 // Create, Write, Read, Close.
2605 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
2606 SetSimpleCacheMode();
2607 InitCache();
2608 disk_cache::Entry* const null_entry = NULL;
2609 MessageLoopHelper helper;
2610
2611 disk_cache::Entry* entry = NULL;
2612 // Note that |entry| is only set once CreateEntry() completed which is why we
2613 // have to wait (i.e. use the helper CreateEntry() function).
2614 EXPECT_EQ(net::OK, CreateEntry("my key", &entry));
2615 ASSERT_NE(null_entry, entry);
2616 ScopedEntryPtr entry_closer(entry);
2617
2618 const int kBufferSize = 10;
2619 scoped_refptr<net::IOBufferWithSize> write_buffer(
2620 new net::IOBufferWithSize(kBufferSize));
2621 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
2622 CallbackTest write_callback(&helper, false);
2623 int ret = entry->WriteData(
2624 1,
2625 0,
2626 write_buffer.get(),
2627 write_buffer->size(),
2628 base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)),
2629 false);
2630 EXPECT_EQ(net::ERR_IO_PENDING, ret);
2631 int expected_callback_runs = 1;
2632
2633 scoped_refptr<net::IOBufferWithSize> read_buffer(
2634 new net::IOBufferWithSize(kBufferSize));
2635 CallbackTest read_callback(&helper, false);
2636 ret = entry->ReadData(
2637 1,
2638 0,
2639 read_buffer.get(),
2640 read_buffer->size(),
2641 base::Bind(&CallbackTest::Run, base::Unretained(&read_callback)));
2642 EXPECT_EQ(net::ERR_IO_PENDING, ret);
2643 ++expected_callback_runs;
2644
2645 helper.WaitUntilCacheIoFinished(expected_callback_runs);
2646 ASSERT_EQ(read_buffer->size(), write_buffer->size());
2647 EXPECT_EQ(
2648 0,
2649 memcmp(read_buffer->data(), write_buffer->data(), read_buffer->size()));
2650 }
2651
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic)2652 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) {
2653 // Test sequence:
2654 // Create, Write, Read, Write, Read, Close.
2655 SetSimpleCacheMode();
2656 InitCache();
2657 disk_cache::Entry* null = NULL;
2658 const char key[] = "the first key";
2659
2660 MessageLoopHelper helper;
2661 CallbackTest callback1(&helper, false);
2662 CallbackTest callback2(&helper, false);
2663 CallbackTest callback3(&helper, false);
2664 CallbackTest callback4(&helper, false);
2665 CallbackTest callback5(&helper, false);
2666
2667 int expected = 0;
2668 const int kSize1 = 10;
2669 const int kSize2 = 20;
2670 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2671 scoped_refptr<net::IOBuffer> buffer1_read(new net::IOBuffer(kSize1));
2672 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
2673 scoped_refptr<net::IOBuffer> buffer2_read(new net::IOBuffer(kSize2));
2674 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2675 CacheTestFillBuffer(buffer2->data(), kSize2, false);
2676
2677 disk_cache::Entry* entry = NULL;
2678 // Create is optimistic, must return OK.
2679 ASSERT_EQ(net::OK,
2680 cache_->CreateEntry(key, &entry,
2681 base::Bind(&CallbackTest::Run,
2682 base::Unretained(&callback1))));
2683 EXPECT_NE(null, entry);
2684 ScopedEntryPtr entry_closer(entry);
2685
2686 // This write may or may not be optimistic (it depends if the previous
2687 // optimistic create already finished by the time we call the write here).
2688 int ret = entry->WriteData(
2689 1,
2690 0,
2691 buffer1.get(),
2692 kSize1,
2693 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)),
2694 false);
2695 EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret);
2696 if (net::ERR_IO_PENDING == ret)
2697 expected++;
2698
2699 // This Read must not be optimistic, since we don't support that yet.
2700 EXPECT_EQ(net::ERR_IO_PENDING,
2701 entry->ReadData(
2702 1,
2703 0,
2704 buffer1_read.get(),
2705 kSize1,
2706 base::Bind(&CallbackTest::Run, base::Unretained(&callback3))));
2707 expected++;
2708 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
2709 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
2710
2711 // At this point after waiting, the pending operations queue on the entry
2712 // should be empty, so the next Write operation must run as optimistic.
2713 EXPECT_EQ(kSize2,
2714 entry->WriteData(
2715 1,
2716 0,
2717 buffer2.get(),
2718 kSize2,
2719 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)),
2720 false));
2721
2722 // Lets do another read so we block until both the write and the read
2723 // operation finishes and we can then test for HasOneRef() below.
2724 EXPECT_EQ(net::ERR_IO_PENDING,
2725 entry->ReadData(
2726 1,
2727 0,
2728 buffer2_read.get(),
2729 kSize2,
2730 base::Bind(&CallbackTest::Run, base::Unretained(&callback5))));
2731 expected++;
2732
2733 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
2734 EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2));
2735
2736 // Check that we are not leaking.
2737 EXPECT_NE(entry, null);
2738 EXPECT_TRUE(
2739 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
2740 }
2741
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic2)2742 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) {
2743 // Test sequence:
2744 // Create, Open, Close, Close.
2745 SetSimpleCacheMode();
2746 InitCache();
2747 disk_cache::Entry* null = NULL;
2748 const char key[] = "the first key";
2749
2750 MessageLoopHelper helper;
2751 CallbackTest callback1(&helper, false);
2752 CallbackTest callback2(&helper, false);
2753
2754 disk_cache::Entry* entry = NULL;
2755 ASSERT_EQ(net::OK,
2756 cache_->CreateEntry(key, &entry,
2757 base::Bind(&CallbackTest::Run,
2758 base::Unretained(&callback1))));
2759 EXPECT_NE(null, entry);
2760 ScopedEntryPtr entry_closer(entry);
2761
2762 disk_cache::Entry* entry2 = NULL;
2763 ASSERT_EQ(net::ERR_IO_PENDING,
2764 cache_->OpenEntry(key, &entry2,
2765 base::Bind(&CallbackTest::Run,
2766 base::Unretained(&callback2))));
2767 ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1));
2768
2769 EXPECT_NE(null, entry2);
2770 EXPECT_EQ(entry, entry2);
2771
2772 // We have to call close twice, since we called create and open above.
2773 entry->Close();
2774
2775 // Check that we are not leaking.
2776 EXPECT_TRUE(
2777 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
2778 }
2779
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic3)2780 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) {
2781 // Test sequence:
2782 // Create, Close, Open, Close.
2783 SetSimpleCacheMode();
2784 InitCache();
2785 disk_cache::Entry* null = NULL;
2786 const char key[] = "the first key";
2787
2788 disk_cache::Entry* entry = NULL;
2789 ASSERT_EQ(net::OK,
2790 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2791 EXPECT_NE(null, entry);
2792 entry->Close();
2793
2794 net::TestCompletionCallback cb;
2795 disk_cache::Entry* entry2 = NULL;
2796 ASSERT_EQ(net::ERR_IO_PENDING,
2797 cache_->OpenEntry(key, &entry2, cb.callback()));
2798 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
2799 ScopedEntryPtr entry_closer(entry2);
2800
2801 EXPECT_NE(null, entry2);
2802 EXPECT_EQ(entry, entry2);
2803
2804 // Check that we are not leaking.
2805 EXPECT_TRUE(
2806 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
2807 }
2808
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic4)2809 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) {
2810 // Test sequence:
2811 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
2812 SetSimpleCacheMode();
2813 InitCache();
2814 disk_cache::Entry* null = NULL;
2815 const char key[] = "the first key";
2816
2817 net::TestCompletionCallback cb;
2818 const int kSize1 = 10;
2819 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2820 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2821 disk_cache::Entry* entry = NULL;
2822
2823 ASSERT_EQ(net::OK,
2824 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2825 EXPECT_NE(null, entry);
2826 entry->Close();
2827
2828 // Lets do a Write so we block until both the Close and the Write
2829 // operation finishes. Write must fail since we are writing in a closed entry.
2830 EXPECT_EQ(
2831 net::ERR_IO_PENDING,
2832 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
2833 EXPECT_EQ(net::ERR_FAILED, cb.GetResult(net::ERR_IO_PENDING));
2834
2835 // Finish running the pending tasks so that we fully complete the close
2836 // operation and destroy the entry object.
2837 base::MessageLoop::current()->RunUntilIdle();
2838
2839 // At this point the |entry| must have been destroyed, and called
2840 // RemoveSelfFromBackend().
2841 disk_cache::Entry* entry2 = NULL;
2842 ASSERT_EQ(net::ERR_IO_PENDING,
2843 cache_->OpenEntry(key, &entry2, cb.callback()));
2844 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
2845 EXPECT_NE(null, entry2);
2846
2847 disk_cache::Entry* entry3 = NULL;
2848 ASSERT_EQ(net::ERR_IO_PENDING,
2849 cache_->OpenEntry(key, &entry3, cb.callback()));
2850 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
2851 EXPECT_NE(null, entry3);
2852 EXPECT_EQ(entry2, entry3);
2853 entry3->Close();
2854
2855 // The previous Close doesn't actually closes the entry since we opened it
2856 // twice, so the next Write operation must succeed and it must be able to
2857 // perform it optimistically, since there is no operation running on this
2858 // entry.
2859 EXPECT_EQ(kSize1,
2860 entry2->WriteData(
2861 1, 0, buffer1.get(), kSize1, net::CompletionCallback(), false));
2862
2863 // Lets do another read so we block until both the write and the read
2864 // operation finishes and we can then test for HasOneRef() below.
2865 EXPECT_EQ(net::ERR_IO_PENDING,
2866 entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
2867 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2868
2869 // Check that we are not leaking.
2870 EXPECT_TRUE(
2871 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
2872 entry2->Close();
2873 }
2874
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic5)2875 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) {
2876 // Test sequence:
2877 // Create, Doom, Write, Read, Close.
2878 SetSimpleCacheMode();
2879 InitCache();
2880 disk_cache::Entry* null = NULL;
2881 const char key[] = "the first key";
2882
2883 net::TestCompletionCallback cb;
2884 const int kSize1 = 10;
2885 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2886 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2887 disk_cache::Entry* entry = NULL;
2888
2889 ASSERT_EQ(net::OK,
2890 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2891 EXPECT_NE(null, entry);
2892 ScopedEntryPtr entry_closer(entry);
2893 entry->Doom();
2894
2895 EXPECT_EQ(
2896 net::ERR_IO_PENDING,
2897 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
2898 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2899
2900 EXPECT_EQ(net::ERR_IO_PENDING,
2901 entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
2902 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2903
2904 // Check that we are not leaking.
2905 EXPECT_TRUE(
2906 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
2907 }
2908
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic6)2909 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) {
2910 // Test sequence:
2911 // Create, Write, Doom, Doom, Read, Doom, Close.
2912 SetSimpleCacheMode();
2913 InitCache();
2914 disk_cache::Entry* null = NULL;
2915 const char key[] = "the first key";
2916
2917 net::TestCompletionCallback cb;
2918 const int kSize1 = 10;
2919 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2920 scoped_refptr<net::IOBuffer> buffer1_read(new net::IOBuffer(kSize1));
2921 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2922 disk_cache::Entry* entry = NULL;
2923
2924 ASSERT_EQ(net::OK,
2925 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2926 EXPECT_NE(null, entry);
2927 ScopedEntryPtr entry_closer(entry);
2928
2929 EXPECT_EQ(
2930 net::ERR_IO_PENDING,
2931 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
2932 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2933
2934 entry->Doom();
2935 entry->Doom();
2936
2937 // This Read must not be optimistic, since we don't support that yet.
2938 EXPECT_EQ(net::ERR_IO_PENDING,
2939 entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback()));
2940 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2941 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
2942
2943 entry->Doom();
2944 }
2945
2946 // Confirm that IO buffers are not referenced by the Simple Cache after a write
2947 // completes.
TEST_F(DiskCacheEntryTest,SimpleCacheOptimisticWriteReleases)2948 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) {
2949 SetSimpleCacheMode();
2950 InitCache();
2951
2952 const char key[] = "the first key";
2953 disk_cache::Entry* entry = NULL;
2954
2955 // First, an optimistic create.
2956 ASSERT_EQ(net::OK,
2957 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2958 ASSERT_TRUE(entry);
2959 ScopedEntryPtr entry_closer(entry);
2960
2961 const int kWriteSize = 512;
2962 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kWriteSize));
2963 EXPECT_TRUE(buffer1->HasOneRef());
2964 CacheTestFillBuffer(buffer1->data(), kWriteSize, false);
2965
2966 // An optimistic write happens only when there is an empty queue of pending
2967 // operations. To ensure the queue is empty, we issue a write and wait until
2968 // it completes.
2969 EXPECT_EQ(kWriteSize,
2970 WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false));
2971 EXPECT_TRUE(buffer1->HasOneRef());
2972
2973 // Finally, we should perform an optimistic write and confirm that all
2974 // references to the IO buffer have been released.
2975 EXPECT_EQ(
2976 kWriteSize,
2977 entry->WriteData(
2978 1, 0, buffer1.get(), kWriteSize, net::CompletionCallback(), false));
2979 EXPECT_TRUE(buffer1->HasOneRef());
2980 }
2981
TEST_F(DiskCacheEntryTest,SimpleCacheCreateDoomRace)2982 TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) {
2983 // Test sequence:
2984 // Create, Doom, Write, Close, Check files are not on disk anymore.
2985 SetSimpleCacheMode();
2986 InitCache();
2987 disk_cache::Entry* null = NULL;
2988 const char key[] = "the first key";
2989
2990 net::TestCompletionCallback cb;
2991 const int kSize1 = 10;
2992 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2993 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2994 disk_cache::Entry* entry = NULL;
2995
2996 ASSERT_EQ(net::OK,
2997 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2998 EXPECT_NE(null, entry);
2999
3000 EXPECT_EQ(net::ERR_IO_PENDING, cache_->DoomEntry(key, cb.callback()));
3001 EXPECT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
3002
3003 EXPECT_EQ(
3004 kSize1,
3005 entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false));
3006
3007 entry->Close();
3008
3009 // Finish running the pending tasks so that we fully complete the close
3010 // operation and destroy the entry object.
3011 base::MessageLoop::current()->RunUntilIdle();
3012
3013 for (int i = 0; i < disk_cache::kSimpleEntryFileCount; ++i) {
3014 base::FilePath entry_file_path = cache_path_.AppendASCII(
3015 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i));
3016 base::PlatformFileInfo info;
3017 EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info));
3018 }
3019 }
3020
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateRace)3021 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) {
3022 // This test runs as APP_CACHE to make operations more synchronous. Test
3023 // sequence:
3024 // Create, Doom, Create.
3025 SetCacheType(net::APP_CACHE);
3026 SetSimpleCacheMode();
3027 InitCache();
3028 disk_cache::Entry* null = NULL;
3029 const char key[] = "the first key";
3030
3031 net::TestCompletionCallback create_callback;
3032
3033 disk_cache::Entry* entry1 = NULL;
3034 ASSERT_EQ(net::OK,
3035 create_callback.GetResult(
3036 cache_->CreateEntry(key, &entry1, create_callback.callback())));
3037 ScopedEntryPtr entry1_closer(entry1);
3038 EXPECT_NE(null, entry1);
3039
3040 net::TestCompletionCallback doom_callback;
3041 EXPECT_EQ(net::ERR_IO_PENDING,
3042 cache_->DoomEntry(key, doom_callback.callback()));
3043
3044 disk_cache::Entry* entry2 = NULL;
3045 ASSERT_EQ(net::OK,
3046 create_callback.GetResult(
3047 cache_->CreateEntry(key, &entry2, create_callback.callback())));
3048 ScopedEntryPtr entry2_closer(entry2);
3049 EXPECT_EQ(net::OK, doom_callback.GetResult(net::ERR_IO_PENDING));
3050 }
3051
TEST_F(DiskCacheEntryTest,SimpleCacheDoomDoom)3052 TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) {
3053 // Test sequence:
3054 // Create, Doom, Create, Doom (1st entry), Open.
3055 SetSimpleCacheMode();
3056 InitCache();
3057 disk_cache::Entry* null = NULL;
3058
3059 const char key[] = "the first key";
3060
3061 disk_cache::Entry* entry1 = NULL;
3062 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
3063 ScopedEntryPtr entry1_closer(entry1);
3064 EXPECT_NE(null, entry1);
3065
3066 EXPECT_EQ(net::OK, DoomEntry(key));
3067
3068 disk_cache::Entry* entry2 = NULL;
3069 ASSERT_EQ(net::OK, CreateEntry(key, &entry2));
3070 ScopedEntryPtr entry2_closer(entry2);
3071 EXPECT_NE(null, entry2);
3072
3073 // Redundantly dooming entry1 should not delete entry2.
3074 disk_cache::SimpleEntryImpl* simple_entry1 =
3075 static_cast<disk_cache::SimpleEntryImpl*>(entry1);
3076 net::TestCompletionCallback cb;
3077 EXPECT_EQ(net::OK,
3078 cb.GetResult(simple_entry1->DoomEntry(cb.callback())));
3079
3080 disk_cache::Entry* entry3 = NULL;
3081 ASSERT_EQ(net::OK, OpenEntry(key, &entry3));
3082 ScopedEntryPtr entry3_closer(entry3);
3083 EXPECT_NE(null, entry3);
3084 }
3085
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateDoom)3086 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) {
3087 // Test sequence:
3088 // Create, Doom, Create, Doom.
3089 SetSimpleCacheMode();
3090 InitCache();
3091
3092 disk_cache::Entry* null = NULL;
3093
3094 const char key[] = "the first key";
3095
3096 disk_cache::Entry* entry1 = NULL;
3097 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
3098 ScopedEntryPtr entry1_closer(entry1);
3099 EXPECT_NE(null, entry1);
3100
3101 entry1->Doom();
3102
3103 disk_cache::Entry* entry2 = NULL;
3104 ASSERT_EQ(net::OK, CreateEntry(key, &entry2));
3105 ScopedEntryPtr entry2_closer(entry2);
3106 EXPECT_NE(null, entry2);
3107
3108 entry2->Doom();
3109
3110 // This test passes if it doesn't crash.
3111 }
3112
3113 // Checks that an optimistic Create would fail later on a racing Open.
TEST_F(DiskCacheEntryTest,SimpleCacheOptimisticCreateFailsOnOpen)3114 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) {
3115 SetSimpleCacheMode();
3116 InitCache();
3117
3118 // Create a corrupt file in place of a future entry. Optimistic create should
3119 // initially succeed, but realize later that creation failed.
3120 const std::string key = "the key";
3121 net::TestCompletionCallback cb;
3122 disk_cache::Entry* entry = NULL;
3123 disk_cache::Entry* entry2 = NULL;
3124
3125 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3126 key, cache_path_));
3127 EXPECT_EQ(net::OK, cache_->CreateEntry(key, &entry, cb.callback()));
3128 ASSERT_TRUE(entry);
3129 ScopedEntryPtr entry_closer(entry);
3130 ASSERT_NE(net::OK, OpenEntry(key, &entry2));
3131
3132 // Check that we are not leaking.
3133 EXPECT_TRUE(
3134 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3135
3136 DisableIntegrityCheck();
3137 }
3138
3139 // Tests that old entries are evicted while new entries remain in the index.
3140 // This test relies on non-mandatory properties of the simple Cache Backend:
3141 // LRU eviction, specific values of high-watermark and low-watermark etc.
3142 // When changing the eviction algorithm, the test will have to be re-engineered.
TEST_F(DiskCacheEntryTest,SimpleCacheEvictOldEntries)3143 TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) {
3144 const int kMaxSize = 200 * 1024;
3145 const int kWriteSize = kMaxSize / 10;
3146 const int kNumExtraEntries = 12;
3147 SetSimpleCacheMode();
3148 SetMaxSize(kMaxSize);
3149 InitCache();
3150
3151 std::string key1("the first key");
3152 disk_cache::Entry* entry;
3153 ASSERT_EQ(net::OK, CreateEntry(key1, &entry));
3154 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kWriteSize));
3155 CacheTestFillBuffer(buffer->data(), kWriteSize, false);
3156 EXPECT_EQ(kWriteSize,
3157 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3158 entry->Close();
3159 AddDelay();
3160
3161 std::string key2("the key prefix");
3162 for (int i = 0; i < kNumExtraEntries; i++) {
3163 ASSERT_EQ(net::OK, CreateEntry(key2 + base::StringPrintf("%d", i), &entry));
3164 ScopedEntryPtr entry_closer(entry);
3165 EXPECT_EQ(kWriteSize,
3166 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3167 }
3168
3169 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3170 // the internal knowledge about |SimpleBackendImpl|.
3171 ASSERT_NE(net::OK, OpenEntry(key1, &entry))
3172 << "Should have evicted the old entry";
3173 for (int i = 0; i < 2; i++) {
3174 int entry_no = kNumExtraEntries - i - 1;
3175 // Generally there is no guarantee that at this point the backround eviction
3176 // is finished. We are testing the positive case, i.e. when the eviction
3177 // never reaches this entry, should be non-flaky.
3178 ASSERT_EQ(net::OK, OpenEntry(key2 + base::StringPrintf("%d", entry_no),
3179 &entry))
3180 << "Should not have evicted fresh entry " << entry_no;
3181 entry->Close();
3182 }
3183 }
3184
3185 // Tests that if a read and a following in-flight truncate are both in progress
3186 // simultaniously that they both can occur successfully. See
3187 // http://crbug.com/239223
TEST_F(DiskCacheEntryTest,SimpleCacheInFlightTruncate)3188 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) {
3189 SetSimpleCacheMode();
3190 InitCache();
3191
3192 const char key[] = "the first key";
3193
3194 const int kBufferSize = 1024;
3195 scoped_refptr<net::IOBuffer> write_buffer(new net::IOBuffer(kBufferSize));
3196 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
3197
3198 disk_cache::Entry* entry = NULL;
3199 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3200
3201 EXPECT_EQ(kBufferSize,
3202 WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false));
3203 entry->Close();
3204 entry = NULL;
3205
3206 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3207 ScopedEntryPtr entry_closer(entry);
3208
3209 MessageLoopHelper helper;
3210 int expected = 0;
3211
3212 // Make a short read.
3213 const int kReadBufferSize = 512;
3214 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize));
3215 CallbackTest read_callback(&helper, false);
3216 EXPECT_EQ(net::ERR_IO_PENDING,
3217 entry->ReadData(1,
3218 0,
3219 read_buffer.get(),
3220 kReadBufferSize,
3221 base::Bind(&CallbackTest::Run,
3222 base::Unretained(&read_callback))));
3223 ++expected;
3224
3225 // Truncate the entry to the length of that read.
3226 scoped_refptr<net::IOBuffer>
3227 truncate_buffer(new net::IOBuffer(kReadBufferSize));
3228 CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false);
3229 CallbackTest truncate_callback(&helper, false);
3230 EXPECT_EQ(net::ERR_IO_PENDING,
3231 entry->WriteData(1,
3232 0,
3233 truncate_buffer.get(),
3234 kReadBufferSize,
3235 base::Bind(&CallbackTest::Run,
3236 base::Unretained(&truncate_callback)),
3237 true));
3238 ++expected;
3239
3240 // Wait for both the read and truncation to finish, and confirm that both
3241 // succeeded.
3242 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3243 EXPECT_EQ(kReadBufferSize, read_callback.last_result());
3244 EXPECT_EQ(kReadBufferSize, truncate_callback.last_result());
3245 EXPECT_EQ(0,
3246 memcmp(write_buffer->data(), read_buffer->data(), kReadBufferSize));
3247 }
3248
3249 // Tests that if a write and a read dependant on it are both in flight
3250 // simultaneiously that they both can complete successfully without erroneous
3251 // early returns. See http://crbug.com/239223
TEST_F(DiskCacheEntryTest,SimpleCacheInFlightRead)3252 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) {
3253 SetSimpleCacheMode();
3254 InitCache();
3255
3256 const char key[] = "the first key";
3257 disk_cache::Entry* entry = NULL;
3258 ASSERT_EQ(net::OK,
3259 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
3260 ScopedEntryPtr entry_closer(entry);
3261
3262 const int kBufferSize = 1024;
3263 scoped_refptr<net::IOBuffer> write_buffer(new net::IOBuffer(kBufferSize));
3264 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
3265
3266 MessageLoopHelper helper;
3267 int expected = 0;
3268
3269 CallbackTest write_callback(&helper, false);
3270 EXPECT_EQ(net::ERR_IO_PENDING,
3271 entry->WriteData(1,
3272 0,
3273 write_buffer.get(),
3274 kBufferSize,
3275 base::Bind(&CallbackTest::Run,
3276 base::Unretained(&write_callback)),
3277 true));
3278 ++expected;
3279
3280 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kBufferSize));
3281 CallbackTest read_callback(&helper, false);
3282 EXPECT_EQ(net::ERR_IO_PENDING,
3283 entry->ReadData(1,
3284 0,
3285 read_buffer.get(),
3286 kBufferSize,
3287 base::Bind(&CallbackTest::Run,
3288 base::Unretained(&read_callback))));
3289 ++expected;
3290
3291 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3292 EXPECT_EQ(kBufferSize, write_callback.last_result());
3293 EXPECT_EQ(kBufferSize, read_callback.last_result());
3294 EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), kBufferSize));
3295 }
3296
TEST_F(DiskCacheEntryTest,SimpleCacheOpenCreateRaceWithNoIndex)3297 TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) {
3298 SetSimpleCacheMode();
3299 DisableSimpleCacheWaitForIndex();
3300 DisableIntegrityCheck();
3301 InitCache();
3302
3303 // Assume the index is not initialized, which is likely, since we are blocking
3304 // the IO thread from executing the index finalization step.
3305 disk_cache::Entry* entry1;
3306 net::TestCompletionCallback cb1;
3307 disk_cache::Entry* entry2;
3308 net::TestCompletionCallback cb2;
3309 int rv1 = cache_->OpenEntry("key", &entry1, cb1.callback());
3310 int rv2 = cache_->CreateEntry("key", &entry2, cb2.callback());
3311
3312 EXPECT_EQ(net::ERR_FAILED, cb1.GetResult(rv1));
3313 ASSERT_EQ(net::OK, cb2.GetResult(rv2));
3314 entry2->Close();
3315 }
3316
3317 // Checks that reading two entries simultaneously does not discard a CRC check.
3318 // TODO(pasko): make it work with Simple Cache.
TEST_F(DiskCacheEntryTest,DISABLED_SimpleCacheMultipleReadersCheckCRC)3319 TEST_F(DiskCacheEntryTest, DISABLED_SimpleCacheMultipleReadersCheckCRC) {
3320 SetSimpleCacheMode();
3321 InitCache();
3322
3323 const char key[] = "key";
3324
3325 int size;
3326 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size));
3327
3328 scoped_refptr<net::IOBuffer> read_buffer1(new net::IOBuffer(size));
3329 scoped_refptr<net::IOBuffer> read_buffer2(new net::IOBuffer(size));
3330
3331 // Advance the first reader a little.
3332 disk_cache::Entry* entry = NULL;
3333 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3334 EXPECT_EQ(1, ReadData(entry, 0, 0, read_buffer1.get(), 1));
3335
3336 // Make the second reader pass the point where the first one is, and close.
3337 disk_cache::Entry* entry2 = NULL;
3338 EXPECT_EQ(net::OK, OpenEntry(key, &entry2));
3339 EXPECT_EQ(1, ReadData(entry2, 0, 0, read_buffer2.get(), 1));
3340 EXPECT_EQ(1, ReadData(entry2, 0, 1, read_buffer2.get(), 1));
3341 entry2->Close();
3342
3343 // Read the data till the end should produce an error.
3344 EXPECT_GT(0, ReadData(entry, 0, 1, read_buffer1.get(), size));
3345 entry->Close();
3346 DisableIntegrityCheck();
3347 }
3348
3349 // Checking one more scenario of overlapped reading of a bad entry.
3350 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
3351 // last two reads.
TEST_F(DiskCacheEntryTest,SimpleCacheMultipleReadersCheckCRC2)3352 TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) {
3353 SetSimpleCacheMode();
3354 InitCache();
3355
3356 const char key[] = "key";
3357 int size;
3358 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size));
3359
3360 scoped_refptr<net::IOBuffer> read_buffer1(new net::IOBuffer(size));
3361 scoped_refptr<net::IOBuffer> read_buffer2(new net::IOBuffer(size));
3362
3363 // Advance the first reader a little.
3364 disk_cache::Entry* entry = NULL;
3365 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3366 ScopedEntryPtr entry_closer(entry);
3367 EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1));
3368
3369 // Advance the 2nd reader by the same amount.
3370 disk_cache::Entry* entry2 = NULL;
3371 EXPECT_EQ(net::OK, OpenEntry(key, &entry2));
3372 ScopedEntryPtr entry2_closer(entry2);
3373 EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1));
3374
3375 // Continue reading 1st.
3376 EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size));
3377
3378 // This read should fail as well because we have previous read failures.
3379 EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1));
3380 DisableIntegrityCheck();
3381 }
3382
3383 // Test if we can sequentially read each subset of the data until all the data
3384 // is read, then the CRC is calculated correctly and the reads are successful.
TEST_F(DiskCacheEntryTest,SimpleCacheReadCombineCRC)3385 TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) {
3386 // Test sequence:
3387 // Create, Write, Read (first half of data), Read (second half of data),
3388 // Close.
3389 SetSimpleCacheMode();
3390 InitCache();
3391 disk_cache::Entry* null = NULL;
3392 const char key[] = "the first key";
3393
3394 const int kHalfSize = 200;
3395 const int kSize = 2 * kHalfSize;
3396 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3397 CacheTestFillBuffer(buffer1->data(), kSize, false);
3398 disk_cache::Entry* entry = NULL;
3399
3400 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3401 EXPECT_NE(null, entry);
3402
3403 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
3404 entry->Close();
3405
3406 disk_cache::Entry* entry2 = NULL;
3407 ASSERT_EQ(net::OK, OpenEntry(key, &entry2));
3408 EXPECT_EQ(entry, entry2);
3409
3410 // Read the first half of the data.
3411 int offset = 0;
3412 int buf_len = kHalfSize;
3413 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(buf_len));
3414 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len));
3415 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), buf_len));
3416
3417 // Read the second half of the data.
3418 offset = buf_len;
3419 buf_len = kHalfSize;
3420 scoped_refptr<net::IOBuffer> buffer1_read2(new net::IOBuffer(buf_len));
3421 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len));
3422 char* buffer1_data = buffer1->data() + offset;
3423 EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len));
3424
3425 // Check that we are not leaking.
3426 EXPECT_NE(entry, null);
3427 EXPECT_TRUE(
3428 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3429 entry->Close();
3430 entry = NULL;
3431 }
3432
3433 // Test if we can write the data not in sequence and read correctly. In
3434 // this case the CRC will not be present.
TEST_F(DiskCacheEntryTest,SimpleCacheNonSequentialWrite)3435 TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) {
3436 // Test sequence:
3437 // Create, Write (second half of data), Write (first half of data), Read,
3438 // Close.
3439 SetSimpleCacheMode();
3440 InitCache();
3441 disk_cache::Entry* null = NULL;
3442 const char key[] = "the first key";
3443
3444 const int kHalfSize = 200;
3445 const int kSize = 2 * kHalfSize;
3446 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3447 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3448 CacheTestFillBuffer(buffer1->data(), kSize, false);
3449 char* buffer1_data = buffer1->data() + kHalfSize;
3450 memcpy(buffer2->data(), buffer1_data, kHalfSize);
3451 disk_cache::Entry* entry = NULL;
3452
3453 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3454 EXPECT_NE(null, entry);
3455
3456 int offset = kHalfSize;
3457 int buf_len = kHalfSize;
3458
3459 EXPECT_EQ(buf_len,
3460 WriteData(entry, 0, offset, buffer2.get(), buf_len, false));
3461 offset = 0;
3462 buf_len = kHalfSize;
3463 EXPECT_EQ(buf_len,
3464 WriteData(entry, 0, offset, buffer1.get(), buf_len, false));
3465 entry->Close();
3466
3467 disk_cache::Entry* entry2 = NULL;
3468 ASSERT_EQ(net::OK, OpenEntry(key, &entry2));
3469 EXPECT_EQ(entry, entry2);
3470
3471 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(kSize));
3472 EXPECT_EQ(kSize, ReadData(entry2, 0, 0, buffer1_read1.get(), kSize));
3473 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kSize));
3474
3475 // Check that we are not leaking.
3476 ASSERT_NE(entry, null);
3477 EXPECT_TRUE(
3478 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3479 entry->Close();
3480 entry = NULL;
3481 }
3482
3483 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
3484 // are stored in the same file in Simple Cache).
TEST_F(DiskCacheEntryTest,SimpleCacheStream1SizeChanges)3485 TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) {
3486 SetSimpleCacheMode();
3487 InitCache();
3488 disk_cache::Entry* entry = NULL;
3489 const char key[] = "the key";
3490 const int kSize = 100;
3491 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3492 scoped_refptr<net::IOBuffer> buffer_read(new net::IOBuffer(kSize));
3493 CacheTestFillBuffer(buffer->data(), kSize, false);
3494
3495 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3496 EXPECT_TRUE(entry);
3497
3498 // Write something into stream0.
3499 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
3500 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
3501 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
3502 entry->Close();
3503
3504 // Extend stream1.
3505 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3506 int stream1_size = 100;
3507 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false));
3508 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
3509 entry->Close();
3510
3511 // Check that stream0 data has not been modified and that the EOF record for
3512 // stream 0 contains a crc.
3513 // The entry needs to be reopened before checking the crc: Open will perform
3514 // the synchronization with the previous Close. This ensures the EOF records
3515 // have been written to disk before we attempt to read them independently.
3516 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3517 base::FilePath entry_file0_path = cache_path_.AppendASCII(
3518 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
3519 int flags = base::PLATFORM_FILE_READ | base::PLATFORM_FILE_OPEN;
3520 base::PlatformFile entry_file0 =
3521 base::CreatePlatformFile(entry_file0_path, flags, NULL, NULL);
3522 ASSERT_TRUE(entry_file0 != base::kInvalidPlatformFileValue);
3523
3524 int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0};
3525 int sparse_data_size = 0;
3526 disk_cache::SimpleEntryStat entry_stat(
3527 base::Time::Now(), base::Time::Now(), data_size, sparse_data_size);
3528 int eof_offset = entry_stat.GetEOFOffsetInFile(key, 0);
3529 disk_cache::SimpleFileEOF eof_record;
3530 ASSERT_EQ(static_cast<int>(sizeof(eof_record)), base::ReadPlatformFile(
3531 entry_file0,
3532 eof_offset,
3533 reinterpret_cast<char*>(&eof_record),
3534 sizeof(eof_record)));
3535 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number);
3536 EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) ==
3537 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32);
3538
3539 buffer_read = new net::IOBuffer(kSize);
3540 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
3541 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
3542
3543 // Shrink stream1.
3544 stream1_size = 50;
3545 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true));
3546 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
3547 entry->Close();
3548
3549 // Check that stream0 data has not been modified.
3550 buffer_read = new net::IOBuffer(kSize);
3551 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3552 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
3553 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
3554 entry->Close();
3555 entry = NULL;
3556 }
3557
3558 // Test that writing within the range for which the crc has already been
3559 // computed will properly invalidate the computed crc.
TEST_F(DiskCacheEntryTest,SimpleCacheCRCRewrite)3560 TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) {
3561 // Test sequence:
3562 // Create, Write (big data), Write (small data in the middle), Close.
3563 // Open, Read (all), Close.
3564 SetSimpleCacheMode();
3565 InitCache();
3566 disk_cache::Entry* null = NULL;
3567 const char key[] = "the first key";
3568
3569 const int kHalfSize = 200;
3570 const int kSize = 2 * kHalfSize;
3571 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3572 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kHalfSize));
3573 CacheTestFillBuffer(buffer1->data(), kSize, false);
3574 CacheTestFillBuffer(buffer2->data(), kHalfSize, false);
3575
3576 disk_cache::Entry* entry = NULL;
3577 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3578 EXPECT_NE(null, entry);
3579 entry->Close();
3580
3581 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
3582 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3583 int offset = 0;
3584 int buf_len = kSize;
3585
3586 EXPECT_EQ(buf_len,
3587 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
3588 offset = kHalfSize;
3589 buf_len = kHalfSize;
3590 EXPECT_EQ(buf_len,
3591 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
3592 entry->Close();
3593
3594 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3595
3596 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(kSize));
3597 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
3598 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize));
3599 EXPECT_EQ(
3600 0,
3601 memcmp(buffer2->data(), buffer1_read1->data() + kHalfSize, kHalfSize));
3602
3603 entry->Close();
3604 }
3605 }
3606
SimpleCacheThirdStreamFileExists(const char * key)3607 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) {
3608 int third_stream_file_index =
3609 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
3610 base::FilePath third_stream_file_path = cache_path_.AppendASCII(
3611 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
3612 key, third_stream_file_index));
3613 return PathExists(third_stream_file_path);
3614 }
3615
SyncDoomEntry(const char * key)3616 void DiskCacheEntryTest::SyncDoomEntry(const char* key) {
3617 net::TestCompletionCallback callback;
3618 cache_->DoomEntry(key, callback.callback());
3619 callback.WaitForResult();
3620 }
3621
3622 // Check that a newly-created entry with no third-stream writes omits the
3623 // third stream file.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream1)3624 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) {
3625 SetSimpleCacheMode();
3626 InitCache();
3627
3628 const char key[] = "key";
3629
3630 disk_cache::Entry* entry;
3631
3632 // Create entry and close without writing: third stream file should be
3633 // omitted, since the stream is empty.
3634 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3635 entry->Close();
3636 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3637
3638 SyncDoomEntry(key);
3639 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3640 }
3641
3642 // Check that a newly-created entry with only a single zero-offset, zero-length
3643 // write omits the third stream file.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream2)3644 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) {
3645 SetSimpleCacheMode();
3646 InitCache();
3647
3648 const int kHalfSize = 8;
3649 const int kSize = kHalfSize * 2;
3650 const char key[] = "key";
3651 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3652 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
3653
3654 disk_cache::Entry* entry;
3655
3656 // Create entry, write empty buffer to third stream, and close: third stream
3657 // should still be omitted, since the entry ignores writes that don't modify
3658 // data or change the length.
3659 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3660 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer, 0, true));
3661 entry->Close();
3662 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3663
3664 SyncDoomEntry(key);
3665 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3666 }
3667
3668 // Check that we can read back data written to the third stream.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream3)3669 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) {
3670 SetSimpleCacheMode();
3671 InitCache();
3672
3673 const int kHalfSize = 8;
3674 const int kSize = kHalfSize * 2;
3675 const char key[] = "key";
3676 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3677 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3678 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
3679
3680 disk_cache::Entry* entry;
3681
3682 // Create entry, write data to third stream, and close: third stream should
3683 // not be omitted, since it contains data. Re-open entry and ensure there
3684 // are that many bytes in the third stream.
3685 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3686 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1, kHalfSize, true));
3687 entry->Close();
3688 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
3689
3690 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3691 EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2, kSize));
3692 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize));
3693 entry->Close();
3694 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
3695
3696 SyncDoomEntry(key);
3697 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3698 }
3699
3700 // Check that we remove the third stream file upon opening an entry and finding
3701 // the third stream empty. (This is the upgrade path for entries written
3702 // before the third stream was optional.)
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream4)3703 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) {
3704 SetSimpleCacheMode();
3705 InitCache();
3706
3707 const int kHalfSize = 8;
3708 const int kSize = kHalfSize * 2;
3709 const char key[] = "key";
3710 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3711 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3712 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
3713
3714 disk_cache::Entry* entry;
3715
3716 // Create entry, write data to third stream, truncate third stream back to
3717 // empty, and close: third stream will not initially be omitted, since entry
3718 // creates the file when the first significant write comes in, and only
3719 // removes it on open if it is empty. Reopen, ensure that the file is
3720 // deleted, and that there's no data in the third stream.
3721 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3722 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1, kHalfSize, true));
3723 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1, 0, true));
3724 entry->Close();
3725 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
3726
3727 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3728 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3729 EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2, kSize));
3730 entry->Close();
3731 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3732
3733 SyncDoomEntry(key);
3734 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3735 }
3736
3737 // Check that we don't accidentally create the third stream file once the entry
3738 // has been doomed.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream5)3739 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) {
3740 SetSimpleCacheMode();
3741 InitCache();
3742
3743 const int kHalfSize = 8;
3744 const int kSize = kHalfSize * 2;
3745 const char key[] = "key";
3746 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3747 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
3748
3749 disk_cache::Entry* entry;
3750
3751 // Create entry, doom entry, write data to third stream, and close: third
3752 // stream should not exist. (Note: We don't care if the write fails, just
3753 // that it doesn't cause the file to be created on disk.)
3754 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3755 entry->Doom();
3756 WriteData(entry, 2, 0, buffer, kHalfSize, true);
3757 entry->Close();
3758 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3759 }
3760
3761 // There could be a race between Doom and an optimistic write.
TEST_F(DiskCacheEntryTest,SimpleCacheDoomOptimisticWritesRace)3762 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) {
3763 // Test sequence:
3764 // Create, first Write, second Write, Close.
3765 // Open, Close.
3766 SetSimpleCacheMode();
3767 InitCache();
3768 disk_cache::Entry* null = NULL;
3769 const char key[] = "the first key";
3770
3771 const int kSize = 200;
3772 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3773 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3774 CacheTestFillBuffer(buffer1->data(), kSize, false);
3775 CacheTestFillBuffer(buffer2->data(), kSize, false);
3776
3777 // The race only happens on stream 1 and stream 2.
3778 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
3779 ASSERT_EQ(net::OK, DoomAllEntries());
3780 disk_cache::Entry* entry = NULL;
3781
3782 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3783 EXPECT_NE(null, entry);
3784 entry->Close();
3785 entry = NULL;
3786
3787 ASSERT_EQ(net::OK, DoomAllEntries());
3788 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3789 EXPECT_NE(null, entry);
3790
3791 int offset = 0;
3792 int buf_len = kSize;
3793 // This write should not be optimistic (since create is).
3794 EXPECT_EQ(buf_len,
3795 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
3796
3797 offset = kSize;
3798 // This write should be optimistic.
3799 EXPECT_EQ(buf_len,
3800 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
3801 entry->Close();
3802
3803 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3804 EXPECT_NE(null, entry);
3805
3806 entry->Close();
3807 entry = NULL;
3808 }
3809 }
3810
TEST_F(DiskCacheEntryTest,SimpleCacheBasicSparseIO)3811 TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) {
3812 SetSimpleCacheMode();
3813 InitCache();
3814 BasicSparseIO();
3815 }
3816
TEST_F(DiskCacheEntryTest,SimpleCacheHugeSparseIO)3817 TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) {
3818 SetSimpleCacheMode();
3819 InitCache();
3820 HugeSparseIO();
3821 }
3822
TEST_F(DiskCacheEntryTest,SimpleCacheGetAvailableRange)3823 TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) {
3824 SetSimpleCacheMode();
3825 InitCache();
3826 GetAvailableRange();
3827 }
3828
TEST_F(DiskCacheEntryTest,DISABLED_SimpleCacheCouldBeSparse)3829 TEST_F(DiskCacheEntryTest, DISABLED_SimpleCacheCouldBeSparse) {
3830 SetSimpleCacheMode();
3831 InitCache();
3832 CouldBeSparse();
3833 }
3834
TEST_F(DiskCacheEntryTest,SimpleCacheUpdateSparseEntry)3835 TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) {
3836 SetSimpleCacheMode();
3837 InitCache();
3838 UpdateSparseEntry();
3839 }
3840
TEST_F(DiskCacheEntryTest,SimpleCacheDoomSparseEntry)3841 TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) {
3842 SetSimpleCacheMode();
3843 InitCache();
3844 DoomSparseEntry();
3845 }
3846
TEST_F(DiskCacheEntryTest,SimpleCachePartialSparseEntry)3847 TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) {
3848 SetSimpleCacheMode();
3849 InitCache();
3850 PartialSparseEntry();
3851 }
3852
TEST_F(DiskCacheEntryTest,SimpleCacheTruncateLargeSparseFile)3853 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) {
3854 const int kSize = 1024;
3855
3856 SetSimpleCacheMode();
3857 // An entry is allowed sparse data 1/10 the size of the cache, so this size
3858 // allows for one |kSize|-sized range plus overhead, but not two ranges.
3859 SetMaxSize(kSize * 15);
3860 InitCache();
3861
3862 const char key[] = "key";
3863 disk_cache::Entry* null = NULL;
3864 disk_cache::Entry* entry;
3865 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3866 EXPECT_NE(null, entry);
3867
3868 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3869 CacheTestFillBuffer(buffer->data(), kSize, false);
3870 net::TestCompletionCallback callback;
3871 int ret;
3872
3873 // Verify initial conditions.
3874 ret = entry->ReadSparseData(0, buffer, kSize, callback.callback());
3875 EXPECT_EQ(0, callback.GetResult(ret));
3876
3877 ret = entry->ReadSparseData(kSize, buffer, kSize, callback.callback());
3878 EXPECT_EQ(0, callback.GetResult(ret));
3879
3880 // Write a range and make sure it reads back.
3881 ret = entry->WriteSparseData(0, buffer, kSize, callback.callback());
3882 EXPECT_EQ(kSize, callback.GetResult(ret));
3883
3884 ret = entry->ReadSparseData(0, buffer, kSize, callback.callback());
3885 EXPECT_EQ(kSize, callback.GetResult(ret));
3886
3887 // Write another range and make sure it reads back.
3888 ret = entry->WriteSparseData(kSize, buffer, kSize, callback.callback());
3889 EXPECT_EQ(kSize, callback.GetResult(ret));
3890
3891 ret = entry->ReadSparseData(kSize, buffer, kSize, callback.callback());
3892 EXPECT_EQ(kSize, callback.GetResult(ret));
3893
3894 // Make sure the first range was removed when the second was written.
3895 ret = entry->ReadSparseData(0, buffer, kSize, callback.callback());
3896 EXPECT_EQ(0, callback.GetResult(ret));
3897
3898 entry->Close();
3899 }
3900
3901 #endif // defined(OS_POSIX)
3902