• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "sandbox/linux/seccomp-bpf/trap.h"
6 
7 #include <errno.h>
8 #include <signal.h>
9 #include <string.h>
10 #include <sys/prctl.h>
11 #include <sys/syscall.h>
12 
13 #include <limits>
14 
15 #include "base/logging.h"
16 #include "sandbox/linux/seccomp-bpf/codegen.h"
17 #include "sandbox/linux/seccomp-bpf/die.h"
18 #include "sandbox/linux/seccomp-bpf/syscall.h"
19 
20 // Android's signal.h doesn't define ucontext etc.
21 #if defined(OS_ANDROID)
22 #include "sandbox/linux/services/android_ucontext.h"
23 #endif
24 
25 namespace {
26 
27 const int kCapacityIncrement = 20;
28 
29 // Unsafe traps can only be turned on, if the user explicitly allowed them
30 // by setting the CHROME_SANDBOX_DEBUGGING environment variable.
31 const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING";
32 
33 // We need to tell whether we are performing a "normal" callback, or
34 // whether we were called recursively from within a UnsafeTrap() callback.
35 // This is a little tricky to do, because we need to somehow get access to
36 // per-thread data from within a signal context. Normal TLS storage is not
37 // safely accessible at this time. We could roll our own, but that involves
38 // a lot of complexity. Instead, we co-opt one bit in the signal mask.
39 // If BUS is blocked, we assume that we have been called recursively.
40 // There is a possibility for collision with other code that needs to do
41 // this, but in practice the risks are low.
42 // If SIGBUS turns out to be a problem, we could instead co-opt one of the
43 // realtime signals. There are plenty of them. Unfortunately, there is no
44 // way to mark a signal as allocated. So, the potential for collision is
45 // possibly even worse.
GetIsInSigHandler(const ucontext_t * ctx)46 bool GetIsInSigHandler(const ucontext_t* ctx) {
47   // Note: on Android, sigismember does not take a pointer to const.
48   return sigismember(const_cast<sigset_t*>(&ctx->uc_sigmask), SIGBUS);
49 }
50 
SetIsInSigHandler()51 void SetIsInSigHandler() {
52   sigset_t mask;
53   if (sigemptyset(&mask) || sigaddset(&mask, SIGBUS) ||
54       sigprocmask(SIG_BLOCK, &mask, NULL)) {
55     SANDBOX_DIE("Failed to block SIGBUS");
56   }
57 }
58 
IsDefaultSignalAction(const struct sigaction & sa)59 bool IsDefaultSignalAction(const struct sigaction& sa) {
60   if (sa.sa_flags & SA_SIGINFO || sa.sa_handler != SIG_DFL) {
61     return false;
62   }
63   return true;
64 }
65 
66 }  // namespace
67 
68 namespace sandbox {
69 
Trap()70 Trap::Trap()
71     : trap_array_(NULL),
72       trap_array_size_(0),
73       trap_array_capacity_(0),
74       has_unsafe_traps_(false) {
75   // Set new SIGSYS handler
76   struct sigaction sa = {};
77   sa.sa_sigaction = SigSysAction;
78   sa.sa_flags = SA_SIGINFO | SA_NODEFER;
79   struct sigaction old_sa;
80   if (sigaction(SIGSYS, &sa, &old_sa) < 0) {
81     SANDBOX_DIE("Failed to configure SIGSYS handler");
82   }
83 
84   if (!IsDefaultSignalAction(old_sa)) {
85     // TODO(jln): make this FATAL, at least in DEBUG mode.
86     LOG(ERROR) << "Existing signal handler when trying to install SIGSYS";
87   }
88 
89   // Unmask SIGSYS
90   sigset_t mask;
91   if (sigemptyset(&mask) || sigaddset(&mask, SIGSYS) ||
92       sigprocmask(SIG_UNBLOCK, &mask, NULL)) {
93     SANDBOX_DIE("Failed to configure SIGSYS handler");
94   }
95 }
96 
GetInstance()97 Trap* Trap::GetInstance() {
98   // Note: This class is not thread safe. It is the caller's responsibility
99   // to avoid race conditions. Normally, this is a non-issue as the sandbox
100   // can only be initialized if there are no other threads present.
101   // Also, this is not a normal singleton. Once created, the global trap
102   // object must never be destroyed again.
103   if (!global_trap_) {
104     global_trap_ = new Trap();
105     if (!global_trap_) {
106       SANDBOX_DIE("Failed to allocate global trap handler");
107     }
108   }
109   return global_trap_;
110 }
111 
SigSysAction(int nr,siginfo_t * info,void * void_context)112 void Trap::SigSysAction(int nr, siginfo_t* info, void* void_context) {
113   if (!global_trap_) {
114     RAW_SANDBOX_DIE(
115         "This can't happen. Found no global singleton instance "
116         "for Trap() handling.");
117   }
118   global_trap_->SigSys(nr, info, void_context);
119 }
120 
SigSys(int nr,siginfo_t * info,void * void_context)121 void Trap::SigSys(int nr, siginfo_t* info, void* void_context) {
122   // Signal handlers should always preserve "errno". Otherwise, we could
123   // trigger really subtle bugs.
124   const int old_errno = errno;
125 
126   // Various sanity checks to make sure we actually received a signal
127   // triggered by a BPF filter. If something else triggered SIGSYS
128   // (e.g. kill()), there is really nothing we can do with this signal.
129   if (nr != SIGSYS || info->si_code != SYS_SECCOMP || !void_context ||
130       info->si_errno <= 0 ||
131       static_cast<size_t>(info->si_errno) > trap_array_size_) {
132     // ATI drivers seem to send SIGSYS, so this cannot be FATAL.
133     // See crbug.com/178166.
134     // TODO(jln): add a DCHECK or move back to FATAL.
135     RAW_LOG(ERROR, "Unexpected SIGSYS received.");
136     errno = old_errno;
137     return;
138   }
139 
140   // Obtain the signal context. This, most notably, gives us access to
141   // all CPU registers at the time of the signal.
142   ucontext_t* ctx = reinterpret_cast<ucontext_t*>(void_context);
143 
144   // Obtain the siginfo information that is specific to SIGSYS. Unfortunately,
145   // most versions of glibc don't include this information in siginfo_t. So,
146   // we need to explicitly copy it into a arch_sigsys structure.
147   struct arch_sigsys sigsys;
148   memcpy(&sigsys, &info->_sifields, sizeof(sigsys));
149 
150   // Some more sanity checks.
151   if (sigsys.ip != reinterpret_cast<void*>(SECCOMP_IP(ctx)) ||
152       sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx)) ||
153       sigsys.arch != SECCOMP_ARCH) {
154     // TODO(markus):
155     // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
156     // safe and can lead to bugs. We should eventually implement a different
157     // logging and reporting mechanism that is safe to be called from
158     // the sigSys() handler.
159     RAW_SANDBOX_DIE("Sanity checks are failing after receiving SIGSYS.");
160   }
161 
162   intptr_t rc;
163   if (has_unsafe_traps_ && GetIsInSigHandler(ctx)) {
164     errno = old_errno;
165     if (sigsys.nr == __NR_clone) {
166       RAW_SANDBOX_DIE("Cannot call clone() from an UnsafeTrap() handler.");
167     }
168     rc = SandboxSyscall(sigsys.nr,
169                         SECCOMP_PARM1(ctx),
170                         SECCOMP_PARM2(ctx),
171                         SECCOMP_PARM3(ctx),
172                         SECCOMP_PARM4(ctx),
173                         SECCOMP_PARM5(ctx),
174                         SECCOMP_PARM6(ctx));
175   } else {
176     const ErrorCode& err = trap_array_[info->si_errno - 1];
177     if (!err.safe_) {
178       SetIsInSigHandler();
179     }
180 
181     // Copy the seccomp-specific data into a arch_seccomp_data structure. This
182     // is what we are showing to TrapFnc callbacks that the system call
183     // evaluator registered with the sandbox.
184     struct arch_seccomp_data data = {
185         sigsys.nr, SECCOMP_ARCH, reinterpret_cast<uint64_t>(sigsys.ip),
186         {static_cast<uint64_t>(SECCOMP_PARM1(ctx)),
187          static_cast<uint64_t>(SECCOMP_PARM2(ctx)),
188          static_cast<uint64_t>(SECCOMP_PARM3(ctx)),
189          static_cast<uint64_t>(SECCOMP_PARM4(ctx)),
190          static_cast<uint64_t>(SECCOMP_PARM5(ctx)),
191          static_cast<uint64_t>(SECCOMP_PARM6(ctx))}};
192 
193     // Now call the TrapFnc callback associated with this particular instance
194     // of SECCOMP_RET_TRAP.
195     rc = err.fnc_(data, err.aux_);
196   }
197 
198   // Update the CPU register that stores the return code of the system call
199   // that we just handled, and restore "errno" to the value that it had
200   // before entering the signal handler.
201   SECCOMP_RESULT(ctx) = static_cast<greg_t>(rc);
202   errno = old_errno;
203 
204   return;
205 }
206 
operator <(const TrapKey & o) const207 bool Trap::TrapKey::operator<(const TrapKey& o) const {
208   if (fnc != o.fnc) {
209     return fnc < o.fnc;
210   } else if (aux != o.aux) {
211     return aux < o.aux;
212   } else {
213     return safe < o.safe;
214   }
215 }
216 
MakeTrap(TrapFnc fnc,const void * aux,bool safe)217 ErrorCode Trap::MakeTrap(TrapFnc fnc, const void* aux, bool safe) {
218   return GetInstance()->MakeTrapImpl(fnc, aux, safe);
219 }
220 
MakeTrapImpl(TrapFnc fnc,const void * aux,bool safe)221 ErrorCode Trap::MakeTrapImpl(TrapFnc fnc, const void* aux, bool safe) {
222   if (!safe && !SandboxDebuggingAllowedByUser()) {
223     // Unless the user set the CHROME_SANDBOX_DEBUGGING environment variable,
224     // we never return an ErrorCode that is marked as "unsafe". This also
225     // means, the BPF compiler will never emit code that allow unsafe system
226     // calls to by-pass the filter (because they use the magic return address
227     // from SandboxSyscall(-1)).
228 
229     // This SANDBOX_DIE() can optionally be removed. It won't break security,
230     // but it might make error messages from the BPF compiler a little harder
231     // to understand. Removing the SANDBOX_DIE() allows callers to easyly check
232     // whether unsafe traps are supported (by checking whether the returned
233     // ErrorCode is ET_INVALID).
234     SANDBOX_DIE(
235         "Cannot use unsafe traps unless CHROME_SANDBOX_DEBUGGING "
236         "is enabled");
237 
238     return ErrorCode();
239   }
240 
241   // Each unique pair of TrapFnc and auxiliary data make up a distinct instance
242   // of a SECCOMP_RET_TRAP.
243   TrapKey key(fnc, aux, safe);
244   TrapIds::const_iterator iter = trap_ids_.find(key);
245 
246   // We return unique identifiers together with SECCOMP_RET_TRAP. This allows
247   // us to associate trap with the appropriate handler. The kernel allows us
248   // identifiers in the range from 0 to SECCOMP_RET_DATA (0xFFFF). We want to
249   // avoid 0, as it could be confused for a trap without any specific id.
250   // The nice thing about sequentially numbered identifiers is that we can also
251   // trivially look them up from our signal handler without making any system
252   // calls that might be async-signal-unsafe.
253   // In order to do so, we store all of our traps in a C-style trap_array_.
254   uint16_t id;
255   if (iter != trap_ids_.end()) {
256     // We have seen this pair before. Return the same id that we assigned
257     // earlier.
258     id = iter->second;
259   } else {
260     // This is a new pair. Remember it and assign a new id.
261     if (trap_array_size_ >= SECCOMP_RET_DATA /* 0xFFFF */ ||
262         trap_array_size_ >= std::numeric_limits<typeof(id)>::max()) {
263       // In practice, this is pretty much impossible to trigger, as there
264       // are other kernel limitations that restrict overall BPF program sizes.
265       SANDBOX_DIE("Too many SECCOMP_RET_TRAP callback instances");
266     }
267     id = trap_array_size_ + 1;
268 
269     // Our callers ensure that there are no other threads accessing trap_array_
270     // concurrently (typically this is done by ensuring that we are single-
271     // threaded while the sandbox is being set up). But we nonetheless are
272     // modifying a life data structure that could be accessed any time a
273     // system call is made; as system calls could be triggering SIGSYS.
274     // So, we have to be extra careful that we update trap_array_ atomically.
275     // In particular, this means we shouldn't be using realloc() to resize it.
276     // Instead, we allocate a new array, copy the values, and then switch the
277     // pointer. We only really care about the pointer being updated atomically
278     // and the data that is pointed to being valid, as these are the only
279     // values accessed from the signal handler. It is OK if trap_array_size_
280     // is inconsistent with the pointer, as it is monotonously increasing.
281     // Also, we only care about compiler barriers, as the signal handler is
282     // triggered synchronously from a system call. We don't have to protect
283     // against issues with the memory model or with completely asynchronous
284     // events.
285     if (trap_array_size_ >= trap_array_capacity_) {
286       trap_array_capacity_ += kCapacityIncrement;
287       ErrorCode* old_trap_array = trap_array_;
288       ErrorCode* new_trap_array = new ErrorCode[trap_array_capacity_];
289 
290       // Language specs are unclear on whether the compiler is allowed to move
291       // the "delete[]" above our preceding assignments and/or memory moves,
292       // iff the compiler believes that "delete[]" doesn't have any other
293       // global side-effects.
294       // We insert optimization barriers to prevent this from happening.
295       // The first barrier is probably not needed, but better be explicit in
296       // what we want to tell the compiler.
297       // The clang developer mailing list couldn't answer whether this is a
298       // legitimate worry; but they at least thought that the barrier is
299       // sufficient to prevent the (so far hypothetical) problem of re-ordering
300       // of instructions by the compiler.
301       memcpy(new_trap_array, trap_array_, trap_array_size_ * sizeof(ErrorCode));
302       asm volatile("" : "=r"(new_trap_array) : "0"(new_trap_array) : "memory");
303       trap_array_ = new_trap_array;
304       asm volatile("" : "=r"(trap_array_) : "0"(trap_array_) : "memory");
305 
306       delete[] old_trap_array;
307     }
308     trap_ids_[key] = id;
309     trap_array_[trap_array_size_] = ErrorCode(fnc, aux, safe, id);
310     return trap_array_[trap_array_size_++];
311   }
312 
313   return ErrorCode(fnc, aux, safe, id);
314 }
315 
SandboxDebuggingAllowedByUser() const316 bool Trap::SandboxDebuggingAllowedByUser() const {
317   const char* debug_flag = getenv(kSandboxDebuggingEnv);
318   return debug_flag && *debug_flag;
319 }
320 
EnableUnsafeTrapsInSigSysHandler()321 bool Trap::EnableUnsafeTrapsInSigSysHandler() {
322   Trap* trap = GetInstance();
323   if (!trap->has_unsafe_traps_) {
324     // Unsafe traps are a one-way fuse. Once enabled, they can never be turned
325     // off again.
326     // We only allow enabling unsafe traps, if the user explicitly set an
327     // appropriate environment variable. This prevents bugs that accidentally
328     // disable all sandboxing for all users.
329     if (trap->SandboxDebuggingAllowedByUser()) {
330       // We only ever print this message once, when we enable unsafe traps the
331       // first time.
332       SANDBOX_INFO("WARNING! Disabling sandbox for debugging purposes");
333       trap->has_unsafe_traps_ = true;
334     } else {
335       SANDBOX_INFO(
336           "Cannot disable sandbox and use unsafe traps unless "
337           "CHROME_SANDBOX_DEBUGGING is turned on first");
338     }
339   }
340   // Returns the, possibly updated, value of has_unsafe_traps_.
341   return trap->has_unsafe_traps_;
342 }
343 
ErrorCodeFromTrapId(uint16_t id)344 ErrorCode Trap::ErrorCodeFromTrapId(uint16_t id) {
345   if (global_trap_ && id > 0 && id <= global_trap_->trap_array_size_) {
346     return global_trap_->trap_array_[id - 1];
347   } else {
348     return ErrorCode();
349   }
350 }
351 
352 Trap* Trap::global_trap_;
353 
354 }  // namespace sandbox
355